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Data were collected and analysed from seven field sites in Australia, Brazil and Colombia on weather conditions and the
severity of anthracnose disease of the tropical pasture legume Stylosanthes scabra caused by Colletotrichum gloeospori-
oides. Disease severity and weather data were analysed using artificial neural network (ANN) models developed using
data from some or all field sites in Australia and/or South America to predict severity at other sites. Three series of models
were developed using different weather summaries. Of these, ANN models with weather for the day of disease assess-
ment and the previous 24 h period had the highest prediction success, and models trained on data from all sites within
one continent correctly predicted disease severity in the other continent on more than 75% of days; the overall prediction
error was 21·9% for the Australian and 22·1% for the South American model. Of the six cross-continent ANN models
trained on pooled data for five sites from two continents to predict severity for the remaining sixth site, the model devel-
oped without data from Planaltina in Brazil was the most accurate, with >85% prediction success, and the model without
Carimagua in Colombia was the least accurate, with only 54% success. In common with multiple regression models,
moisture-related variables such as rain, leaf surface wetness and variables that influence moisture availability such as
radiation and wind on the day of disease severity assessment or the day before assessment were the most important
weather variables in all ANN models. A set of weights from the ANN models was used to calculate the overall risk of
anthracnose for the various sites. Sites with high and low anthracnose risk are present in both continents, and weather
conditions at centres of diversity in Brazil and Colombia do not appear to be more conducive than conditions in Australia
to serious anthracnose development.
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Introduction

Disease prediction is based on weather conditions under
which a pathogen, when in contact with a susceptible host,
can infect and become established (Hardwick, 1998).
Weather-based forecasting systems reduce the cost of pro-
duction by optimizing the timing and frequency of appli-
cation of control measures and ensure operator, consumer
and environmental safety by reducing chemical usage. A

major aim of many forecasting systems is to reduce fungi-
cide use ( Taylor et al., 2003), and accurate prediction is
important to synchronize the use of disease control meas-
ures to avoid crop loss. Forecasting systems with varying
levels of sophistication and success are available for a
large number of diseases affecting horticultural and field
crops (Cambell & Madden, 1990).

In the case of anthracnose disease of the tropical pasture
legume Stylosanthes spp., many promising varieties have
been decimated by virulent strains of the pathogen Colle-
totrichum gloeosporioides in all parts of the world where
this legume is grown for commercial use. In its centre of
diversity in south and Central America, the extensive
genetic variation in both host and pathogen populations
(Chakraborty et al., 2002; Weeds et al., 2003) has meant
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that many previously resistant varieties have been severely
affected by new pathogen races and, so far, no commercial
variety has escaped serious anthracnose damage (Miles &
Grof, 1997). In Northern Australia over 500 000 ha of
S. humilis pastures were destroyed by this pathogen in the
1970s. Although this highly susceptible species has since
been replaced with more resistant species, the anthracnose
pathogen continues to cause losses in both dry matter and
seed yields (Davis et al., 1987b). Nevertheless, Stylosanthes
has been more successful as a forage legume in countries
such as Australia and China, away from centres of host–
pathogen diversity, due largely to a less-diverse pathogen
population (Chakraborty et al., 2002; Weeds et al., 2003).
Whether weather and other ecosystem- or farming system-
related factors at centres of diversity might also be more
conducive to serious anthracnose development has not
been examined in detail. For instance, antagonistic bacte-
ria that suppress C. gloeosporioides on leaf surfaces in the
humid tropics of Peru do not have any effect on the patho-
gen in the savanna ecosystems (Lenné & Brown, 1991).

Colletotrichum gloeosporioides conidia are produced
in a mucilaginous matrix (Louis & Cooke, 1985) that
requires surface wetness for splash dispersal and subse-
quent infection (Fitt & McCartney, 1985). Under control-
led environments anthracnose development is favoured
by a leaf wetness period of 12 h or longer, and maximum
severity is reached after 36 h wetness (Chakraborty et al.,
1990). Disease severity is unaffected by brief interruptions
of 2–4 h wetness if RH is maintained over 85%. In control
environments, severe anthracnose develops at 20–30°C
if 24 h leaf wetness is maintained (Irwin et al., 1984).
Attempts to establish a quantitative relationship between
weather and anthracnose infection from field studies have
not always been successful. Davis et al. (1987a) did not
find any obvious relationship between disease severity and
weather, and infection could not be associated with any
specific sequence of weather events. Using multiple linear
regression (REG) analysis, Chakraborty & Billard (1995)
showed that mean daily temperature and RH above a
certain threshold was necessary for successful infection.
However, the REG model was not equally effective in pre-
dicting infection events in the 2 years of this field study in
Australia. Subsequently, another independent study has
shown that the REG model does not adequately explain
infection at a field site in Queensland, Australia (Pangga,
2002). These studies indicate that, although the REG
model was able to explain anthracnose development at a
particular field site for certain years, its ability to general-
ize across field sites and years was poor.

