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The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-
consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional
approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators
and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the
bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation
scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system
of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently
including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts
problem is investigated. It is found that the self-consistency does not affect significantly the spectral
properties of the propagators. In particular, it does not affect the appearance of the ghost poles in

the propagators.

PACS number(s): 21.30.+y, 21.60.Jz, 21.65.+f

I. INTRODUCTION

The development of relativistic many-body theories for
the nucleus is one of the most important goals of contem-
porary nuclear theory. Models based on the methods of
relativistic quantum field theory have been developed for
more than two decades.

The starting point for understanding the many-nucleon
problem is a description of the elementary processes in
vacuum: the nucleon propagator, meson-nucleon scatter-
ing, and the N-N interaction. Successes and difficulties
with relativistic meson-nucleon field theory have been the
subject of papers for more than half a century. We will
certainly not detail the history here, but note that a nag-
ging inconsistency in (almost) all calculations has been
the appearance of ghost poles.

Brown, Puff, and Wilets [1], for example, calculated
the nucleon propagator by summing all planar meson dia-
grams with one nucleon line using 7, p, and w mesons. No
cutoffs were introduced. The renormalized nucleon prop-
agator was well defined and self-consistent, but contained
a pair of complex conjugate poles located approximately
1 GeV off the real and imaginary axes. The full prop-
agator, including these unphysical poles, was used with
some success to describe the isovector nucleon magnetic
moment, m-nucleon scattering [2], and nucleon-nucleon
scattering [3]. (The last did require cutoffs in the N-N
interaction, but yielded better chi-squared fits to scat-
tering data with fewer parameters than the then current
Paris potential). The inclusion of the complex poles was
essential. Nevertheless, the occurrence of the complex
poles remained an enigma.

Several interpretations of the appearance of the poles
have been proffered, including the statement that it is a
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signal of the inconsistency of any local, relativistic field
theory, and that a field theory with asymptotic freedom
(e.g., QCD) is required.

The program of the previous section was driven by
the interpretation that the appearance of the ghosts is
an artifact of the approximations, and that progressively
better calculations should lead to the receding or elimi-
nation of the ghosts, but that for consistency one must
keep the ghosts as they emerge from the calculations at
each stage.

Another interpretation is that it is an effective theory,
and that one should be prepared to introduce further
parameters to ensure physical quantities.

In a recent paper [4], the problem of ghosts poles in
the nucleon propagator was investigated. The appear-
ance of the ghost poles is related to the short distance
behavior of the model interactions [1]; asymptotically
free theories appear to be free of ghost poles [5]. An
interesting possibility to eliminate the complex poles is
the regularization of the theory by means of vector me-
son dressing of nucleon-meson vertices. It is known that
in a theory with neutral vector mesons there are vertex
corrections that generate a strongly damped vertex func-
tion in the ultraviolet [6]. In quantum electrodynamics
(QED), such corrections give rise to the Sudakov form
factor [7]. When the Sudakov form factor, generated by
massive vector mesons, is included in the Hartree-Fock
approximation to the Schwinger-Dyson equation (SDE)
for the nucleon propagator, the ghost poles disappear. A
similar result was obtained by Allendes and Serot [8] ear-
lier in the study of the ghost pole in the meson propaga-
tor. Those authors concluded that the Sudakov corrected
propagator is free of ghost poles.

It is the purpose of the present paper to solve self-
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consistently the coupled system of Schwinger-Dyson
equations for the nucleon and meson propagators and
investigate the role of self-consistency on the appearance
of ghost poles in the propagators. Vertex corrections are
introduced by means of form factors.

