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Collisional semiclassical approximations in phase-space representation
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The Gaussian wave-packet phase-space representation is used to show that the expansion in powers of\ of
the quantum Liouville propagator leads, in the zeroth-order term, to results close to those obtained in the
statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that, propa-
gating the Wigner distribution along the classical trajectories, the amount of error is less than that coming from
propagating the Gaussian distribution along classical trajectories.@S1050-2947~97!08309-1#
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I. INTRODUCTION

Nowadays, the advantages and difficulties for using
phase-space formulation of quantum mechanics are
known @1–3#. This formulation remains still very useful fo
studying the classical limit of quantum mechanics as wel
for describing semiclassical approximations in collision
processes; for these purposes many authors use the W
Wigner~WW! picture@1,4–6#. For the collisional problem, it
is often combined with the quasiclassical method of Ref.@7#.
Following this approach, Lee and Scully@1# improved the
accuracy of this method successfully with their statisti
quasiclassical~SQC! method which was first suggested b
Heller @8#. As we showed in a previous paper@9#, the ap-
proach of Lee and Scully corresponds to the zeroth-or
term of the expansion of the quantum Liouvillian in powe
of \ in the WW picture. So their calculated transition pro
abilities could have higher-order corrections.

The aim of this paper is to show that the use of the Gau
ian wave-packet~GWP! phase-space representation@3,10,11#
gives for the zeroth-order term, which corresponds to w
we call the causal approximation~CA!, results similar to,
although not as good as, those obtained in the WW repre
tation @1#.

In the derivation of the expansion of the quantum Lio
villian in the GWP picture all orders of\ are included; the
first-order term we shall call the quasicausal approximat
~QCA!. As is shown in Refs.@10,11#, one of the features o
the GWP representation is that the quantum fluctuation
the mapped physical quantities become more evident. A
the covariantdistribution function for a pure state, which
one of the mappings in this representation, is usually
smooth function and always non-negative, whereas thecon-
travariant mapping is singular, being actually anultradistri-
bution ~see Appendix B!.

Here we are also interested in verifying numerically, f
the collisional problem, the statement put forward by L
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@3#: ‘‘the amount of error arising from propagating th
Wigner distribution function~WDF! along the classical tra
jectories is usually considerably less than that coming fr
propagating other distributions along classical trajectorie
In our case the other distribution is the GWP distributi
@10–12#. It is in agreement with Lee’s statement the res
which we derive in Sec. II: first-order corrections in\ in the
SQC method do not improve the numerical results of L
and Scully@1#.

In our comparison of the Weyl-Wigner formalism wit
the GWP approach we are going to work with a colline
nonreactive collision of an atom with a diatomic molecu
the interaction between them being an exponential repuls
first used by Secrest and Johnson@13#, of the form
V5V0 exp@2a(x2y)#, where the constantV0 is related to
the classical turning point of the trajectory of the particle b
its value does not have any effect on the results. In the W
and GWP formalisms we have taken this potential, the d
nition of thex and y coordinates, as well as the value ofa
andV0 from Ref. @13#; the parametera is adjusted by pub-
lished experimental data@13#. The mapped Hamiltonian in
the GWP formalism has the constantV0 renormalized.

In Sec. II we summarize our previous paper~Ref. @9#!. In
Sec. III we introduce the GWP representation and the
and QCA. In Sec. IV we derive expressions for the transit
probabilities and numerical results, and conclusions are
sented in Sec. V. The appendixes contain details of exp
sions used in the text.

II. CAUSAL AND QUASICAUSAL APPROXIMATIONS
IN THE WW FORMALISM

In the first part of this section we give a review of Re
@9#. The quantum Liouville equation in the WW picture
@14#

]W~q,p,t !

]t
52 iLQW~q,p,t !, ~1!

where (q,p) is a point of phase space, andW(q,p,t) is the
Wigner distribution function~WDF!. We use just one dimen
sion. The quantum Liouvillian is
2825 © 1997 The American Physical Society
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LQ5H~q,p!F i
2

\
sin

\

2
LIG , ~2!

H(q,p) being the Hamiltonian of the system, and the ope
tor

LI5
]Q

]q

]W

]p
2

]Q

]p

]W

]q
~3!

is the Poisson bracket; arrows indicate on which side
derivatives operate.