Other analytical approaches have been used to improve
understanding of the role of weather in plant diseases,
including anthracnose disease of Stylosanthes. These include
the use of stochastic models (Shaw, 1994; Chakraborty &
Smyth, 1995); fuzzy numbers (Scherm, 2000); and artifi-
cial neural networks (ANN), among others. In plant pro-
tection ANN have been used to model leaf wetness (Francl
& Panigrahi, 1997), disease dynamics (Yang et al., 1995),
disease forecasting (De Wolf & Francl, 1997; Crisci et al.,
1998) and pesticides in soil (Yang et al., 1997).

As part of an international collaboration, disease devel-
opment and weather were monitored at selected field sites
in Australia, Brazil and Colombia to improve knowledge
of anthracnose epidemiology for effective disease manage-
ment. Using data from Australian and/or South American
field sites, the aims of this paper are to determine the use-
fulness of ANN models to predict anthracnose development
based on prevailing weather conditions at other sites within
or outside a continent, and to calculate the overall risk of
anthracnose at field sites using a set of weights from the
trained ANN models.

Materials and methods

Data on weather and anthracnose severity were obtained
from field sites in Australia, Brazil and Colombia. The
Australian data came from the CSIRO Pasture Research
Station at Samford (27°22′ S, 152°53′ E) near Brisbane,
and the Queensland Department of Primary Industries field
stations at Southedge (17°0′ S, 145°20′ E) and Springmount
(17°13′ S, 145°18′ E) in north Queensland. Samford is at
the southern edge of the climatic zone for Stylosanthes, and
Southedge and Springmount are typical of Stylosanthes-
growing regions in Australia. The annual average rainfall for
Springmount is 804 mm, Samford 1050 mm, and Southedge
1112 mm. The South American data were obtained from
two sites each in Brazil and Colombia. The Centro de Pes-
quisa Agropecuária dos Cerrados research station of the
Empresa Brazileira de Pesquisa Agropecuária (EMBRAPA)
at Planaltina (15°36′ S, 47°42′ W), near Brazilia and
the Centro Nacional de Pesquisa de Gado de Corte of
EMBRAPA in Campo Grande (20°26′ S, 54°42′ W), Mato
Grosso do Sul, were the Brazilian sites. Planaltina has a long
history of Stylosanthes research and Campo Grande is at the
heart of beef cattle country in Brazil. The two Colombian
sites were located at the Centro Internacional de Agricultura
Tropical (CIAT) field experiment stations in Carimagua
(4°30′ N, 71°19′ W) and Caquetá (1°15′ N, 75°41′ W).
Carimagua is a well established research station in the
Colombian savanna with a long history of Stylosanthes
research and development, and Caquetá is a relatively new
site located within the Colombian Amazon basin. The annual
average rainfall for Campo Grande is 1526 mm, Planaltina
1540 mm, Carimagua 2337 mm and Caquetá 3552 mm.

Three to five replicate plots, 5 × 5 m each, of the sus-
ceptible S. scabra cv. Fitzroy were established at each site
by sowing scarified seeds in rows 1–2 m apart. Environ-
mental variables were logged continuously at each site
using an automatic weather station (Monitor Sensors,
Queensland, Australia). Air temperature and RH sensors
were housed in a meteorological screen, within 15–20 m
of the field plots. Sensors for the duration of leaf wetness,
canopy temperature and RH were mounted 20 cm above
ground level in the canopy to avoid direct sunlight. Data on
radiation, temperature, RH and wind speed were recorded
hourly. Rainfall and leaf wetness data were recorded every
6 min when these events occurred. Ten weather attributes
were considered in this work: maximum (RMX) and min-
imum (RMN) air RH; maximum (TMX) and minimum
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(TMN) air temperature; sunshine hours (SUN); total radi-
ation (RAD); rainfall (RAIN); hours of leaf wetness (LWP);
wind daily total (WND) and gust (GST).

During each summer season anthracnose severity as a
result of infection from naturally distributed inoculum
was assessed on a randomly selected branch on five to 10
plants within a plot at approximately weekly intervals.
Plants were visually examined and rated for disease sever-
ity using a 10-point scale: 0 = disease-free, 1 = 1–3% leaf
area diseased, 2 = 4–6%, 3 = 7–12%, 4 = 13–25%, 5 =
26–50%, 6 = 51–75%, 7 = 76–87%, 8 = 88–94% and
9 = 95–100% (Chakraborty, 1990). Using the proportion
of leaf area diseased, rating scores were either collapsed
into six severity classes: disease-free; very low, <0·2; low,
0·2–0·4; medium, 0·4–0·6; high, 0·6–0·8; very high,
>0·8, or transformed according to ln(severity + 1) before
analysis. Weather and disease severity data for a total of
162 days used in this work comprised: 40 days from Sam-
ford (1987–92); 22 from Southedge (1989–97); 15 from
Springmount (1989–91); 34 from Campo Grande (1995–
98); 28 from Planaltina (1995–2000); 12 from Caquetá
(1994–96); 11 from Carimagua (1994–96).