There is an extensive literature on calculations of nu-
clear matter and finite nuclei properties based on the
Walecka scalar-vector model [9]. In general, the appli-
cations have been performed using Hartree-Fock (HF)
type of approximations. In a relativistic HF approxima-
tion, the single-nucleon propagator is calculated by solv-
ing self-consistently the SDE using bare meson propaga-
tors and bare meson-nucleon vertices. An additional ap-
proximation has been the neglect of the quantum vacuum
of the nucleon propagator. The corrections to the meson
propagators are usually calculated considering the vac-
uum polarization correction using nucleon propagators
with an effective mass. Although the nucleon propagator
is solved self-consistently by means of the SDE, the self-
consistency is only partial, since the meson propagators
used are the bare ones. The meson propagators satisfy
their own SDE’s, which require for their solution the nu-
cleon propagator. A self-consistent solution requires the
consideration of the coupled system of nucleon and meson
SDE’s.

Besides the lack of self-consistency, the neglect of the
quantum vacuum in the nucleon sector is a major limi-
tation. It is exactly the nontrivial nature of the vacuum
of a relativistic quantum field theory that motivates the
introduction of models which go beyond the usual non-
relativistic approach. However, severe difficulties arise in
including the vacuum effects beyond the one-loop Hartree
approximation. The inclusion of these vacuum correc-
tions leads to catastrophic results due to the presence of
the ghost poles in the propagators. Among other things,
the ghosts lead to a large imaginary part to the nuclear
matter energy.

Although the primary aim of our studies is the con-
struction of an intrinsically consistent relativistic quan-
tum field theory for the nuclear many-body problem,
these studies have connections to other fields that use
the SDE’s to study nonperturbative effects in field the-
ory. Such fields include the problems of dynamical chiral
symmetry breaking and color confinement in QCD, tech-
nicolor models and QED in four and lower dimensions.
For a recent review on the subject of the SDE’s in this
context see Ref. [10].

It is common practice in QCD and QED to study the
solutions of the fermion SDE in Euclidean space, instead
of Minkowski space as we do in our studies. In princi-
ple, the formulation of the problem either in Minkowski
space or in Euclidean space is entirely equivalent; both
formulations are connected by an analytic continuation.
However, this equivalence holds provided there are no
singularities in the complex plane. Since the pioneer-
ing works of Fukuda and Kugo [11] and Atkinson and
Blatt [12], it is known that the solution of the SDE for
the electron propagator in Euclidean space treated in the
Hartree-Fock approximation has pairs of complex conju-
gate branch points. The same feature was found in recent
studies of the SDE in a variety of models of QCD [13].

The existence of the ghost poles in Minkowski space and
of the complex branch points in Euclidean space spoils
the equivalence of the Minkowski and Euclidean formula-
tions. It would be interesting to investigate the possibil-
ity that the branch points have their origin in the ultravi-
olet behavior of the interaction as in the case of the ghost
poles. This could be done by using a Sudakov corrected
fermion—vector-boson vertex [4]. This would be particu-
larly interesting for the case of QCD, were the running
of the coupling constant provides extra logarithms in the
Sudakov form factor.

The paper is organized as follows. In Sec. II we present
the model for the interacting nucleon-meson system. We
briefly review the spectral representation of the propa-
gators and their inverses and discuss the renormalization
procedure. In Sec. III we discuss the coupled system of
Schwinger-Dyson equations for the nucleon and meson
propagators in terms of their spectral representations.
Section IV presents the method of solution of the equa-
tions and presents our numerical results. Conclusions are
presented in Sec. V.

II. THE MODEL

In this paper we consider a model field theory with
nucleons (), pions (), and vector isoscalar mesons (w).
The model Lagrangian density is

L = P(i7,0" — igorysT * T — GowYuw" )P

w

1 1
—%F,WF‘“’ - Emzw“w" + 58,,‘” ot 3

1
—Emfrﬂ' ST, (1)

where FH* = gFw” — 8¥w*.

This Lagrangian density is not compatible with the re-
quirements of the partial conservation of the axial current
(PCAC). Although it is true that a consistent hadronic
model must be compatible with PCAC, in this paper we
are mostly interested in the interplay of self-consistency
of the nucleon and meson propagators and the problem
of the ghost poles. Chiral symmetry allows the presence
of self-interacting meson terms in the Lagrangian, as for
instance in the linear sigma model. Such terms will al-
ter the low momentum structure of the meson spectral
functions, in comparison to those obtained in this paper.
However, it is unlikely that the appearance or disappear-
ance of the ghost poles, which are an ultraviolet phe-
nomenon, will be altered by this. The implementation
of chiral symmetry in a renormalizable hadronic model
for practical uses in nuclear physics has difficulties due
to the many-body forces implied by the self-interacting
terms [14]. In this sense, our model is probably an ap-
propriate starting point for studies towards a consistent
relativistic many-body theory for the nucleus.