The formal solution of Eq.~1! is given by

W~q,p,t !5e2 iLQ~ t2t0!W0~q,p!, ~4!

whereW0(q,p) is the WDF at the initial timet0 . Taking the
classical limit ofLQ in Eq. ~2!, we get

Lcl5 iH ~q,p!LI, ~5!

and Eq.~4! becomes@9#

W~0!~q,p,t !5e2 iLcl~ t2t0!W0~q,p!5W0@q~ t02t !,p~ t02t !#.
~6!

Thus each point (q,p) of the phase space of the initial WD
evolves classically according to Hamilton’s equations, f
lowing a classical trajectory reversed in time. This we c
the causal approximation.

Still, according to Ref.@9#, we can make an expansion o
LQ in a power series of\2 which is substituted into Eq.~1!,
giving

]W~q,p,t !

]t
1 iL0W~q,p,t !52 i (

n51

`

\2nL2nW~q,p,t !,

~7!

whereL05Lcl and

L2n5H~q,p!F i
~21!n

22n~2n11!!
~LI !2n11G . ~8!

The integral equation corresponding to Eq.~7! is given by

W~q,p,t !5e2 iL0~ t2t0!W0~q,p!

2 i (
n51

`

\2nE
t0

t

dt8e2 iL0~ t2t8!L2nW~q,p,t8!.

~9!

Solving this equation iteratively, in first order we obtain t
quasicausal approximation

WQCA~q,p,t !5e2 iL0~ t2t0!W0~q,p!2 i\2E
t0

t

dt8e2 iL0~ t2t8!

3L2e2 iL0~ t82t0!W0~q,p!. ~10!

In Eq. ~10! the operator exp@2iL0(t2t0)# is responsible
for the classical character of the evolution between differ
times.
-

e

-
ll

t

This formalism is applied in Ref.@9# to a collisional pro-
cess where a molecule suffers a collision from a pointl
projectile. As a result, the molecule is transferred from
initial discrete energy levelu i & to the final levelu f &; the total
probability for this transition, in the limit t→` and
t0→2`, is given by

Pi→ f52p\E
2`

`

dp0E
2`

`

dq0Wi~q0 ,p0!eiLQ~ t2t0!

3Wf~q0 ,p0!. ~11!

Equation~11! is an exact result. Now introducing the QCA
in the limit t→` and t0→2` we obtain

Pi→ f
QCA52p\F E

2`

`

dp0E
2`

`

dq0Wi~q0 ,p0!

3Wf@q~ t2t0!,p~ t2t0!#1 i\2E
2`

`

dp0

3E
2`

`

dq0Wi~q0 ,p0!E
t0

t

dt8eiL0~ t2t8!

3L2Wf@q~ t82t0!,p~ t82t0!#G , ~12!

where the first term corresponds to the CA, and the sec
one to the QCA. The CA corresponds to the SQC method
Lee and Scully given in Ref.@1#. Here, as in Ref.@1#, the
H22He collision is considered,H2 andHe being treated as
an harmonic oscillator and a free particle, respectively. T
Hamiltonian in the Weyl-Wigner phase space is given by

H~Q,q,P,p!5
P2

2M
1

p2

2m
1

1

2
kq21V0e2a~Q2q!,

~13!

whereQ and q are the translational and vibrational coord
nates respectively,P andp being their respective momenta
All the parameters appearing in Eq.~13!, M , m, V0 , a,
and k5mv2 ~elastic constant of the oscillator!, are taken
from Ref. @13#.

Following Lee and Scully~Refs. @1,3#! Q, q, P, and p
obey Hamilton’s equations, so they describe classical tra
tories; the initial state of the system in Eq.~12! is given by
the WDFWi(q0 ,p0) for the harmonic oscillator; and the pa
(q0 ,p0) refers to the initial position and momentum of th
harmonic oscillator, and it belongs to a two-dimension
rectangular grid whose size and density depend on the
sired accuracy.