In the susceptible cv. Fitzroy the interval from inocula-
tion to the first sign of symptom appearance is 3·9 days
(Chakraborty et al., 1988), and another 2–3 days elapse
before at least 10% of typical sporulating lesions are
clearly visible. To account for the lag in symptom expres-
sion, three series of models were developed to examine the
influence of weather on disease severity. Weather data
during the week prior to disease assessment were aver-
aged in series 1 models; weather for the seventh day before
disease assessment was used in series 2 models; and
weather data on the day of disease assessment and the pre-
vious 24 h period were used in series 3 models.

Artificial neural networks are parallel computing sys-
tems made up of a large number of simple, highly inter-
connected processing elements called nodes or neurons
that process information by their dynamic-state response
to the external signals and can handle imprecise informa-
tion. Important features of ANN are a set of processing
units; an activation state for each unit equivalent to its
output; connections between the units, generally defined
by a weight wjk that determines the effect that unit j has on
unit k; a propagation rule that determines the effective input
of the unit; an activation function, a scalar-to-scalar function
that transforms inputs to a unit; an external input (bias,
offset), similar to a parameter estimate for each unit; and
a method for information gathering, the so-called learning
rule. A processing unit can be simply expressed as follows:

where x0, x1, … xn are inputs; wj0, wj1, … wjn are weights;
θj is the bias term; j is the unit; g(aj) is the activation func-
tion; and zj is the output.

There are three types of unit (neuron): input units
receive data from outside the network; output units send
data out of the network; and hidden units, whose input
and output remain within the network, perform internal
computations to provide the nonlinearity that makes
ANN powerful. Each unit can have one or more inputs
but only one output. An input to a unit is either the data
from outside the network, or the output of another unit, or
its own output. Hidden and output units combine all values
feeding into the unit using a combination function such as
a linear combination function, which is then transformed
by an activation function such as a sigmoid function. Out-
put is compared with the target value to compute the value
of the error function. A variety of optimization techniques
exist that can tune the weights in order to find the min-
imum of the error function. More on the fundamentals of
ANN and computational implementations can be found
in e.g. Bishop (1995); Hertz et al. (1995).

Of the many variations of ANN, in this study a fully
connected feed-forward network, also known as a multi-
layered perceptron, has been used, and for simplicity a
two-layer network structure (hidden and output layer)
has been considered. One front node (8× Ultra Sparc III
processors 750 MHz, 8 GB memory) and eight back nodes
(each containing 8× Ultra Sparc III processors 900 MHz,
8 GB memory) in a cluster formation on an HPC super-
computer at Griffith University, Gold Coast, Queensland,
Australia was used as the processing unit. Codes for
training, testing and sensitivity analysis were written in
matlab (The MathWorks Inc., Natick, MA, USA) and
are provided in Appendix A.

As previously published weather-based models for
anthracnose (Chakraborty & Billard, 1995) are based
on multiple linear regression analysis, and many plant
pathologists have used this approach to develop disease-
forecasting models, regression models were developed
in this study using each of the three weather summaries
to provide reference points for the outputs of the ANN
models. For REG, ln(severity + 1)-transformed severity data
were analysed using the SPSS software (SPSS Inc., Chi-
cago, IL, USA). As before (Chakraborty & Billard, 1995),
a stepwise procedure was used for model selection where
the condition for retaining a variable was set at P < 0·05.
The stepwise method is a modification of the forward-
selection technique where variables are added one by
one to the model and the F statistic for the variable to be
retained must be significant at the specified P level for
entry. After a variable is added, the method checks all vari-
ables in the model and deletes any variable that does not
produce an F statistic significant at the specified P level for
retention. The process ends when none of the variables
outside the model has an F statistic significant at the speci-
fied entry level.

For each of the three series, ANN and REG models
were developed using data for all three Australian sites as
the training set to predict the daily severity class for each
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of the four South American sites. Similarly, data from the
South American sites were used to predict daily severity at
each of the Australian sites. These are referred to as the
‘continent-wise models’. Second, data for all sites were
pooled together and ANN and REG models were devel-
oped using data for six Australian and South American
sites to predict the severity class for the remaining seventh
site. This way each site was dropped in turn and the daily
severity class of the dropped site was predicted using models
developed from the six remaining sites. These are the
‘cross-continent models’. The number of days when the
models correctly predicted the actual severity class was
used to measure classification success. Two types of error
were used to compare the performance of the models: type
I, where the model predicted a lower than actual severity
class on a given day; and type II, where the prediction was
higher than the actual severity class.

For the series of models with the lowest prediction
errors, the relative importance of the various weather
measures to the ANN models was determined using a sen-
sitivity analysis where sensitivity was calculated from the
set of weight vectors from the trained ANN.

To estimate the overall anthracnose risk factor for each
site, the four most important weather attributes from the
seven cross-continent ANN models were identified and
their corresponding percentage sensitivities calculated.
The class mean for each of the five severity classes was cal-
culated for the four most important weather attributes as
follows:

(2)

After finding the class means for each of the four signific-
ant attributes, the mean-square deviation (MSD) for all
sites from every class was calculated using the following
formula:

(3)

The combined weighted deviations from every class mean
were calculated as follows:

(4)

and the reciprocal of weighted deviations was expressed
as the overall anthracnose risk factor.

