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Collisional semiclassical approximations in phase-space representation
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The Gaussian wave-packet phase-space representation is used to show that the expansion in pafers of
the quantum Liouville propagator leads, in the zeroth-order term, to results close to those obtained in the
statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that, propa-
gating the Wigner distribution along the classical trajectories, the amount of error is less than that coming from
propagating the Gaussian distribution along classical traject¢B4950-294®7)08309-1

PACS numbdss): 34.10+x, 03.65.Sq

I. INTRODUCTION [3]: “the amount of error arising from propagating the
Wigner distribution functiofWDF) along the classical tra-

Nowadays, the advantages and difficulties for using thgectories is usually considerably less than that coming from
phase-space formulation of quantum mechanics are weRropagating other distributions along classical trajectories.”
known [1-3]. This formulation remains still very useful for In our case the other distribution is the GWP distribution
studying the classical limit of quantum mechanics as well a§10-12. It is in agreement with Lee’s statement the result
for describing semiclassical approximations in collisionalwhich we derive in Sec. II: first-order correctionsinin the
processes; for these purposes many authors use the WeldQC method do not improve the numerical results of Lee
Wigner (WW) picture[1,4—6]. For the collisional problem, it and Scully[1].
is often combined with the quasiclassical method of R&f. In our comparison of the Weyl-Wigner formalism with
Following this approach, Lee and Scull§] improved the the GWP approach we are going to work with a collinear
accuracy of this method successfully with their statisticalnonreactive collision of an atom with a diatomic molecule,
quasiclassicalSQQO method which was first suggested by the interaction between them being an exponential repulsion,
Heller [8]. As we showed in a previous papd], the ap- first used by Secrest and Johns¢h3], of the form
proach of Lee and Scully corresponds to the zeroth-ordeY =V, exd —a(x—Yy)], where the constar¥, is related to
term of the expansion of the quantum Liouvillian in powersthe classical turning point of the trajectory of the particle but
of # in the WW picture. So their calculated transition prob- its value does not have any effect on the results. In the WW
abilities could have higher-order corrections. and GWP formalisms we have taken this potential, the defi-

The aim of this paper is to show that the use of the Gaussdition of thex andy coordinates, as well as the value @f
ian wave-packetGWP) phase-space representatj@nl0,1]  andV, from Ref.[13]; the parameter is adjusted by pub-
gives for the zeroth-order term, which corresponds to whalished experimental datgl3]. The mapped Hamiltonian in
we call the causal approximatiof€A), results similar to, the GWP formalism has the constary renormalized.
although not as good as, those obtained in the WW represen- In Sec. Il we summarize our previous pagRef.[9]). In
tation[1]. Sec. Il we introduce the GWP representation and the CA

In the derivation of the expansion of the quantum Liou-and QCA. In Sec. IV we derive expressions for the transition
villian in the GWP picture all orders of are included; the probabilities and numerical results, and conclusions are pre-
first-order term we shall call the quasicausal approximatiorsented in Sec. V. The appendixes contain details of expres-
(QCA). As is shown in Refs[10,11], one of the features of sions used in the text.
the GWP representation is that the quantum fluctuations of
the mapped physical quantities become more evident. Also, ||, CAUSAL AND QUASICAUSAL APPROXIMATIONS

the covariantdistribution function for a pure state, which is IN THE WW FORMALISM

one of the mappings in this representation, is usually a

smooth function and always non-negative, whereastire In the first part of this section we give a review of Ref.

travariant mapping is singular, being actually aftradistri- ~ [9]- The quantum Liouville equation in the WW picture is

bution (see Appendix B [14]

Here we are also interested in verifying numerically, for W 9

the collisional problem, the statement put forward by Lee g{p’ — i LoW(a.p.), i
*Electronic address: bund@axp.ift.unesp.br where @,p) is a point of phase space, akdq,p,t) is the
"Electronic address: salomon@power.ufscar.br Wigner distribution functiof WDF). We use just one dimen-
*Electronic address: maria@axp.ift.unesp.br sion. The quantum Liouvillian is
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This formalism is applied in Ref9] to a collisional pro-
cess where a molecule suffers a collision from a pointlike
projectile. As a result, the molecule is transferred from the

2826
Lo=H Zsint i 2

tor
RN ,
B ©

is the Poisson bracket; arrows indicate on which side the

derivatives operate.
The formal solution of Eq(1) is given by

W(q!p!t):e_iL:Q(t_to)WO(qip)l (4)

whereW,(q,p) is the WDF at the initial timeg. Taking the
classical limit of Lq in Eq. (2), we get

Ly=iH(a,p)A, (5)
and Eq.(4) becomeg9]

WO(q,p,t)=e" "Lt 0IWy(q,p) :WO[Q(to_t),p(to_tz%-)

Thus each pointd,p) of the phase space of the initial WDF
evolves classically according to Hamilton’s equations, fol-
lowing a classical trajectory reversed in time. This we call

the causal approximation.