Integrating numerically Hamilton’s equations for ea
(q0 ,p0) of the grid for the harmonic oscillator and the a
propriate initialQ andP of the particle, we obtain the set o
final pairs (q,p) for the oscillator and final (Q,P) for the
particle, initial and finalQ must be taken sufficiently large s
that the particle can be considered free, which can be veri
by using the fact that the total energy must be conser
along the trajectories.

In Eq. ~12! the final state of the system is now given b
the WDFWf(q,p) calculated for all final phase-space poin
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of the grid. Once initial and final WDF’s are calculated f
each point, the CA can be obtained using the first term in
~12!.

In order to obtain the QCA, the second term in Eq.~12!
must be calculated. This term can be approximated by@12#

CQCA5BFi f E
t0

t

dt8e2a[Q~ t82t0!2q~ t82t0!] , ~14!

with the constantB5p(\a)3V0/12, and

Fi f 5E
2`

`

dp0E
2`

`

dq0Wi~q0 ,p0!ei ~ t2t0!L0
]3

]p0
3 Wf~q0 ,p0!.

~15!

Making y52EOH/\v @EOH(q0 ,p0) being the energy of
the classical harmonic oscillator#, we have

]3

]p0
3 Wf~q0 ,p0!5A0p0

31B0p0 , ~16!

where

A05S 2

\vmD 3 ]3wf~y!

]y3 and B053S 2

\vmD 2 ]2wf~y!

]y2 ,

beingwf(y)5Wf(q0 ,p0).
Now we are going to show that this correction to the C

given by Eq.~14!, oscillates periodically in timet. Let tM be
the time at which the atom is considered to be a free part
after colliding with the molecule. At this time the coordina
and momentum of the classical harmonic oscillator are gi
by

q0M5A cos~vtM1f0! and

p0M52mvA sin~vtM1f0!.

At a later timet5tM1Dt, with Dt.0, the momentump0(t)
of the harmonic oscillator will be

p0~ t !5p0Mcos~vDt !2mvq0Msin~vDt !. ~17!

Thus, makinga5p0M andb52mvq0M , one has

p0
3~ t !5a3cos3vDt1b3sin3vDt

13ab2cosvDt sin2vDt

13a2bsinvDt cos2vDt. ~18!

From Eqs.~17! and ~18! we obtain, for Eq.~16!,

A0p0
3~ t !1B0p0~ t !5a3cos3vDt1b3sin3vDt

1a1cosvDt1b1sinvDt, ~19!

where

a35A0~a31a* 3!, b35 iA0~a32a* 3!,

a15~3A0aa* 1B0!~a1a* !,

b15 i ~3A0aa* 1B0!~a2a* !,
q.

,

le

n

anda5 1
2 (a2 ib). Equation~19! is a Fourier’s series, which

substituted into Eq.~15! shows thatCQCA given by Eq.~14!
is a periodical function, since in this equation the integral
the time converges in the limitt→`. The average of this
periodical function over one period of the oscillator will b
zero. In this derivation we have used the approximate exp
sion for the correction of the transition rate given by E
~14!. The exact demonstration, although more involved, f
lows along similar lines.

III. CAUSAL AND QUASICAUSAL APPROXIMATIONS
IN THE GWP FORMALISM

In the GWP representation@10–12#, operators can be
mapped both into covariant~CV! and contravariant~CTV!
forms, and there are expressions which relate the CV w
the CTV forms as well as both of them with the correspon
ing WW representation.

The commutator of two operators of the Hilbert spaceA
andB in the CV form is written@3,10,11#

^pqu@A,B#upq&5ACV~q,p!~GI2GI* !BCV~q,p!, ~20!

where (q,p) is a point in a phase space,upq& represents the
minimum uncertainty Gaussian wave-packet or coher
state, andACV(q,p) andBCV(q,p) are the CV forms of op-
erators A and B and GI5exp@(\/2)DQ DW * #, where
D5(1/a0)]/]q2 ia0]/]p. Arrows indicate on which side
operators act anda0 is a constant with dimension
M1/2T21/2.

The quantum Liouville equation in the CV representati
for the density operatorPCV(q,p,t)5^pquC(t)&^C(t)upq&
is given by

]

]t
PCV~q,p,t !52 iLCVPCV~q,p,t !, ~21!