Results

Selection of ANN models

A rapid back-propagation learning algorithm (Battiti, 1992)
was used in all ANN models and architectures with dif-
ferent numbers of hidden neurons explored to select the

best architecture for the ANN models. The number of
iterations was controlled to prevent the network from
becoming overtrained. Overtraining was identified by an
early stopping technique, determined as the point where
the classification error in the validation data set started
to increase with increasing iterations. The relationship
between the number of iterations and the classification
error in validation data sets is given in Fig. 1.

Four to five hidden neurons and a sigmoid activation
function for both layers with 1500–2500 iterations offered
the best architecture. When data from all Australian field
sites were used in training, the ANN model was 60%
accurate in predicting severity classes for the South Amer-
ican sites, and the percentage of error was 100% when
predicting severity for the Caquetá site. Similarly, the
model using data from all South American sites predicted
severity classes for the Australian sites poorly (data not
shown). Stylosanthes has only recently been introduced to
Caquetá and no C. gloeosporioides inoculum or anthrac-
nose symptoms were recorded at this site during the 1994–
96 period. Therefore data from Caquetá were excluded,
and all further analysis was conducted only on six Aus-
tralian and South American sites. This increased the pre-
diction success of the Australian model to >77% and that
of the South American model to >76%. The classification
errors for the various ANN models with three to 10 hidden
neurons developed with or without data from the Caquetá
site are given in Fig. 2.

Prediction errors of the three series of models

Of the three series of models developed to examine the
influence of weather on disease severity, prediction errors
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Figure 1 Changes in classification error in validation data sets with an 
increasing number of iterations for artificial neural network models: 
models were trained on data from Australian and South American sites 
to predict disease severity class at South American (dotted line) and 
Australian (solid line) sites, respectively; other models for Samford (�), 
Springmount (�), Southedge (�), Campo Grande (�), Planaltina (�) 
and Carimagua (�) were trained on data for all sites except the site 
being used for prediction.
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were lowest for series 3 models, which used weather data
on the day of disease assessment and the previous 24 h
period; both continent-wise and cross-continent ANN
models showed this consistent trend (Fig. 3). Prediction
errors were generally similar for series 1 and 2 models that
used either average weather during the week prior to dis-
ease assessment (26·6–81·8% for ANN; 29·4–81·8% for
REG models) or weather for the seventh day before
assessment (26·6–72·7% for ANN; 36–72·7% for REG
models). Due to some missing weather data, the number
of days with disease and weather data varied slightly for
the three series of models. However, these differences were
relatively small and may not have greatly influenced
prediction errors (Fig. 3). All further work therefore, con-
centrated on series 3 models.

Prediction and sensitivity of ANN models

The two continent-wise ANN models, each trained on
data from three field sites, correctly predicted disease
severity class at field sites in the other continent on >77%
of days; the overall prediction error was 21·9% for the

Australian and 22·1% for the South American model
(Table 1). The prediction of the Australian ANN model
was most accurate for the Carimagua site and least accur-
ate for Planaltina. The South American model predicted
severity at Southedge and Springmount with an accuracy
>93%, but the prediction accuracy for the Samford site
was <63%.

In the final series of ANN models, data from all Aus-
tralian and South American sites were pooled and models
were trained on data from five sites to predict the severity
class for the remaining sixth site. Of the six cross-continent
ANN models developed in this way, the model developed
without the data from Planaltina was the most accurate,
successfully predicting severity on >85% of days. The
ANN model without the Carimagua data correctly pre-
dicted severity on only 54% of days at this site. The other
four models were accurate on >73% of days (Table 2).
The prediction errors of these models were considerably
higher than for the continent-wise ANN models (Table 1)
for all sites except Samford and Planaltina. The percent-
age of type I, II or total error was not generally influenced
by the number of observations (days) in the training or
test data sets in either continent-wise or cross-continent
ANN models. The overall prediction error was between
14 and 45% for the cross-continent models developed
with 110–139 observations (days) in the training data sets;
this was between 4 and 37% for continent-wise models
with either 73 or 77 observations in the training data set.

A sensitivity analysis of the continent-wise models
showed that RAIN, LWP and RAD for the day of disease
severity assessment and RAIN on the previous day are the
four most important weather attributes in the Australian
ANN model. RAIN and RAD on the day of severity
assessment and RAIN and LWP on the previous day were
also the four most significant input attributes in the South
American ANN model, although RAIN and RAD were
more important and LWP was less important in the South
American than in the Australian model (Table 3). Sim-
ilarly, RAIN, RAD and LWP on the day of severity assess-
ment and/or the previous day were the most important
weather attributes in each of the six cross-continent mod-
els, and RAIN during the day and/or the previous day was
the single most important of all attributes in all models
except the one trained on data that excluded Planaltina,
where another moisture-related variable, LWP on the pre-
vious day, was more important than RAIN (Table 3).