Still, according to Ref[9], we can make an expansion of

Lq in a power series of? which is substituted into Eq1),
giving

©

JW(q,p,t) . .
5t HLW(a,p.0= -1 2 AZLoW(a,pD),
(7)
whereLy= L and
(=D <
Lon=H(q,p)|i m(/\)zn+l : (8)

The integral equation corresponding to E®). is given by

W(q,p,t)=e" ot "Wy (q,p)
o) t . ,
—i > A2 dt’e Lt e, W(g,p,t).
n=1 to

9

probability for this transition, in the limitt—c and
to— —, is given by

Pi_>f:277ﬁf dpof ddoW;(dg,pg)€e'“et~to)
X W¢(dg,Po)- (11

Equation(11) is an exact result. Now introducing the QCA,
in the limit t—o° andty— —% we obtain

fﬁwdpofimd%wi(%,po)

XWf[q(t—to),p(t—to)]+iﬁzﬁ dp,
joe] t ) ,

Xf dQOWi(qo,po)f dt’ efLo(t=t")
Y .

Xﬁsz[Q(t’—to),p(t’—to)]} (12

where the first term corresponds to the CA, and the second

one to the QCA. The CA corresponds to the SQC method of
Lee and Scully given in Ref.l]. Here, as in Ref[1], the
H,—He collision is considered, andHe being treated as
an harmonic oscillator and a free particle, respectively. The
Hamiltonian in the Weyl-Wigner phase space is given by
2 p2 1
- 4+ LT ka? —2(Q-q)
H(Q,q,P,p) oM 2m T 2 kg+Voe \
(13

whereQ andq are the translational and vibrational coordi-
nates respectively\R andp being their respective momenta.
All the parameters appearing in EQL3), M, m, Vg, a,
and k=mw? (elastic constant of the oscillajprare taken
from Ref.[13].

Following Lee and ScullyRefs.[1,3]) Q, g, P, andp
obey Hamilton’s equations, so they describe classical trajec-
tories; the initial state of the system in Ed.2) is given by
the WDFW,(qq,po) for the harmonic oscillator; and the pair
(do.po) refers to the initial position and momentum of the
harmonic oscillator, and it belongs to a two-dimensional
rectangular grid whose size and density depend on the de-

Solving this equation iteratively, in first order we obtain the sired accuracy.

guasicausal approximation
. t . ,
WQCA(q,p,t)=e"£0“‘t°>wo(q,p)—iﬁzf dt’e"iLot=t)
to

X Loe” Fot' “lolwy(q,p). (10)

In Eq. (10) the operator e{p-iLy(t—1tg)] is responsible

for the classical character of the evolution between different

times.

Integrating numerically Hamilton’s equations for each
(do,po) of the grid for the harmonic oscillator and the ap-
propriate initialQ andP of the particle, we obtain the set of
final pairs @,p) for the oscillator and final @,P) for the
particle, initial and finalQ must be taken sufficiently large so
that the particle can be considered free, which can be verified
by using the fact that the total energy must be conserved
along the trajectories.

In Eqg. (12) the final state of the system is now given by
the WDFW;(q,p) calculated for all final phase-space points
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of the grid. Once initial and final WDF’s are calculated for gngd =1 (a—ib). Equation(19) is a Fourier's series, which

each point, the CA can be obtained using the first term in Edgpstituted into Eq(15) shows thatCqca given by Eq.(14)

(12). , ) is a periodical function, since in this equation the integral in
In order to obtain the QCA, the second term in EX) 6 time converges in the limit—c. The average of this

must be calculated. This term can be approximate@l®  periodical function over one period of the oscillator will be
¢ zero. In this derivation we have used the approximate expres-

CQCAZBFiff dt’eelQ' ~to—at’~to)] (14) sion for the correction of the transition rate given by Eq.