LCV being the quantum Liouvillian in the CV form,

LCV5
1

\
HCV~q,p!~GI2GI* !, ~22!

andHCV(q,p)5^pquHupq& the CV form of the Hamiltonian
H @11#.

Now expanding LCV in an \ power series,LCV

5(n50
` \nLn , we identify

Ln5
i

2n~n11!!
Im@~Dn11HCV!~DW * !n11#, ~23!

whereL05Lcl is the classical Liouvillian.
One defines a Green’s function@11# by

w~q,p,tuq0 ,p0 ,t0!5e2 i ~ t2t0!LCV
w~q,p,t0uq0 ,p0 ,t0!,

~24!

with the condition

lim
t→t0

w~q,p,tuq0 ,p0 ,t0!5d~q2q0!d~p2p0!. ~25!

This Green’s function satisfies the Liouville equation
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]

]t
w~q,p,tuq0 ,p0 ,t0!52 iLCVw~q,p,tuq0 ,p0 ,t0!, t.t0

~26!

where the pairs (q0 ,p0) and (q,p) are the momenta and th
coordinates at timest0 andt, respectively. Here, as discusse
in Ref. @9#, classical causality is broken in the\ power-series
expansion ofLCV when terms withn>1 are retained.

Because of Eq.~23!, Eq. ~26! can be written as follows:

]

]t
w~ tut0!1 iL0w~ tut0!5

2

\ (
n51

` S \

2D n11

~n11!!
Im@~Dn11HCV!

3~D* !n11w~ tut0!#. ~27!

In the GWP phase space the CV form of the density
eratorPCV(q,p,t) is given by@11#

PCV~q,p,t !5E
2`

`

dp0E
2`

`

dq0w~q,p,tuq0 ,p0 ,t0!

3PCV~q0 ,p0 ,t0!, ~28!

so, if a formal solution of Eq.~27!,

w~ tut0!5e2 i ~ t2t0!L0w~ t0ut0!1
2

\ E
t0

t

dt8e2 i ~ t2t8!L0

3 (
n51

` S \

2D n11

~n11!!
Im@~Dn11HCV!

3~D* !n11w~ t8ut0!#, ~29!

is substituted into Eq. ~28!, keeping in mind that
w(t0ut0)5d(q2q0)d(p2p0), the first term gives, for
PCV(q,p,t), the CA, while by including the lowest correc
tion, then51 term, the QCA is obtained.

IV. TRANSITION PROBABILITIES
FOR A COLLISIONAL PROCESS

When we have a system in a given initial stateu i &, at time
t0 and final stateu f & at time t, with t.t0 , the transition
probabilityPi→ f may be written@11#

Pi→ f5
1

2p\ E
2`

`

dp

3E
2`

`

dq Pi
CTV~q,p,t0!ei ~ t2t0!LCV

Pf
CV~q,p,t0!

5
1

2p\ E
2`

`

dpE
2`

`

dq Pi
CTV~q,p,t0!P̃f

CV~q,p,t !,

~30!

Pi
CTV being the CTV form~an ultradistribution function! of

the initial state, andPf
CV the CV form ~a distribution func-

tion! of the final state. We observe that there is a kind
‘‘contraction’’ similar to the one occurring, for instance,
-

f

the theory of relativity: we could interchange CV by CTV
Eq. ~30! without affecting the result of the integratio
@10,11#.

For the CTV ultradistribution function we have an equ
tion @11# analogous to Eq.~21!, whose formal solution is
given by

Pi
CTV~q,p,t !5exp@2 i ~ t2t0!LCTV#Pi

CTV~q,p,t0!,

with

LCTV5
1

\
HCTV@GICTV2~GICTV!* #

and

GICTV5exp~2\DQ * DW /2!.

We use the model and method described by Lee
Scully @1,3# for the one-dimensional atom-molecule colline
collision, but in the GWP phase-space formulation. Here a
in this nonreactive process the atom is treated like a f
classical structureless particle while the molecule is rep
sented by a harmonic oscillator. The interaction between
atom and the molecule@13# is the exponential repulsion de
scribed in Sec. I. The Hamiltonian for this system in the C
representation is~see Appendix A!