Prediction and sensitivity of REG models

Overall, the REG models developed using data from all
Australian or South American sites were not as effective as
ANN models in predicting disease severity for sites in the
other continent, and the prediction errors of the REG
models were higher for two out of three sites in each con-
tinent (Table 1). The overall prediction error of 31·5% for
the Australian REG model was higher than the ANN
model, but the 20·8% error for the South American model
was lower than the ANN model. When data for five Aus-
tralian and South American sites were pooled to predict

Figure 2 Classification error of artificial neural network models with an 
increasing number of hidden neurons: models were trained on data 
from Australian and South American sites to predict disease severity 
class at South American (�) and Australian (�) sites, respectively; other 
models for Samford (�), Southedge (�), Springmount (�), Campo 
Grande (�), Planaltina (�), Carimagua (�) and Caquetá (×) were trained 
on data for all sites except the site being used for prediction. Broken 
and solid lines represent models developed with (a) and without (b) 
data from the Caquetá site, respectively.
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the severity of the sixth site, REG models always had
higher error than the ANN models and the total predic-
tion error was 1·3–2·1 times higher than ANN predictions
(Table 2). As with ANN models, the prediction error of
REG models was lower (10–72%) for the continent-wise
models than for cross-continent models (26–100%);
however, in contrast to ANN models, in most REG models
the percentage of total error generally declined with increas-
ing number of observations in the training and/or test data
sets.

On a day-to-day basis the REG models tended to
predict an average severity value, and did not follow

fluctuations in disease severity levels as closely as the ANN
models. This was true for both continent-wise and cross-
continent models. Data are shown for a continent-wise
and two cross-continent ANN and REG models to
illustrate this (Fig. 4). In general, the predicted severity
from ANN models tracked the actual severity more
closely than the predicted severity from the REG models
at all sites.

Overall, all REG models had low to very low R2: 0·08
for the continent-wise model trained on Australian data,
and 0·04 for the model trained on South American data.
The R2 of cross-continent models was between 0·16 and

Figure 3  Classification error of artificial neural 
network models developed using weather data 
for the day of disease assessment and the 
previous 24 h period (black bars), average 
weather for 1 week prior to disease 
assessment (open bars) and weather on the 
seventh day before disease assessment 
(shaded bars). Models were trained on data 
from Australian and South American sites to 
predict disease severity class at South 
American and Australian sites, respectively; 
other models for Samford, Springmount, 
Southedge, Campo Grande, Planaltina and 
Carimagua were trained on data for all sites 
except the site being used for prediction. 
Number of days for which data are available 
given in parentheses. 

Table 1 Classification error of artificial neural network (ANN) and multiple regression (REG) models developed using data from Australian or South 
American field sites as the training set to predict anthracnose severity class at sites in another country
 

Training data Site

Type I error (%)a Type II error (%)b Total error (%)

ANN REG ANN REG ANN REG

Australian Campo Grande (34) 14·7 (5) 0 0 35·3 (12) 14·7 (5) 35·3 (12)
sites (77)c Planaltina (28) 35·7 (10) 3·6 (1) 0 7·1 (2) 35·7 (10) 10·7 (3)

Carimagua (11) 0 0 9·1 (1) 72·7 (8) 9·1 (1) 72·7 (8)
South America (73) 20·5 (15) 1·4 (1) 1·4 (1) 30·1 (22) 21·9 (16) 31·5 (23)

South American Samford (40) 12·5 (5) 2·5 (1) 25 (10) 17·5 (7) 37·5 (15) 20·0 (8)
sites (73) Southedge (22) 4·5 (1) 9·1 (2) 0 9·1 (2) 4·5 (1) 18·2 (4)

Springmount (15) 0 0 6·6 (1) 26·7 (4) 6·6 (1) 26·7 (4)
Australia (77) 7·7 (6) 3·9 (3) 14·3 (11) 16·9 (13) 22·1 (17) 20·8 (16)

aDays when predicted severity class was lower than actual severity class.
bDays when predicted severity class was higher than actual severity class.
cNumber of days for which data are available given in parentheses.
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0·18 (data not shown). All weather variables with >5%
sensitivity in the ANN models were selected as significant
variables in the REG models. The continent-wise models
had fewer significant predictors (1–2) than the cross-
continent models, with six to 10 weather variables in each
(data not shown). As with ANN models, RAIN on the day
of severity assessment was the single most important
weather variable, and it was a significant term in all REG
models except the continent-wise model trained on South
American data. In addition to RAIN, RMX, WND, TMN

and LWP on the day of severity assessment, and WND on
the previous day, were significant weather variables in all
six cross-continent models.