As usual, the nucleon propagator is defined by

Gap(a' —z) = —i{0|T[$a(z") s (2)]|0) , (2)
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where |0) represents the physical vacuum state. The -
and w-meson propagators are defined respectively by

D (2’ — 2) = —i(0|T[w" (z")w"” (2)]|0) - (4)

The Schwinger-Dyson equations for the nucleon and

D (2 — z) = —i(O|Tn (2" 9 0 3 meson propagators in momentum space are given by the
7@ -2) HOIT [ (=) (=)]]0) ) following expressions, Fig. 1:
and (a) nucleon,
J
G(p) = G(p) + GO (PZ(P)G(P) , (5)

. d4 . . ] d4 "
2(p) = —ig, / ﬁvsT‘D«(qz)G(p —q)Ti(p — q,p;9) + 198, / ﬁwDﬁ (@G-l —a,p;9); (6)

(b) pion,
D (g?) = DO (¢?) + DO™ (¢?)I1¥ () D (%) , (7)
¥ (¢%) = igl, / (%‘;I)%Tr[’YsTiG(P)Fg (p,p+4:9)G(p+9)]; (8)
(c) omega,
D! (g%) = DE*©) (%) + D4 (¢*) 1127 (¢*) DZ¥ (¢°) (9)
I8 (¢?) = —igd, (—;‘%mwcw)r”(p,p F )G+ a)]. (10)

In the above equations, I'y (p, p+4; ¢) and T'*(p,p+q; q)
are the three-point m-nucleon and w-nucleon vertex func-
tions, respectively. They satisfy their own Schwinger-
Dyson equations. These relate the three-point functions
to four-point vertices and so on ad infinitum. In practice
one has to truncate this infinite set. In this paper we

(a) L@~

FIG. 1. Diagrammatic representation of the Schwinger-
Dyson equations for the full (a) nucleon, (b) pion, and (c)
omega propagators. The solid, wavy and dashed lines rep-
resent respectively the nucleon, the w, and the w. The solid
circles represent full propagators and vertices.

[
truncate the SDE’s by postulating a specific form for the
three-point functions (see below).

Next, we discuss the spectral representations of the
propagators and their inverses. We do not intend to re-
view the subject of spectral representations; we simply
make use of the relevant equations for the purposes of
the present paper. We refer the reader to Refs. [15-18]
for an extensive discussion on the subject. Let us start
with the nucleon propagator. The spectral representa-
tion of the nucleon propagator (in momentum space) can
be written as

+oo
G(p) = / dk Alx)

Bt (11)

A(k) is the spectral function. It represents the probabil-
ity that a state of mass |x| is created by ¥ or %, and as
such it must be non-negative. Negative « corresponds to
states with opposite parity to the nucleon.

Defining the projection operators

1 ?
P. p=—(1:|:——), (12)
i( ) 2 wp
where
v/ p? if p% > 0,
= 4/ = 13
r P { iy/—p? if p? < 0. (13)

G(p) can be rewritten conveniently as

G(p) = P+ (p)G(wp + i€) + P_(p)G(—wp — ic) , (14)
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where C-r'(z), z = *(wp + i€), is given by the dispersion
integral
G(z) = / dr

The inverse of the propagator can also be written in
terms of the projection operators Py (p) as

=Py (p)G~

Alx)

Z2—K

(15)

G~ (p) l(wp + i€) + P_ (p)é_l(—wp — €) .