to (14). The exact demonstration, although more involved, fol-

lows along similar lines.
with the constanB= m(#% a)3V,/12, and g

o w _ 53 lll. CAUSAL AND QUASICAUSAL APPROXIMATIONS
Fif:f deJ’ quWi(qo,po)e'“*‘o)ﬁo&—pgwf(qo,po). IN THE GWP FORMALISM
— —0o0 0
(15 In the GWP representationl0—12, operators can be

) ) mapped both into covariafCV) and contravarianfCTV)
Making y=2Eop/fiw [Eon(do,Po) being the energy of forms, and there are expressions which relate the CV with

the classical harmonic oscillafprwe have the CTV forms as well as both of them with the correspond-
e ing WW representation.
W 00)=Agp3+ ByDg, 16 The commutator of two operators of the Hilbert sp#ce
Fgpo t(%:Po) =AoPo™ BoPo 19 andB in the CV form is written[3,10,1]
where (pdl[A.B][pa)=A(q,p)(T-T*)B™(a,p), (20
A 2 \3Pwy(y) d B.=3 2 \25Pwe(y) where @,p) is a point in a phase spad@gq) represents the
07\ Zwm ay> an 072\ 4om ay’ minimum uncertainty Gaussian wave-packet or coherent
state, and4®V(q,p) and B°Y(q,p) are the CV forms of op-
beingw;(y) =W;(do,Po)- erators A and B and ['=ex{(#/2)DD*], where

Now we are going to show that this correction to the CA7D=(1/aO)a/(9q—ia0(9/ap. Arrows indicate on which side
given by Eq.(14), oscillates periodically in timé. Lett,, be operators act anda, is a constant with dimensions
the time at which the atom is considered to be a free particlgyv2t-1/2
after colliding with the molecule. At this time the coordinate  The quantum Liouville equation in the CV representation
End momentum of the classical harmonic oscillator are givefoy the density operatoP<Y(q,p,t) =(pg| ¥ (1) ¥ (t)|pg)

y is given by

dom=A cogwty+¢o) and 5
Pom=—MwA Sin(wty+ o) S PY(a,p.H)=—iLP(q,p,0), 21)
oM™ M 0)-

At a later timet =t + At, with At>0, the momentunp,(t) £ being the quantum Liouvillian in the CV form,
of the harmonic oscillator will be

1 - o
: LY== HV(q,p)(I'-T*), 22
Polt) = PowCOS WAL ~MagoysiNwAD. (17 p @R a=r 22
Thus, makinga= pgy andb=—mwqgy , one has andHV(q,p)=(pq|H|pq) the CV form of the Hamiltonian
H [11].
pa(t) =a’coSwAt+b3sirfwAt Now expanding £ in an # power series, £

—\y® n H H
+3ab’coswAt sifwAt = Zn=oft"Ln, We identity

2hei i -
+ 3a“bsinwAt COSZwAt. (18) £n:2n(n+1)! Im[(D””HCV)(D*)””], (23)
From Egs.(17) and (18) we obtain, for Eq(16),

where Ly= L, is the classical Liouvillian.

AoP3(t) +Bopo(t) =a5c0sIwAt+ bssin3wAt One defines a Green’s functi¢hl] by

+ +bysi ~it-to) 2V
3;C0SwAL+DySiNwAL, - (19) w(d,p.t|do.Po.to) =€ W(q,p,to|do, Po . to),

where (24)

as=Ag(a®+a*3), by=iAy(a®—a*?), with the condition

lim w(q,p,t|do,Po,te) =8(0—dg) S(p—po). (25
a,— (3Agaa* +By)(ata®), fim (9,p.t|do,Po.to) = 8(4—0o) S(p—Po). (25

b,1=i(3Agaa* +By)(a—a*), This Green’s function satisfies the Liouville equation
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9 the theory of relativity: we could interchange CV by CTV in
Ew(qvpquOvaatO): —iLW(q,p,tlgo,Po.te),  t>to Eqg. (300 without affecting the result of the integration
(26 (1013 . |
For the CTV ultradistribution function we have an equa-
where the pairsdy,po) and (g,p) are the momenta and the tion [11] analogous to Eq(21), whose formal solution is
coordinates at timefg, andt, respectively. Here, as discussed given by
in Ref.[9], classical causality is broken in thiepower-series
expansion of£ when terms witn=1 are retained. PE™V(q,p,t)=exd —i(t—to) LSTVIPE™V(q,p,to),
Because of Eq(23), Eq. (26) can be written as follows:

i n+1 with

©

a 2 2
. i — S n+1q/,CV
—W(tlto) +iLow(t]to) = & n; D) Im[(D"*1HCY)

1 . -
ECTV:% HCTV[ FCTV_ (FCTV) ]
X(D*)" tw(t|to)]. 27

In the GWP phase space the CV form of the density op—and
eratorP®V(q,p,t) is given by[11] - -
I'°V=exp —AD*D/2).