Anthracnose risk

For each site, risk factors for each of the five severity
classes and an overall risk were calculated. The Planaltina
site showed the highest risk level for four out of the five
severity classes, and Campo Grande and Samford were

Table 2 Classification error of artificial neural network (ANN) and multiple regression (REG) models developed using pooled data from six Australian 
and South American field sites as the training set to predict anthracnose severity class for the seventh site
 

Training data 
All except: Testing data

Type I error (%)a Type II error (%)b Total error (%)

ANN REG ANN REG ANN REG

Samford (110)c Samford (40) 5 (2) 42·5 (17) 20 (8) 2·5 (1) 25 (10) 45 (18)
Southedge (128) Southedge (22) 18·2 (4) 31·8 (7) 4·5 (1) 9·1 (2) 22·7 (5) 40·9 (9)
Springmount (135) Springmount (15) 0 0 20 (3) 26·7 (4) 20 (3) 26·7 (4)
Campo Grande (116) Campo Grande (34) 2·9 (1) 0 23·5 (8) 47·1 (16) 26·5 (9) 47·1 (16)
Planaltina (122) Planaltina (28) 14·3 (4) 0 0 28·5 (8) 14·3 (4) 28·5 (8)
Carimagua (139) Carimagua (11) 0 0 45·5 (5) 100 (11) 45·5 (5) 100 (11)

aDays when predicted severity class was lower than actual severity class.
bDays when predicted severity class was higher than actual severity class.
cNumber of days for which data are available given in parentheses.

Table 3 Sensitivity of weather attributesa on the day of disease severity assessment and for the previous 24 h period in artificial neural network 
models, where continent-wise models were trained on data from one continent to predict severity in another, and cross-continent models were trained 
on data from five Australian and South American sites to predict severity at the sixth site
 

Attributes

Sensitivity (%)

Continent-wise model Cross-continent model

Australia S. America Samford Southedge Springmount Campo Grande Planaltina Carimagua

Weather on day of disease severity assessment
RMX 0·8 1·4 1·0 0·9 0·5 1·8 1·4 1·1
RMN 1·5 2·6 1·2 1·7 1·3 1·6 1·8 0·9
TMX 1·5 2·7 2·4 0·6 0·5 0·8 2·7 0·8
TMN 1·8 0·8 1·0 0·5 0·9 1·1 0·7 1·9
SUN 0·5 2·2 2·1 1·7 0·4 1·9 1·9 3·8
RAD 6·4b 10·9 4·8 10·5 6·7 6·1 4·9 4·2
RAIN 23·3 35·8 35·4 52·8 40·8 23·1 11·6 26·5
LWP 26·6 1·3 3·1 1·6 8·3 11·6 4·5 10·8
WND 4·8 2·3 2·4 1·3 2·5 4·9 7·4 7·3
GST 2·0 2·3 3·4 1·3 1·1 4·5 2·7 3·1

Weather for previous 24 h
RMX 1·4 2·4 1·0 0·6 0·8 2·0 1·2 0·9
RMN 1·8 1·9 1·6 0·8 0·6 1·4 0·8 1·9
TMX 0·9 1·4 1·0 2·7 0·3 1·3 1·3 1·5
TMN 0·7 2·2 0·4 0·4 0·7 1·8 1·3 0·3
SUN 0·9 2·1 0·8 0·3 0·7 2·9 1·8 2·5
RAD 4·7 2·8 4·2 4·8 2·4 11·5 6·9 9·0
RAIN 12·5 16·1 9·9 7·5 22·9 8·1 17·7 12·4
LWP 3·3 6·8 22·0 8·0 6·9 8·7 23·0 5·9
WND 3·4 1·1 1·7 1·6 1·3 2·7 4·2 4·1
GST 1·3 1·0 0·7 0·3 0·5 2·3 2·3 1·3

aWeather attributes: maximum (RMX) and minimum (RMN) air RH; maximum (TMX) and minimum (TMN) air temperature; sunshine hours (SUN); 
total radiation (RAD); rainfall (RAIN); hours of leaf wetness (LWP); wind daily total (WND) and gust (GST).
bSensitivity >5% in bold type.
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sites with the least risk for any severity class (data not
shown). Overall, the highest possible anthracnose risk was
at Planaltina (1), followed by Southedge (0·72), Campo
Grande (0·50), Springmount (0·46), Carimagua (0·38),
Caquetá (0·09) and Samford (0). Although no anthrac-
nose was recorded at Caquetá, weather at this site is suit-
able for anthracnose development to be regarded as a low
to moderate risk whereas, despite some disease develop-
ment, weather at the Samford site is considered marginal
for any serious risk of anthracnose development.

Discussion

This work is among a handful of examples applying ANN
tools to developing weather-based prediction models for

plant diseases. While previous research has largely used
data from the same site (De Wolf & Francl, 1997; Francl
& Panigrahi, 1997; Chtioui et al., 1999), the work reported
here demonstrates that data from some or all field sites
in Australia and/or South America can be used in ANN
models to predict anthracnose severity at other sites. The
series 3 ANN models trained on data from all sites within
one continent correctly predicted disease severity in
the other continent on >77% of days, and the prediction
success of cross-continent ANN models trained on the
pooled data for five sites from both continents to predict
severity for the sixth site ranged from 54 to >85%. All
ANN models consistently selected moisture-related vari-
ables such as RAIN, LWP and variables that influence
moisture availability such as RAD and WND on the day

Figure 4 Actual (�) and predicted (�) mean disease severity at South American field sites predicted using continent-wise artificial neural network 
(ANN) model trained on Australian data (a); continent-wise multiple linear regression (REG) model trained on Australian data (b); cross-continental 
ANN (c) and REG (d) models trained on pooled data for five Australian and South American sites to predict disease severity for the Samford 
(Australia) site; and cross-continental ANN (e) and REG (f) models trained on pooled data for five South American sites to predict disease severity 
for the Planaltina (South America) site.
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of disease severity assessment, or the day before assessment,
as the most important weather variables influencing
severity. This is one of a growing number of reports dem-
onstrating the usefulness of ANN models for weather and
plant disease prediction (De Wolf & Francl, 1997; Francl
& Panigrahi, 1997; Chtioui et al., 1999) and other related
analyses (Hajmeer & Basheer, 2003).