(16)
The spectral representation for G~!(z) is written as
“Hz) =2 - Mo - E(2)

—z— M- /+°° T(x) (17)

Z—Ii

The function ¥(z) is related to the £(q) of Eq.
the projection operators P+(g) as in Eq. (16).
Since A(k) is supposed to be non-negative, G(z) can
have no poles or zeros off the real axis. This is known
as the Herglotz property. The absence of zeros can be
demonstrated as follows [1]: G(z) can be written as

é(z+iy):/_w

(5) by

(a: — Kk — 1Y) A(K)

(@—rR)Z+y? (18)

G2 == [1- -0 [

In the above expressions, Ag(x) = A(k)/Z2 and Tr(k) =
Z3T (k). In terms of renormalized quantities, Z; can be
written as

Zy=1- /_:o dn(-g—f(—;l))—z (23)
= [ _:30 dﬂAR(R)] N . (24)

The spectral functions Ag(x) and Tg(k) are related by

AR(K) = 8(k — M) + |GR*(x(1 +i€))| *Tr(x)  (25)
8(k — M) + Ag(x) . (26)

The possibility of writing such an expression, relating
the spectral function of the propagator to the spectral
function of its inverse, is of course only permissible if the
Herglotz property is valid. In the presence of ghosts, this
expression is not valid.

Let us now consider the spectral representations of the
meson propagators. The isospin structure of the 7-meson
propagator is such that D (¢2) = § D, (¢?). For D.(q?)
one can write the spectral representation

D,,(z)z/0 do? 2x(7) (27)

9
z— 02

from this one has that the imaginary part of G(z2) is given
by

A(~)

~ Feo
ImG(z +1y) = —y/; dk Gortg?’ (19)

which is nonzero for y # 0. This is a necessary condition
for writing a spectral representation for G~!(z); the ab-
sence of poles off the real axis for G(z) follows then from
the absence of zeros for é"l(z). This last property can
be demonstrated from Eq. (17) for T'(k) non-negative.

In general, the integral in Eq. (17) needs renormaliza-
tion. The usual mass and wave-function renormalizations
are performed by imposing the condition that the renor-
malized propagator have a pole at the physical nucleon
mass M, with unit residue. This implies that the renor-
malized propagator Gg(z), defined as

Gr(z) = G(2)/2, , (20)

is given by the following expression:

+oo
_ AR(R)
GR(Z)_/_Oo dx 220 (21)
The renormalized inverse is given by
+oo

Tr(x)
. 22
[ ) 2

f

where p.(0?) is the pion spectral function. It represents
the probability that a state of mass Vo2 is created by
the pion field and as such it must be non-negative. The
meaning of the complex variable z is that the physical
propagator Dy (g?) is the limit of D, (z) when z — ¢ +ie.

Using the SDE for the pion, Eq. (7), the inverse of
D,(z) can be written in terms of the pion self-energy
I, (z) as

DIY(z) =2 —ml? —M.(2) . (28)

m™

Similarly to the case of the nucleon, one can write a spec-
tral representation for D, '(z),

Sr (a )
D(z)=z-m2 = [ do? : 29
S =emtt— [Car O )
The renormalized propagator is again obtained by fix-
ing the pole position at the physical mass, and the residue
at the pole equal to 1. The renormalized propagator
D g(z), defined as

D.r(z) = Dx(2)/Z3x , (30)
is then
Dqg(2) =/0 do? ";'—‘i({:T). (31)

Its inverse is given by
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S,rR(O'z)

D, z(z) = (z —m}) [1 —(z— m,r)/(; do 02 —m2)2(z =07 - (32)

The renormalized spectral functions are defined as
pﬂ'R(Uz) = p7r(0'2)/231r and Sﬂ'R(Uz) = Z31rS1r(0'2)-
In terms of the renormalized quantities, Z3, is given

by
o) S (0,2)
_ 2 R
S )
-1

- [ A ~ do? p,,R(az)] . (34)

The spectral functions p,r and Srg are related by
pxr(d°) = 8(q° — m2) + |Drz|*Sxr(q”) (35)
=48(q* — m3) + pxr(d?) - (36)
Let us now consider the w-meson propagator. Since

the baryon current is conserved, the w-meson self-energy
I1#¥(¢?) must satisfy

115" (¢%) = 115 (¢°) = 0 . (37)
Therefore, the Lorentz structure of II#” must be
5" (¢%) = (9" — ¢"¢" /") Mu(q®) - (38)

Substituting this in the SDE for the w-meson propa-
gator, Eq. (9), D*¥(q?) can be written as

Dg”(qz) = _g‘wa(qz) ) (39)

where

1
D.(¢%) = . 40
O L) v 4

Terms proportional to g#¢” in Eq. (39) can be neglected
when using D#” in Eq. (6), because of current conserva-
tion.