CcvV —
Pra.p.y ﬁxdpofiwdqu(q,p,tho,po,to) We use the model and method described by Lee and
oV Scully[1,3] for the one-dimensional atom-molecule collinear
X P=(do,Po.to), (28 coliision, but in the GWP phase-space formulation. Here also
in this nonreactive process the atom is treated like a free
classical structureless particle while the molecule is repre-
sented by a harmonic oscillator. The interaction between the

so, if a formal solution of Eq(27),

) 2 [t o . : .
W(t[tg)=e "t Low(ty|to) + z f dt’e -tk atom and the moleculgl3] is the exponential repulsion de-
to scribed in Sec. I. The Hamiltonian for this system in the CV
(ﬁ n+1 representation issee Appendix A

ool2
X > ———Im[(D""IHY) P2 p2 1 hla5 Kk

= n+1)! Ve 4+~ 4 " kP —aQ-a)y | 24

=1 (n+1) R =M T om T KA+ Ver® TalmT )
X(D*)" tw(t'[to)], (29 (3D

is substituted into Eq.(28), keeping in mind that \yhereQ andq are the translational and vibrational coordi-
Wg})ltO): 5(d—do) 5(p—po), the first term gives, for pates respectivelyP and p their respective momenta,
E (a,p,t), the CA, while by_lnclud!ng the lowest correc- Veﬁzvoexp(azﬁmag) and the parameteid, m, Vo, @, and
tion, then=1 term, the QCA is obtained. k (elastic constantare taken from Ref[13], fitting the
He-H, system. The CTV form of the Hamiltonian is obtained

IV. TRANSITION PROBABILITIES from Eq.(31) by replacinga3 by —a3 [11]. From here on we
FOR A COLLISIONAL PROCESS shall usemo for the parametea.
When we have a system in a given initial stfibe at time In the /i power-series expansion &
to and final statdf) at timet, with t>t,, the transition
probability P;_ s may be written[11] LV=Lo+hLy+R2Lo+ e+, (32)
P. :i - d the contributions of the coordinat€sandP were neglected,
i—f p . .
27h |« except in the zeroth order term given by
xf dg PE™(q,p.to) €0V PY(q,p, o) I KL Ly A L L s
o=NT9Q P TP 9Q " aq p  op 4q)

1 * (33

=57 %dpﬁwdq PE™(a,p,to)PFY(a,p,0),
and which corresponds to classical motion.
(30 In this approximation

PCTY being the CTV form(an ultradistribution function) of oy -

the initial state, and®$" the CV form (a distribution func- D™ H™"=(alag)"" Ve exd —a(Q—q)] for n=1.
tion) of the final state. We observe that there is a kind of

“contraction” similar to the one occurring, for instance, in So Eq.(29) can then be written
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t
dtre*i(t*t’)ﬁo
to

W(t[ty) =e "1 ow(to|to

(34
Substituting Eq(34) into Eq.(28), we have, in first iteration,

. 2V
PV(g,p,t) =610 0PN(q,p,tg) +
tdt/[efi(tft')EOefa(qu)]efi(tft')EO
to
ha D*)n
o0 2_a.o
X
Im ngz =
Xe—i(tf—to)ﬁ()PCV(q'p,tO). (35)

In order to obtain PSY(q,p.t)=exdi(t—t)CY]
X P£Y(q,p.to), which is the function appearing in E¢BO0),

we proceed in the same fashion, but now as the Green'’s

function is given byw(t|to) =exdi(t—to) L5V w(tolty), we
get, instead of Eq(35),

Veff

Ecv(qp,t):ei(t—to)zopcv(q,p,t -

t
dt/[ei(t—t')LOe—a(Q—q)]ei(t—t’)Lo
to

ha D*)"
“ \2a
xImE 9
n=2 n!