In a previous work, an ANN model trained on data
from a field site accurately predicted 81–87% of wheat
tan spot (caused by Pyrenophora tritici-repentis) infection
events for the same site (De Wolf & Francl, 1997). In the
study reported here, ANN models were used to predict
anthracnose severity for sites that were never used in
model training/development. Training and testing sites
were geographically distant and were often located in
another country or continent. Despite this rigorous and
stringent validation, accuracy of the various series 3 ANN
model predictions was between 54 and 96%. Because of
the stringent validation, ANN models developed from the
multisite data are robust and useful over a broad range of
field sites. This broad application also demonstrates the
obvious underlying principle that the basic quantitative
relationship between anthracnose and weather does not
change from site to site within or outside a continent,
given that an inoculum source of a virulent pathogen and
a susceptible host are present. Further prediction accuracy
in the models may be gained by considering other factors
that influence anthracnose development, such as farming
system, including naturally occurring biological control
agents (Lenné & Brown, 1991) and spatial heterogeneity.
Using data only from sites with similar characteristics may
be useful. For instance, if data from the same site are used for
both training and testing, the prediction accuracy of series
3 ANN models for Springmount and Carimagua increases
to 100%. However, these models essentially become site-
specific and lose application over a broad range of sites.

The fact that the series 3 models, developed using
weather data for the day of disease assessment and the
previous 24 h period, gave the highest prediction accuracy
is an important finding. In a previous field study spanning
3 years, when healthy plants exposed to natural inoculum
for a short period were maintained in either ambient or
high RH (>95%), 42% more plants developed anthrac-
nose in the high-RH environment than plants at ambient
RH (Chakraborty & Billard, 1995). The number of lesions
on each plant also increased following incubation at high
RH. Pangga et al. (2004) have recently demonstrated a
similar change in anthracnose severity when inoculated
plants were transferred to different CO2 environments.
These studies highlight the importance of weather during
both initial infection and disease development periods,
and predictive models that include both components are
likely to be more successful. Of the three series of models,
by averaging the weather data the series 1 models have
effectively removed important variation in the weather
data; the series 2 models have considered weather only for
infection events for a single day; while the series 3 models
have considered weather for two consecutive days. Given
the length of the incubation period of C. gloeosporioides

on cv. Fitzroy (Chakraborty et al., 1988), the high predic-
tion success of series 3 models probably represents long-
term correlations within weather and may not explain a
direct causal relationship between weather and anthrac-
nose severity. Further studies are necessary to explore this.

The importance of moisture-related variables to anthr-
acnose infection has previously been established from
experiments in controlled environments (Irwin et al., 1984;
Chakraborty et al., 1990). Other field-based research has
similarly quantitatively linked moisture-related weather
variables to detailed daily infection of Stylosanthes by the
anthracnose pathogen. Of these, Chakraborty & Billard
(1995) and Pangga (2002) used multiple linear regressions,
and Chakraborty & Smyth (1995) used a stochastic logistic
regression. Although none of these regression models was
validated using data from an independent source, rainfall,
relative humidity and temperature were important pre-
dictors in most models. In addition, radiation, evaporation
and high temperature were significant terms in many models
due to their influence on the extent and duration of free
water on plant surfaces (Chakraborty & Smyth, 1995). In
the current work, both ANN and REG models largely
selected weather variables that were directly related to
moisture availability and the duration of wetness, or vari-
ables such as radiation and wind that influence moisture
and wetness.

One important contribution of this study has been the
calculation of an overall risk for each site using weights
from the ANN models. With the Australian Southedge
site being only second to the Planaltina site for anthracnose
risk, centres of diversity and utilization cannot be separated
according to anthracnose risk, and sites with high and low
anthracnose risk are present in both continents. Among
the South American sites, risk of serious anthracnose was
highest for Planaltina and lowest for Caquetá. With an
annual average rainfall of 3553 mm, Caquetá receives
twice as much rain as Planaltina (1540 mm), but the patho-
gen has not been detected at this site in the 2 years of this
study. In contrast, despite some disease development,
weather at Samford is considered marginal for anthrac-
nose development to pose any serious risk. These clearly
highlight the importance of proximity to an inoculum
source. In Brazil and other countries there is spatial hetero-
geneity in the geographical distribution of both pathogenic
races (Chakraborty et al., 2002) and molecular haplotypes
of C. gloeosporioides (Weeds et al., 2003), and some races
of this pathogen have significant advantages in terms of
fitness components such as infection efficiency and fecun-
dity (Chakraborty et al., 1988; Chakraborty & Datta,
2003). Being a splash-dispersed pathogen, proximity to
an inoculum source is important, and in field experiments
d50, the distance at which the number of spore dispersal
decreases by half, of C. gloeosporioides spores is generally
<10 m from a point source (Pangga, 2002). Interaction
between C. gloeosporioides and antagonistic microorgan-
isms in different ecosystems may be another important
element of this risk (Lenné & Brown, 1991).