The spectral representation of D, is

oo 2
Puw (U )
D, (z) = do? =—~ . 41
o) = [ a0t 2T (1)
As in the case of the pion, one can write the Cauchy
representation for the inverse of the w-meson propagator
as
oo 2
-1\ _ 02 2 Sw(o?)
Dw (z)—z—mw *A do m—. (42)
Renormalization proceeds as for the pion. The renor-
malized quantities are given by expressions similar to the
]

K(k,K'") = Krp(k,k';m2) + 2K, (5, &';m?)

[

ones for the pion, Egs. (31, 32, 34, 36), with the 7 index
replaced by w index.

III. SCHWINGER-DYSON EQUATIONS

We start with the nucleon SDE, Eq. (5). It can be
written as

G '(p) =G (p) - Z(p), (43)

where X(p) is given by Eq. (6). To proceed, we need to
specify the form of the vertex functions I'{ (p, p+q; ¢) and
T'*(p,p+ g;q). In the usual HF approximation, I'{ (p,p +
¢;q9) = T'vs and I'*(p,p + q;q) = v*. In this paper we
consider vertex functions written as

T'i(p1,p2;9) = T*vsF5(p1, P23 9), (44)
T*(p1,p2;9) = Y*Fv(p1,P2;9) » (45)

where F5(p1,p2; q) and Fy (py,p2;q) are scalar functions.

It is important to note the inconsistency of our ansatz
for the NNw vertex function with the (first) Ward-
Takahashi identity. This identity is an exact statement
for the conservation of the baryon current; it relates (the
longitudinal part of) I'*(p,p + ¢;q) to the nucleon self-
energy. There are attempts [19] to incorporate vertices
consistent with this identity in studies of model SDE’s.
It would be very interesting to pursue such an approach
in hadronic models, mainly in connection with the ultra-
violet behavior of the vertex function. For the purposes
of the present paper, we use the above ansatz and reserve
for a future publication the study of an ansatz consistent
with the Ward-Takahashi identity.

Substituting Eqs. (44,45) and the spectral representa-
tions for G(q), Dx, and D,,, in the integral for £(q), Eq.
(6), and applying the projection operators Py (p) to Eq.
(43), one obtains

+o0
Tr(k) = / dr'K (k,k")AR(K') , (46)

where K (k,«') is given by

+/ do?prr(0%) Ky (K, k';0%) +2/ do?p,r(0?) K, (k,k';0%) . (47)
0 )

K, (k,x';m?) and K, (k,';m?) are respectively the m-nucleon and w-nucleon scattering kernels,

K, (x, K’;mz) —3 (Z—;)Z [n4 _ 2/‘62(19'2 + mz) + (n'z . m2)2] 1/2
X L [(,g — n/)z _ m2] e(nz _ (IKI[ + m)z)Fs(n, I‘Ll;m) (48)

2|xf
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and
:.2_&24_2,2 2 2 221/2
Ku(n,/i,m)—(47r) [n 26%(K"" +m®) + (x m)]
1
X_2|K|3 [(K — K/)2 — 26K’ — mz] 0(,{2 _ (|K’| + m)z)FV(n,m';m) ) (49)

prr(c?) is related to Sy as shown in Egs. (35-36) [similarly for p,gr(c?)]-
The meson self-energies Sxr(q%) and S, r(g?) are obtained using the spectral representation of the nucleon propa-

gator in Egs. (8, 10). Srxr(q?) is given by

Ser(d?) =S,,(M,M;q2)+2/ dnAR(n)s,(M,n;q2)+/

where A(k) is defined in Eq. (26), and

drdk' Ag (k) AR (K')Sx(r, K5 ¢%) (50)