HCV5
P2

2M
1

p2

2m
1

1

2
kq21Veffe

2a~Q2q!1
\

4 S a0
2

m
1

k

a0
2D ,

~31!

whereQ and q are the translational and vibrational coord
nates respectively,P and p their respective momenta
Veff5V0exp(a2\/4a0

2) and the parametersM , m, V0 , a, and
k ~elastic constant! are taken from Ref.@13#, fitting the
He-H2 system. The CTV form of the Hamiltonian is obtaine
from Eq.~31! by replacinga0

2 by 2a0
2 @11#. From here on we

shall usemv for the parametera0
2.

In the \ power-series expansion ofLCV

LCV5L01\L11\2L21••• , ~32!

the contributions of the coordinatesQ andP were neglected,
except in the zeroth order term given by

L05 i S ]HCV

]Q

]

]P
2

]HCV

]P

]

]Q
1

]HCV

]q

]

]p
2

]HCV

]p

]

]qD ,

~33!

and which corresponds to classical motion.
In this approximation

Dn11HCV5~a/a0!n11Veff exp@2a~Q2q!# for n>1.

So Eq.~29! can then be written
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w~ tut0!5e2 i ~ t2t0!L0w0~ t0ut0!1
2Veff

\ E
t0

t

dt8e2 i ~ t2t8!L0

3Im F e2a~Q2q! (
n52

` S \a

2a0
D* D n

n!
w~ t8ut0!G .

~34!

Substituting Eq.~34! into Eq.~28!, we have, in first iteration,

PCV~q,p,t !5e2 i ~ t2t0!L0PCV~q,p,t0!1
2Veff

\

3E
t0

t

dt8@e2 i ~ t2t8!L0e2a~Q2q!#e2 i ~ t2t8!L0

3Im (
n52

` S \a

2a0
D* D n

n!

3e2 i ~ t82t0!L0PCV~q,p,t0!. ~35!

In order to obtain P̃CV(q,p,t)5exp@i(t2t0)LCV#
3Pf

CV(q,p,t0), which is the function appearing in Eq.~30!,
we proceed in the same fashion, but now as the Gre
function is given byw̃(tut0)5exp@i(t2t0)LCV]w(t0ut0), we
get, instead of Eq.~35!,

P̃CV~q,p,t !5ei ~ t2t0!L0PCV~q,p,t0!2
2Veff

\

3E
t0

t

dt8@ei ~ t2t8!L0e2a~Q2q!#ei ~ t2t8!L0

3Im(
n52

` S \a

2a0
D* D n

n!

3ei ~ t82t0!L0PCV~q,p,t0!, ~36!

sinceP̃CV(q,p,t0)5PCV(q,p,t0).
Substituting Eq.~36! into Eq.~30! we have, with quantum

corrections in all orders of\,

Pi→ f5E dp dq

2p\
Pi

CTV~q,p,t0!ei ~ t2t0!L0Pf
CV~q,p,t0!

2
aVeff

a0
E dp dq

2p\
Pi

CTV~q,p,t0!

3E
t0

t

dt8@ei ~ t2t8!L0e2a~Q2q!#•ei ~ t2t8!L0

3ImF S E
0

1

dje~j\a/2a0! D* 21DD* ei ~ t82t0!L0

3Pf
CV~q,p,t0!G , ~37!

where we have used the property, valid for any operatorA,
’s

E
0

1

dj ejA5 (
n50

`
An

~n11!!
. ~38!

The first term in Eq.~37! is the CA which is the zeroth-
order term of our\ power-series expansion, and correspon
to the expression of the SQC method of Lee and Scully@1#.
The difference between these two expressions lies in the
tribution functions; while Lee and Scully worked with th
product of two Wigner distribution functions, in Eq.~37! we
have the product of two Gaussian distribution functions, o
of them in the CTV form and the other in the CV form.

Like in the SQC method,@1,3# herePi
CTV(q,p,t0) repre-

sents the initial vibrational state of the system, which
propagate along classical trajectories. We also use the
and Scully method@1# for constructing the two-dimensiona
rectangular grid in the (q,p) plane.Pi

CTV(qn ,pn ,t052`) is
the weight carried by the point (qn ,pn) of thenth cell of the
grid.