With standard back-propagation ANN models predic-
tion is often more important than explanation, and model
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construction is not easily understood (Frasconi et al.,
1993); this has created the perception of a ‘black box’ that
has hindered the widespread use of these models. Predic-
tions limited to local minima during gradient descent and
optimization of the number of hidden layers, units, learn-
ing coefficient, momentum, etc. are among other weak-
nesses of ANN models (Frasconi et al., 1993). In this
study transparency has been increased and the explana-
tory power of the ANN models has been improved by
using sensitivity analysis, where the contributions of input
weather variables can be easily seen. The number of
hidden neurons required for most of the models was 4–5,
which is often greater than the number of important
weather variables in the models. This suggests that the
relationships are nonlinear, and hence could not be fitted
well by the REG models, but hidden neurons in the ANN
models intrinsically capture the nonlinearity. Given the
widespread application to plant disease forecasting of
multiple linear regression models, including for anthrac-
nose (Chakraborty & Billard, 1995; Chakraborty & Smyth,
1995; Pangga, 2002), the REG models used in this work
have provided reference points for the outputs of the
ANN models. No attempt has been made to develop the
best possible regression model, and certainly other vari-
able selection procedures and techniques incorporating
nonlinearity, including the use of multivariate adaptive
regression spline (MARS model, Friedman, 1991) and
stochasticity, can be used to improve the REG models.
The application of ANN models for plant disease predic-
tion shown in this and other work (De Wolf & Francl,
1997) makes them a useful tool for future forecasting
models, and combining aspects of ANN and well estab-
lished statistical tools (Specht, 1991; Chtioui et al., 1999)
may offer a more flexible option for the future.
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Appendix A

Training code load ‘inputpat.txt’;
load ‘outputpat.txt’;
input = inputpat(::);%change this one for number of

training pattern output = outputpat(::);
p = input′;
q = output′;
outputsz = size(output,2);
hn = 4;

fid = fopen(‘config.txt’,′w′);
fprintf(fid,′%d percentaged percentaged′,size(input,2),
hn,size(output,2));
fclose(fid);
net = newff([0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0
1],[hn,outputsz],{‘logsig’,′logsig′},′trainrp′);
net = init(net);
net.trainParam.epochs = 2500;%total iteration number

net.trainParam.show = 100;%donot change this one 
net.trainParam.lr = 0·2;%learning rate net.trainParam.mc

= 0·8;%momentum 
net.trainParam.goal = 0·0000001;% error goal net =

train(net,p,q);
‰ matrix contains the output of the trained network;
w1 = net.IW{1,1};
w2 = net.LW{2,1};
b1 = net.b{1,1};
b2 = net.b{2,1};
save ‘weighth.txt’ w1 -ASCII;
save ‘weighto.txt’ w2 -ASCII;
save ‘biash.txt’ b1 -ASCII;
save ‘biaso.txt’ b2 -ASCII;
o = sim(net,p);
o = o′;
save ‘act.txt’ o -ASCII;
testing code fid = fopen(‘config.txt’,′r′);
inp1 = fscanf(fid,′%d′);
inp = inp1(1);
hn = inp1(2);
outputsz = inp1(3);
fclose(fid);
net = newff([0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0

1],[hn,outputsz],{‘logsig’,′logsig′},′trainrp′);
load ‘biash.txt’;
b1 = biash;
load ‘biaso.txt’;
b2 = biaso;
load ‘weighth.txt’;
w1 = weighth;
load ‘weighto.txtw2 = weighto;
load ‘testin.txt’;
actinput = testin;
p = actinput′;
net.IW{1,1} = w1;
net.LW{2,1} = w2;
net.b{1,1} = b1;
net.b{2,1} = b2;
o = sim(net,p);
o = o′;
save ‘outtest.txt’ o -ASCII;
Sensitivity code fid = fopen(‘config.txt’,′r′);
inp1 = fscanf(fid,′%d′);
inp = inp1(1);
hn = inp1(2);
outputsz = inp1(3);
fclose(fid);
load ‘weighth.txt’;
w1 = weighth;
for i = 1:size(w1,2),
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temp = 0;
for j = 1:size(w1,1),
t = 0;
for k = 1:size(w1,2),
t = t + abs(w1(j,k));
end;

temp = temp + abs(w1(j,i))/t;
end;
temp = temp/size(w1,1);
b(i) = temp;
end;
save ‘sensitivity.txt’ b -ASCII;