— 00

2 Kk —K')? 1
Su(r, ks %) = (—g—) [1 - u] lg* — 2455 + &) + (5% — 21308 — (In| + W) Fa(k k'3q) ,  (51)

472 qz

with g,zr = Z>gor and gf, = Z2gow-

For the w meson, we have the same expression as in Eq. (50), with the index 7 replaced by w and

2 2
I, 2y gw (R—R) 1
Su(k,Kk'5¢%) = (W) {1——‘(12—4'@

[q4 —2q2(n2+n'2) + (nz _42)2]}

x[q* = 2¢* (K + £?) + (k* — £2)?]20(¢" — (8] + |K'|)%) Fy (%, ' q) - (52)

IV. NUMERICAL RESULTS

The problem consists in solving for the spectral func-
tions Agr(x), prr(c?), and pyr(c?). The equations re-
lated to Ag(k) are Egs. (46)—(49), (22), and (26). For
prr(0?) , the relevant equations are Egs. (50), (51), (32),
and (36). For the w meson, the equations are the equiv-
alent ones of Egs. (50), (51), and (32), with the index
m replaced by w, and Eq. (52). These represent a set of
coupled nonlinear integral equations, which we solve by
iteration.

We start solving for A with the bare 7 and w propa-
gators, for which the spectral functions are given by

per(0?) = 8(0? —=m2), pur(0?) = (0 —m2) . (53)

This is the usual Hartree-Fock approximation for the nu-
cleon propagator including vertex corrections by means
of the form factors of Eqs. (44), (45). The solution for
Apg(k) is obtained, as in Refs. [1] and [4], by iteration
from the perturbative solution.

This Agr(x) is used to obtain the spectral function of
the inverse of the pion propagator Srg(q?), Eq. (50),
and the equivalent one with 7 — w. Using Eq. (36) one
obtains prg and similarly p,r. This completes the first
iteration.

The next iteration starts calculating the fermion kernel
K (k,k') of Eq. (47) using the spectral functions g, and
Pwr obtained in the first iteration. With this K(k, '),
we solve for Ap by iteration starting from the Agr(k) ob-
tained in the first iteration. The process is then repeated
to convergence, for Ag(k), prr(c?), and pur(c?).

Initially, we considered bare vertices Fs(pi,p2,9) =

f

Fy(p1,p2,9) = 1, and investigated the role of the self-
consistency on the spectral functions. We used the fol-
lowing values for the coupling constants and masses:

2
9= _ —

i 146, m, =0.144M , (54)
g2

= =6.36, m, = 0.833M , (55)
4T

where M is the nucleon mass.

The converged spectral functions Ag, pxr, and pur
are shown (without the delta functions) in Figs. 2-4.
The solid (dashed) lines represent the self-consistent (not
self-consistent) solutions. The not self-consistent meson
spectral functions are the ones obtained by calculating
the nucleon loop in Figs. 1(b), 1(c) using the bare nu-
cleon propagators (Ag = 0); i.e., these are the first order
perturbative spectral functions. As discussed in Ref. [4],
the contribution of the w meson to the kernel K (x, ') in
Eq. (47) has a finite jump at kK = M + m,,. This intro-
duces a discontinuity in the integrand of Eq. (22). At
the discontinuity, the real part (principal value integral)
of Eq. (22) has a logarithmic singularity, implying that
Ap(x) has a (sharp) zero at Kk = M + m,,. This zero is
represented in Figs. 2 and 5 by the vertical straight line
which hits the k axis at the discontinuity.

The self-consistency does not affect the fermion spec-
tral function perceptively; therefore we have plotted only
the self-consistent one. However, the self-consistency
does affect the meson spectral functions, although not
very importantly (see Figs. 3 and 4). It is interesting to
note that the effect of the self-consistency is opposite in
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0.40 T T T T T T T T
0.30 N
— FIG. 2. Self-consistent (solid curve) and
\55 not self-consistent (dashed curve) nucleon
<’c:r 0.20 F . spectral function Agr(k). & is in units of
the nucleon mass M and Agr(k) is in units
of M. The curves are multiplied by 5 for
negative k.
0.10 + .
0'0910.0 -75 -5.0 -2.5 0.0 2.5 5.0 10.0

K

pxr and p,g; it increases the former and decreases the
last.