After integrating Hamilton’s equations for each point
the grid, the final GDF@Pf

CV(q,p,t5`)# is calculated, and
then the transition probabilities are computed in the C
which corresponds to the first term in Eq.~37!.

The GDF in the CV form is given by~see Appendix B!

Pn
CV~y!5

1

n!
yne2y, ~39!

TABLE I. Transition probabilityP0→ f for a collinear He-H2
collision calculated by the quantum-mechanical~QM! method~Ref.
@13#!, statistical quasiclassical~SQC! method~Ref. @1#!, and Gauss-
ian wave-packet~GWP! method in the CA@first term in Eq.~37!#.
The total initial energyE is measured in units of\v/2, wherev is
the vibrational frequency of the H2 molecule. In the calculation of
P0

CTV at least 100 Laguerre polynomials were used, although o
about ten polynomials are required in order to obtain converge
Numbers inside brackets give the upper limit of the transition pr
ability, and* means that the transition is prohibited classically.

E P0→ f QM SQC GWP

8 0→0 ~0.892! 0.893 0.830
0→1 0.108 0.107 0.156
0→2 0.001 0.014

12 0→0 ~0.538! 0.529 0.501
0→1 0.394 0.412 0.349
0→2 0.068 0.068 0.122
0→3 0.028

16 0→0 ~0.204! 0.187 0.229
0→1 0.434 0.422 0.339
0→2 0.291 0.314 0.250
0→3 0.071 0.077 0.124
0→4 0.045
0→5 0.013

20 0→0 (0.060)* 0.046* 0.090*
0→1 0.218 0.202 0.221
0→2 0.366 0.351 0.270
0→3 0.267 0.294 0.220
0→4 0.089 0.106 0.134
0→5 0.066
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where y5E/\v, E(q,p) being the energy of the classic
harmonic oscillator, andn is the quantum number whic
corresponds to thenth eigenstate of the harmonic oscillato
Introducing the new variabler 25y, the GDF in the CTV
form is ~see Appendix B!

Pn
CTV~r !5e2~ 1/4r !~]/]r !r ~ ]/]r !Pn

CV~r !. ~40!

V. NUMERICAL RESULTS AND CONCLUSIONS

Using the mapped form of the quantum Liouville equati
in GWP phase space, we have derived expressions for
transition probabilities for semiclassical calculations of
elastic atom-molecule collisions which include also t
quantum terms. These expressions are similar to those
tained in Ref.@9# for the WW formalism.

We show in Tables I and II the transition probabilitie
Pi→ f from the initial (i ) to the final (f ) state of the He-H2
system which were computed, first, by integrating nume
cally the Schro¨dinger equation~these are the exact quantu
mechanical results taken from Ref.@13#!, second, by using
the Weyl-Wigner representation in the statistical quasicla
cal method taken from Ref.@1#, and, third, by using the
Gaussian wave-packet representation in the causal app
mation. The last ones are our results, and they are give
the first term in Eq.~37!. For more details on the system an
models, see the mentioned references.

The results in Tables I and II, obtained using only t
zeroth-order term for both methods, SQC and GWP, sho
improve if quantum corrections are introduced. The accur
of the SQC and the GWP methods was checked by stud
how well the transition probabilities obey microscopic r
versibility, the results are presented in Table III. These
sults confirm that, for the CA, the amount of error comi

TABLE II. Similar to Table I, except that the oscillator goe
from the first exited state to the final statef .