Xei(t’ftO)L'oPCV(q,pJO), (36)

SinCeBCV(q, p;tO) = PCV(q, p!tO) .

Substituting Eq(36) into Eq.(30) we have, with quantum

corrections in all orders of,

,Piﬂfzj
aVeﬁ J
ch

t
X f dt/[ei(t—t’)LOe—a(Q—q)] . ei(t_t/)ﬁo
to

MPCTV

27k (d,p,to)€ 5PV (q,p,to)

dp dd_cry
2 ﬁp

(a,p,to)

X1m

1
f dé‘;e(gﬁa/Zao) D* __ 1) D* ei('[’ —t9)Lg
0

XP?V(qipvtO) ’ (37)

where we have used the property, valid for any operAtor

2829

(39

1
fo dg e~ E (n+1

The first term in Eq(37) is the CA which is the zeroth-
order term of outi power-series expansion, and corresponds
to the expression of the SQC method of Lee and Sddlly
The difference between these two expressions lies in the dis-
tribution functions; while Lee and Scully worked with the
product of two Wigner distribution functions, in E7) we
have the product of two Gaussian distribution functions, one
of them in the CTV form and the other in the CV form.

Like in the SQC method;1,3] herePS™V(q,p,to) repre-
sents the initial vibrational state of the system, which we
propagate along classical trajectories. We also use the Lee
and Scully method1] for constructing the two-dimensional
rectangular grid in thed,p) plane.PF™(qy,,pn,to=—) is
the weight carried by the poingf,p,) of thenth cell of the
grid.

After integrating Hamilton’s equations for each point of
the grid, the final GDA P$V(q,p,t==)] is calculated, and
then the transition probabilities are computed in the CA
which corresponds to the first term in E®7).

The GDF in the CV form is given bysee Appendix B

1
cv -
Pri(y)=rry"e™, (39
TABLE I. Transition probability?,_; for a collinear He-H
collision calculated by the quantum-mechanig@M) method(Ref.
[13]), statistical quasiclassic66QCO method(Ref.[1]), and Gauss-
ian wave-packetGWP) method in the CAfirst term in Eq.(37)].
The total initial energyE is measured in units dfw/2, wherew is
the vibrational frequency of the Hmolecule. In the calculation of
PS™ at least 100 Laguerre polynomials were used, although only
about ten polynomials are required in order to obtain convergence.
Numbers inside brackets give the upper limit of the transition prob-
ability, and* means that the transition is prohibited classically.

E Po s oM sQC GWP
8 0-0 (0.892 0.893 0.830
0—1 0.108 0.107 0.156

0—2 0.001 0.014

12 00 (0.539 0.529 0.501
0—1 0.394 0.412 0.349
0—2 0.068 0.068 0.122

0—3 0.028

16 00 (0.204 0.187 0.229
0—1 0.434 0.422 0.339
0—2 0.291 0.314 0.250
0—3 0.071 0.077 0.124

0—4 0.045

0—5 0.013

20 00 (0.060)" 0.046 0.090
0—1 0.218 0.202 0.221
0—2 0.366 0.351 0.270
03 0.267 0.294 0.220
0—4 0.089 0.106 0.134

0—5 0.066
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TABLE II. Similar to Table I, except that the oscillator goes TABLE I1ll. Similar to Table I; results of Tables | and Il are

from the first exited state to the final stdte compared in order to test microscopic reversibility.
E P QM sQC GWP E Pi_s QM sQcC GWP
8 1—-0 0.108 0.106 0.135 8 0—1 0.108 0.107 0.156
1—1 (0.850 0.863 0.780 1—0 0.108 0.106 0.135
1=2 0.042 0.031 0.085 12 0—1 0.394 0.412 0.349
12 1-0 0.394 0.411 0.396 1-0 0.394 0.411 0.396
1=1 (0.249 0.176 0.250 16 0-1 0.434 0.422 0.339
1-2 0.345 0.385 0.272 150 0434 0.420 0.377
1-3 0.037 0.028 0.082 ’ ' ’
16 1—0 0.434 0.420 0.377 20 f_% 8;1: gigg 822(1)
1—1 (0.039 0.065 0.137
1—2 0.220 0.151 0.176
1—3 0.261 0.302 0.181