Next, we search for ghost poles. This is done by search-
ing the zeros in the complex variable z of the term in
square brackets in Eq. (22). The search is done using a
Newton-Raphson method. Once complex zeros of G5 (2)
are located, the residues of the corresponding poles in
Gr = [Gr(2)]! are easily computed regarding this func-
tion as the ratio of two analytic functions. The role of
the self-consistency on the appearance of ghost poles is
shown in Table I. Clearly, the self-consistency does not
change much the position of the poles and residues of
the nucleon propagator, although it changes somewhat
the ones of the meson propagators.

As discussed in Refs. [1] and [4], the signal for the
presence of ghosts in the nucleon propagator is revealed
by the fact that the renormalization constant Z, calcu-
lated via the spectral function of the nucleon self-energy,

Tr(k), gives Z; = —oco. The minus sign is the indication
5.0 ——rrrrr e e
40
& 30 +
S
N
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©
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2
'0910 (0' )

FIG. 3. Self-consistent (solid curve) and not self-consistent
(dashed curve) 7 spectral function prr(0?). o2 is in units of
M? and prr(c?) is in units of M2,

of a ghost. This happens because, for large « or ', one
has

Kon(r 1) —> ﬁ(nz — k) (k — K')20(k% — K?) , (56)

and since the integral of Ag(x) is finite, one has [1]
Tr(x) — |«l, (57)

and the integral for Z, is therefore logarithmically diver-
gent. On the other hand, the integral over Ag(k) is not
zero, and therefore Z, calculated via Agr, Eq. (24), does
not give Z, 1 = 0. However, as shown in Ref. [1], con-
sistency is recovered if one includes the pair of complex
conjugate poles in Gg [note that the real parts of the
residues are negative (see Table I)].

For the case of the renormalization constants of the
7 and w mesons, we obtain exactly the same result:
The Z3’s calculated via the spectral function of the self-

15.0 T T —
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[:4
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oo 1 1 13113l I L2 1 a3l 1
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FIG. 4. Self-consistent (solid curve) and not self-consistent
(dashed curve) w spectral function p,r(c?). The units are
the same as in Fig. 3.
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TABLE I. Ghost poles. The first value is the pole position and the second is the residue at the
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pole. The nucleon poles are in units of M and of the mesons are in units of M?2.

Self-consistent

Not self-consistent

N 1.06 & 1.25¢ —0.77 £ 0.202
T —1.04 - 1.08
w -3.50 - 1.30

1.05 £+ 1.262
—1.44
—5.68

—0.77 £ 0.20z
- 1.13
—1.49

energy, Sg, give Z3 — —oo. To obtain zero for the
integral over the spectral function of the propagator, pg,
the residue of the ghost pole has to be included.

In Ref. [4], the problem of ghosts poles in the nu-
cleon propagator was investigated using form factors at
the nucleon-meson vertices. Two types of form factors
were used: (a) a Sudakov form factor, which is generated
by vector meson dressing of the vertices, and (b) a phe-
nomenological form factor, of the monopole type. The
conclusion there was that both types of form factors are
able to kill the ghosts. However, as remarked in that ref-
erence, a proper extension of the Sudakov form factor to
lower momenta is necessary for a better study of these is-
sues. In this paper we use only the simple monopole form
factor to investigate the interplay of self-consistency and
vertex corrections on the spectral functions. As in Ref.
(4], we use for F5(p1,p2,q) and Fv(p1,p2, q) the following
expressions:

F5(p1,p2,9)= Fv(p1,p2,9)
N 1 1 1
T 14 |p2/A?| 1+ |q2/A%| 1+ [p}/A2|’
(58)

where A is an ultraviolet cutoff.