E P1→ f QM SQC GWP

8 1→0 0.108 0.106 0.135
1→1 ~0.850! 0.863 0.780
1→2 0.042 0.031 0.085

12 1→0 0.394 0.411 0.396
1→1 ~0.244! 0.176 0.250
1→2 0.345 0.385 0.272
1→3 0.037* 0.028* 0.082*

16 1→0 0.434 0.420 0.377
1→1 ~0.034! 0.065 0.137
1→2 0.220 0.151 0.176
1→3 0.261 0.302 0.181
1→4 0.051 0.061 0.098
1→5 0.031

20 1→0 0.218 0.199 0.230
1→1 ~0.286! 0.285 0.223
1→2 0.009 0.042 0.143
1→3 0.170 0.090 0.149
1→4 0.240 0.262 0.149
1→5 0.077 0.121 0.105
he
-

b-

i-

i-

xi-
by

ld
y
g

-

from propagating the WDF along classical trajectories is l
than that coming from propagating the GWP distributi
along the classical trajectories, as stated in Ref.@3#. This
agrees with the vanishing result found in Sec. II for the fi
quantum correction to the CA in the WW formalism. How
ever, preliminary calculations of the first quantum correcti
in the GWP formalism gave unsatisfactory nonzero resu
We attribute this failure to the fact that in the GWP approa
the calculation of transition probabilities, Eq.~37!, involves
two GDF’s, one in a CTV form~which is singular!, and the
other in a CV form~which is smooth!. For the numerical
procedure we approximated the Diracd functions and deriva-
tives, present in the CTV form, byfinite sums over the La-
guerre polynomials, as described in Appendix B. Howev
by increasing the number of terms in the sums, we were
able to obtain stable results for the quantum corrections, t
no inference could be extracted for their estimation.

We also remark here that, since the contravariant G
distributions involved functions and its derivatives calcu
lated at the origin of the phase space~see Appendix B! in the
transition probability given by Eq.~37!, only those trajecto-
ries ending with the oscillator at rest at the origin will co
tribute, whereas on the WW picture@Eq. ~11!#, at initial and
final times, the contributing trajectories correspond to
oscillator having a range of energies of the order of\v. This
difference has to be compensated for by larger contributi
of the quantum corrections, and, thus, possibly many te
in the expansion of Eq.~32! are required to yield results o
similar accuracy.

In conclusion, to calculate transition probabilities sem
classically, the WW formalism seems more advantage
than the GWP one, since the former involves two Wign
functions ~initial and final states! which, although not as
smooth~and positive! as the CV form of the GDF’s, posses
the virtue of not having strong singularities as those occur
in the CTV form. Finally, we mention that in the CA, bot
methods~SQC and GWP! give nonvanishing results for clas
sically forbidden processes, and the numerical calculati
for both formalisms present almost the same degree of d
culty for being performed.
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TABLE III. Similar to Table I; results of Tables I and II are
compared in order to test microscopic reversibility.

E Pi→ f QM SQC GWP

8 0→1 0.108 0.107 0.156
1→0 0.108 0.106 0.135

12 0→1 0.394 0.412 0.349
1→0 0.394 0.411 0.396

16 0→1 0.434 0.422 0.339
1→0 0.434 0.420 0.377

20 0→1 0.218 0.202 0.221
1→0 0.218 0.199 0.230
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APPENDIX A: HAMILTONIAN
IN THE CV REPRESENTATION

FOR THE ATOM-MOLECULE SYSTEM

Let upq& be the minimum uncertainty GWP and (p,q) a
point in the phase space,p̂ and q̂ the linear momentum and
position operators, respectively, andF( p̂,q̂) an arbitrary
function expandable in a power series of its arguments.
ordering of the operators in each term of the series is sp
fied by the functionF. In Refs.@10–12# it was shown that
the mapped CV form ofF( p̂,q̂) can be obtained by using th
algorithm

f F~p,q![FS p2
i\

2

]

]q
1

\a0
2

2

]

]p
,q1

i\

2

]

]p
1

\

2a0
2

]

]qD 1,

~A1!

where the functional form ofF is kept unchanged, but th
operatorsp̂ andq̂ are substituted~keeping the original order!
by a differential realization, and, thereafter, the whole e
pression operates on the unity. For instance, the CV form
q̂2 in the GWP representation is

^pquq̂2upq&5q21
\

2a0
2

, ~A2!

and that ofp̂2 is

^pqu p̂2upq&5p21
\a0

2

2
. ~A3!

The Hamiltonian for the atom-molecule system considere
this work is

H~Q,P,q̂,p̂!5
P2

2M
1

p̂2

2m
1

kq̂2

2
1V0e2a~Q2q̂!, ~A4!

where Q and P are the coordinate and momentum of t
atom which is treated like a freeclassicalstructureless par
ticle, while the molecule is represented by the quantum h
monic oscillator.