from propagating the WDF along classical trajectories is less

1-4 0.051 0.061 0.098 than that coming from propagating the GWP distribution
1-5 0.031 along the classical trajectories, as stated in R8f. This
20 150 0.218 0.199 0.230 agrees with the vanishing result found in Sec. Il for the first
151 (0.286 0.285 0.223 guantum correction to the CA in the WW formalism. How-
12 0.009 0.042 0.143 ever, preliminary calculations of the first quantum correction
in the GWP formalism gave unsatisfactory nonzero results.
i:j 8:;8 8:222 g:ij:g We attribute this failure to the fact that in the GWP approach
1.5 0077 0121 0105 the calculation of transition probabilities, E(R7), involves

two GDF's, one in a CTV form(which is singula), and the
other in a CV form(which is smooth For the numerical
procedure we approximated the Dirééunctions and deriva-
tives, present in the CTV form, bfjnite sums over the La-
guerre polynomials, as described in Appendix B. However,
by increasing the number of terms in the sums, we were not
able to obtain stable results for the quantum corrections, thus
no inference could be extracted for their estimation.
PCTV(r) =g~ (VNI )ralnpCV py (40) We also remark here that, since the contravariant GWP
distributions involve§ functions and its derivatives calcu-
lated at the origin of the phase spdsee Appendix Bin the
transition probability given by Eq37), only those trajecto-
Using the mapped form of the quantum Liouville equationl’ies ending with the oscillator at rest at the origin will con-
in GWP phase space, we have derived expressions for tHgbute, whereas on the WW pictuf&qg. (11)], at initial and
transition probabilities for semiclassical calculations of in-final times, the contributing trajectories correspond to the
elastic atom-molecule collisions which include also theoscillator having a range of energies of the ordef of This
quantum terms. These expressions are similar to those obifference has to be compensated for by larger contributions
tained in Ref[9] for the WW formalism. of the quantum corrections, and, thus, possibly many terms
We show in Tables | and Il the transition probabilities in the expansion of Eq.32) are required to yield results of
P._; from the initial () to the final f ) state of the He-ii  Similar accuracy.
system which were computed, first, by integrating numeri- In conclusion, to calculate transition probabilities semi-
cally the Schrdinger equatiorithese are the exact quantum classically, the WW formalism seems more advantageous
mechanical results taken from R¢1.3]), second, by using than the GWP one, since the former involves two Wigner
the Weyl-Wigner representation in the statistical quasiclassifunctions (initial and final stateswhich, although not as
cal method taken from Refl], and, third, by using the Ssmooth(and positivg as the CV form of the GDF'’s, possess
Gaussian wave-packet representation in the causal approshe virtue of not having strong singularities as those occuring
mation. The last ones are our results, and they are given by the CTV form. Finally, we mention that in the CA, both
the first term in Eq(37). For more details on the system and methodS(SQC and GW/Pgive nonvanishing results for clas-
models, see the mentioned references. sically forbidden processes, and the numerical calculations
The results in Tables | and I, obtained using only thefor both formalisms present almost the same degree of diffi-
zeroth-order term for both methods, SQC and GWP, shoul@ulty for being performed.
improve if quantum corrections are introduced. The accuracy
of the SQC and the' GWP metht')_d's was checl_<ed by s‘gudylng ACKNOWLEDGMENTS
how well the transition probabilities obey microscopic re-
versibility, the results are presented in Table lll. These re- M.C.T. would like to thank the Instituto de $ica Teaica
sults confirm that, for the CA, the amount of error comingfor hospitality. S.S.M. acknowledges partial financial support

wherey=E/fw, E(q,p) being the energy of the classical
harmonic oscillator, andh is the quantum number which
corresponds to thath eigenstate of the harmonic oscillator.
Introducing the new variable’=y, the GDF in the CTV
form is (see Appendix B

V. NUMERICAL RESULTS AND CONCLUSIONS
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from the Conselho Nacional de Desenvolvimento Cfant APPENDIX B: DERIVATION OF THE CTV FORM
e Tecnolgico (CNPq, Brazil, and CNPq-FAPESP coopera- OF THE GDF

tive Grant No. 400285/95-9. Let|¢,), withn=0,1,2,... be the eigenstate of the har-

monic oscillator anda)=|pq) the GWP representation; the
APPENDIX A HAMILTONIAN CV form for the density operatafpg|¢n){¢n|pa) is given
eSO T
a=(a32h)Y%q+i(1/2ha3)?p=re'’, [10,15. If E repre-