The calculated spectral functions with use of the form
factors are plotted in Figs. 5-7. We plotted AR, prr,
and p,gr (again without the delta functions) for three
representative values of cutoffs, A = M (solid curves),
1.25M (long-dashed curves), and A = oo (short-dashed
curves). The effect of the form factor is to increase Ag(x)
for negative k, a result already found in [4]. The effect
on the meson spectral functions is to increase (decrease)

PR (PRW)-

In Ref. [4], it was found that for a A < Agie = 1.75M
the ghost poles in the nucleon propagator disappear. In
the present case, we found that the self-consistency does
not alter significantly this critical value; the ghost poles
disappear in all propagators for a A < 1.60M.

We have also investigated the effect of the self-
consistency on the ghost-free spectral functions; i.e., we
compared the self-consistent and not self-consistent spec-
tral functions for several values of A’s smaller than Ap.
We found the surprising result that the effect of the self-
consistency is negligible in all spectral functions; the ef-
fect is almost invisible when one plots the spectral func-
tions.

Although on physical grounds one expects that the cut-
offs for the 7w and w vertices have different values, we used
the same value for both, since in this work we are mostly
interested in the qualitative effects. The consequences of
the modifications induced by the form factors on physi-
cal observables deserves a separate study. Work in this
direction is in progress.

We conclude this section with the general remark that
the self-consistency does not affect the spectral properties
of the propagators.

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have solved self-consistently the cou-
pled set of Schwinger-Dyson equations for the nucleon
and 7 and w mesons in the vacuum. The set of equa-
tions was truncated by postulating a three-point meson-
nucleon vertex function. The understanding of the vac-
uum properties of the nucleon and meson propagators is a

FIG. 5. Agr(k) for different values of
the cutoff: A = M (solid curve), 1.25M
h (long-dashed curve), and oo (short-dashed
curve). Units are the same as in Fig. 2. The
short-dashed curve is multiplied by 5 for neg-
ative K.
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FIG. 6. p,..R(az) for same A’s as in Fig. 5. Units are the
same as in Fig. 3.

necessary first step towards the study of the properties of
nucleon and meson in nuclear matter, as well as those of
nuclear matter and finite nuclei. Although many of such
properties have been studied using relativistic quantum
field models, the vacuum polarization effects in medium
have invariably been neglected.

The main conclusion of our investigation is the sur-
prising result that the self-consistency does not modify
significantly the spectral properties of the propagators.
The appearance or disappearance of the ghost poles in
the propagators is not affected by the self-consistency.

One important aspect regarding the vacuum of meson-
nucleon effective theories that was not yet satisfactorily
investigated is the role of the three-point meson-nucleon
vertex functions. In particular, the interplay of the in-
frared and ultraviolet sectors of the w-nucleon three-point
vertex is extremely important to the problem of ghosts
poles, as shown in the recent studies of Refs. [8,4].
The constraint of current conservation on the three-point
function is certainly an important aspect of the problem
which also deserves more study. In this respect, an in-
teresting possibility to implement the Ward-Takahashi
identity is the use of the so called gauge technique, in-
vented by Salam a long time ago [20]. This technique is
particularly well suited for our formulation of the prob-
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h \ o
o j
' v N
~— 50 | B
1
0.0 P \.“1\“7'-.--"“.....
1 10 100 1000

logyo (0%)
FIG. 7. Same as in Fig. 6 for p,r(c?).

lem since it postulates a spectral function for the vertex
which contains the spectral function of the fermion prop-
agator. In this formulation, the Ward-Takahashi identity
is automatically satisfied. In the past, this technique has
been employed to investigate the problem of ghosts in
the electron propagator [21]. Work in this direction is in
progress.

The effects of the self-consistency on the nucleon and
meson propagators in nuclear matter, in connection to
the problem of ghost poles, remains an open problem,
although work in this direction has recently been com-
municated [22].

Another important aspect is the role of chiral symme-
try in hadronic models. This is a separate subject, with
its own problems. Much remains to be done in this re-
spect, both in vacuum and in nuclear matter.
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