Using the algorithm~A1!, we obtain

^pque2a~Q2q̂!upq&5e2a~Q2q!1~a2\/4a0
2
!. ~A5!

Thus, the CV form of the Hamiltonian~A4! is

^pquHupq&5
P2

2M
1

p2

2m
1

kq2

2
1Veffe

2a~Q2q!

1
\

4 S a0
2

m
1

k

a0
2D , ~A6!

whereVeff5V0e
a2\/4a0

2
is the effective strength of the interac

tion.
e
i-

-
of

in

r-

APPENDIX B: DERIVATION OF THE CTV FORM
OF THE GDF

Let uwn&, with n50,1,2, . . . be the eigenstate of the ha
monic oscillator andua&5upq& the GWP representation; th
CV form for the density operator̂pquwn&^wnupq& is given
by Pn

CV(r )5( r 2n/n! )e2r 2
, where the paramete

a5(a0
2/2\)1/2q1 i (1/2\a0

2)1/2p5reiu, @10,15#. If E repre-
sents the energy of the classical harmonic oscillator
r 25( E/\v)5y, we may write

Pn
CV~y!5

1

n!
yne2y; ~B1!

thus the CV form of the GDF depends only on the energy
the harmonic oscillator.

In order to obtain the CTV form of the GDF, we use th
property of the coherent states@15# which relates the norma
~NO! and antinormal~AO! ordering of a functionf of a and
a*

f ~AO!~a,a* !5e~]2/]a]a* ! f ~NO!~a,a* !. ~B2!

In polar coordinatesr andu, we have

]2

]a]a*
5

1

4r S ]

]r
r

]

]r
1

1

r

]2

]u2D , ~B3!

and Eq.~B2! in the GWP representation is written@10#

Pn
CTV~r ,u!5e2~1/4r !@~]/]r !r ~]/]r !1~1/r !~]2/]u2!#Pn

CV~r ,u!.
~B4!

For any positive integern, we derived the formula

S 1

4r

]

]r
r

]

]r D
n

e2r 2
5S d

dy
y

d

dyD
n

e2y5~21!nn!Ln~y!e2y,

~B5!

whereLn are the Laguerre polynomials. SincePn
CV(r ) for the

harmonic oscillator does not depend onu, Eq. ~B4! can be
written as

Pn
CTV~y!5e2~d/dy!y~d/dy!Pn

CV~y!. ~B6!

Now, we call attention to the fact that the CTV distributio
functions are singular; actually, they areultradistributions.
They will depend on the ‘‘moments’’(n50

` nsLn(y), where
the Laguerre polynomials act as ‘‘weight’’ functions ands is
an integer. These ‘‘moments’’ are written in terms of th
Dirac d function and its derivatives. For instance, f
s50,1,2 we have

(
n50

`

Ln~y!5d~y!, ~B7!

(
n50

`

nLn~y!5d8~y!2d~y!, ~B8!

(
n50

`

n2Ln~y!52d9~y!23d8~y!1d~y!. ~B9!
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Using Eqs.~B6!, Eq. ~B1!, and Eq.~B5!, we obtain, for
n50,

P0
CTV~y!5 (

n50

`

Ln~y!e2y5e2yd~y!. ~B10!

For n.0 we introduce the auxiliary function

P0
CTV~y,b!5e2~d/dy!y~d/dy!e2by5 (

n50

`

bnLn~by!e2by

~B11!

in order to write

Pn
CTV~y!5

1

n!
lim
b→1

S 2
]

]b D n

P0
CTV~y,b!. ~B12!
r,

.

ico
d

For n51,2, we obtain, respectively,

P1
CTV~y!5 (

n50

`

~12n!Ln~y!e2y5e2y@2d8~y!12d~y!#

~B13!

and

P2
CTV~y!5 (

n50

`

~n225n12!Ln~y!e2y

5e2y@d9~y!24d8~y!14d~y!#, ~B14!

where we used Eqs.~B7!–~B9!.
n
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