Let |pg) be the minimum uncertainty GWP ang,) a sents the energy of the classical harmonic oscillator and
point in the phase spacp,andq the linear momentum and r?=(E/fw)=Yy, we may write
position operators, respectively, afé{p,q) an arbitrary
function expandable in a power series of its arguments. The CV/\ ) — i Na—y-

. ) o ; Pyi(y)=—=y"e™; (B1)

ordering of the operators in each term of the series is speci- n!
fied by the functionF. In Refs.[10-12 it was shown that
the mapped CV form of (p,§) can be obtained by using the thus the CV form of the GDF depends only on the energy of

algorithm the harmonic oscillator.
In order to obtain the CTV form of the GDF, we use the
it 9 hal g it 9 A 9 property of the coherent statEs5] which relates the normal
fe(p,.q)=F| p— > % + - %,qu > %+ Z_ag a0 1, (I\’ICO) and antinorma(AO) ordering of a functiorf of « and
Ay ©
f(AO)(a,a*):e(&zlﬁaﬁa*)f(NO)(a,a*). (BZ)

where the functional form oF is kept unchanged, but the

operatorg andq are substitutedkeeping the original ordgr | polar coordinates and 6, we have
by a differential realization, and, thereafter, the whole ex-

pression operates on the unity. For instance, the CV form of 5 1{0 o0 1 6
g2 in the GWP representation is Tmda® ar \a T i) (B3)
A h d Eq.(B2) in the GWP representation is writt¢m0]
2 — 2+ — (AZ) an q p
(palg®lpay=q 202 N o
Pn (r,ﬂ) :e—(l/4r)[((9/(7r)r(r?/(9r)+(1/r)((? 196 )]PE (I’,ﬁ).
and that ofp? is (B4)
hal For any positive integen, we derived the formula
a2 _ 2,70
(pdlp*lpa)=p*+ —~. (A3) 1o a\" . (d d|"_ n .
wara e T K/yd_y e Y=(-1)"nlL,(y)e™?,
The Hamiltonian for the atom-molecule system considered in (B5)

this work is
whereL , are the Laguerre polynomials. Sinléév(r) for the
2 p?2 kg? harmonic oscillator does not depend 6nEq. (B4) can be

H(Q,P,él,f)):m+ﬁ+7+voeia((}q)’ (Ad) written as

where Q and P are the coordinate and momentum of the PSTV(y):e (d/dymd/dy)Pﬁv(y)' (B6)
atom which is treated like a freglassicalstructureless par-
ticle, while the molecule is represented by the quantum ha
monic oscillator.

Using the algorithm(Al), we obtain

rNow, we call attention to the fact that the CTV distribution
functions are singular; actually, they amétradistributions
They will depend on the “moments™,_,nL,(y), where
the Laguerre polynomials act as “weight” functions ants
(03 o A(O— ) (2 a2 an integer. These “moments” are written in terms of the
(pole” Q" V|pg) =g~ «(QTIF (), (AS)  Dirac & function and its derivatives. For instance, for

o . s=0,1,2 we have
Thus, the CV form of the HamiltoniatA4) is

P2 p* ke 2 La(y)=8(y), (B7)
= 4+ 4+ —a(Q-q) =
f a.2 k - ’
Y I (A6) > nLy(y)=38'(y)=8(y), (B8)
4\m  ag n=0
whereV;=V,e?3 is the effective strength of the interac- S 2L (y)=28"(y)— 38 (y)+ 8(y). (B9)

tion. n=0
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Using Egs.(B6), Eqg. (B1), and Eq.(B5), we obtain, for Forn=1,2, we obtain, respectively,
n=0,

©

pgTV(y):nZO L, (y)e Y=eYa(y). (B10) PfTV(y)=r§0 (1=n)Lp(y)e Y=Y~ &' (y)+25(y)]
(B13)
Forn>0 we introduce the auxiliary function
- and
POCTV(y,,B) = g~ (d/dy)y(d/dy) o= By — z B"L.(By)e A
n=0 oo
(B1Y) PEM(Y)= 2, (n*-5n+2)Ly(y)e™

in order to write
=e Y[&"(y)—46'(y)+448(y)], (B14)

Pﬁ”(y)=n1| lim ( - i) P"(y.8).  (B12)

g1\l 9B where we used Eq$B7)—(B9).
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