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Analytic properties of thermal corrected boson propagators
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We investigate the analytic properties of finite-temperature self-energies of bosons interacting with fermions
at one-loop order. A simple boson-fermion model was chosen due to its interesting features of having two
distinct couplings of bosons with fermions. This leads to a quite different analytic behavior of the bosons

self-energies as the external momentumKm5(k0,kW ) approaches zero in the two possible limits. It is shown that
the plasmon and Debye masses are consistently obtained at the pole of the corrected propagator even when the
self-energy is analytic at the origin in the frequency-momentum space.
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I. INTRODUCTION

It is well known that the analytic properties of sel
energies at finite temperature are extremely important, s
they are related to physical processes such as thepole
physics.1 Nevertheless, they have attracted some atten
only in the past decade, as pointed out by Weldon in Ref.@1#.
The existence of a unique limit as the external moment
Km→0 has been admitted only if the internal lines of t
loop have propagators with different masses@2#. We show by
using a simple theory that~i! even if the self-energy is ana
lytic at the origin in the frequency-momentum space~al-
though the limits need not commute@3#!, it still leads to the
plasmon and Debye masses which arise from the consis
calculation at the pole of the corrected propagators and~ii !
the analyticity, at the origin, exhibited by one of the one-lo
graphs is due to its very peculiar dependence on the exte
momenta.

The paper is organized as follows. In Sec. II, we disc
the one-loop self-energy of the bosons due their interact
with fermions. In Sec. III, we study the pole physics whi
lead to the correct determination of the plasmon and De
bosons masses. In this section we also obtain the high
perature limit for these masses. In Sec. IV we analyze
dispersion relation which relates the real and imaginary p
of a one-loop self-energy. We conclude in Sec. V.

II. THE BASIC INTERACTIONS

Let us consider the boson-fermion interaction~we have
ignored, for simplicity, isospin! described by the Lagrangia
density which is part of the Gell-Mann and Levy model in
broken chiral symmetry phase@4#

L~ c̄,c,f i !5c̄@ igm]m2m2g~s1 ipg5!#c1L0~f i !,
~1!
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1The dispersion relation, the plasmon and Debye masses,

damping and decay rates, etc.
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whereg is a nondimensional positive coupling constant a
L0(f i) is the free Klein-Gordon Lagrangian for the boson

More recently the Gell-Mann and Levy model has be
considered to obtain the thermal masses of the fermions
bosons at high temperature by using a modified s
consistent resummation~MSCR! @5#, to study the renormal-
ization of the effective action at finite temperature@6# and to
study the issue of analyticity of bubble diagrams@7#.

To one loop order, the zero temperature retarded s
energies for the pion and sigma fields in the Minkows
space read

P~K !5 ig2E d4P

~2p!4
TrF ~ag52b!

3
1

P” 1K” 2m
~ag52b!

1

P” 2m
G , ~2!

where for the pion one hasa51 andb50 and for the sigma
a50 and b5 i . As is well known, theg5 matrix will be
responsible for a minus sign in pion self-energy which w
bring the differences between the corrections for the t
bosons. After performing the trace, this expression gives

P~K !524ig2E d4P

~2p!4

P21PmKm1cm2

@~P1K !22m2#@P22m2#
,

~3!

where c521 for the pion andc51 for the sigma. This
allows us to write

P~K !s5P~K !p1P̃~k0 ,k!, ~4!

wherek[ukW u and

P~K !p54g2@F1G#, ~5!

P̃~k0 ,k!54g2H, ~6!

with
he
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F~m,T!52 i E d4P

~2p!4

1

@~P1K !22m2#
, ~7!

G~m,T,K !52 i E d4P

~2p!4

PmKm

@~P1K !22m2#@P22m2#
,

~8!

and

H~m,T,k0 ,k!52 i E d4P

~2p!4

2m2

@~P1K !22m2#@P22m2#
.

~9!

Since we are interested in studying the thermal effects
the analytic structure of the self-energy, we shall take o
the nonzero temperature parts of the integrals above. Ap
ing the usual finite temperature techniques in the imagina
time formalism from Eqs.~7! to ~9!, we find the following
expressions:

Fb~m,T!52E
0

` p2dp

~2p!2

nc~v!

v
, ~10!

where nc is the fermion distribuction functionnc(v)
51/@exp(v/T)11#, v[Ap21m2, and

Gb~m,T,K !5K2E
0

` p2dp

~2p!2

nc~v!

v

1

4pk

3 lnF ~2pk1k22k0
2!224k0

2v2

~22pk1k22k0
2!224k0

2v2G , ~11!

Hb~m,T,k0 ,k!522m2E
0

` p2dp

~2p!2

nc~v!

v

1

2pk

3 lnF ~2pk1k22k0
2!224k0

2v2

~22pk1k22k0
2!224k0

2v2G , ~12!

whereK25KmKm5k0
22k2.

From here on, for the sake of simplicity of the notatio
we drop the subscriptb in the self-energies, whose limits ar

P~k050,k→0!p5P~k0→0,k50!p54g2F~m,T!,
~13!

P~k0→0,k50!s5F~m,T!28g2m2E
0

` p2dp

~2p!2

nc~v!

v3
,

~14!

P~k050,k→0!s5F~m,T!28g2m2E
0

` dp

~2p!2

nc~v!

v
~15!
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which shows that the successive limits do not coincide at
origin of the external four-momentum only in the sigma se
energy, as has already been shown recently in a slightly
ferent manner@7#.

III. THE POLE PHYSICS

Although the pion self-energy by itself is analytic at th
origin of the frequency-momentum space, it is the pole of
corrected propagator which has physical relevance. In o
to investigate the effect of the thermal corrections due to
interactions with the fermions, let us consider the ze
temperature bosons as massless. Below we calculate th
fective boson masses induced by the thermal medium.

A. The thermal corrected pion propagator

The thermal corrected boson propagator is given by

Ds,p~vn ,kW !215D0s,p~vn ,kW !211P~vn ,kW !s,p

5vn
21kW21ms,p

2 1P~vn ,kW !s,p , ~16!

whereD0s,p(vn ,kW ) is the tree-level boson propagator.

1. The pion plasmon mass

It is well known that particles immersed in a hot mediu
have their properties modified. As they propagate in t
plasma, they become dressed by the interactions. Exam
of immediate consequences are the appearance of an e
tive thermal mass and the damping rate of collective exc
tions @8,9#. As we are considering massless bosons (ms,p

2

50), at the pole of the pion corrected propagator at z
momentum (k50), we have

k0
25P~k0 ,k50!p54g2F~m,T!F11

k0
2

4v22k0
2G . ~17!

Since the right-hand side~RHS! of Eq. ~17! has singularities,
we writek0,p5Mp2 igp , whereMp andgp are real. Let us
now define Ip5P(k0,p5Mp2 igp ,k50)p . This allows us
to get the leading contribution for the plasmon thermal m
as well as the~weak! damping rate,g!M , respectively, of
the pion:

Mp
2 5P Re Ip54g2F~m,T!, ~18!

gp52
1

2Mp
P Im Ip5

g2

4p
MpS 12

4m2

Mp
2 D 1/2

nc~Mp/2!

→ g2

8p
Mp , ~19!

whereP is the principal part of the integral. The arrow in E
~19! refers to the limit of vanishing fermion mass.

2. The pion Debye mass

Another example of a fundamental property of a plasma
the Debye mass,MD , whose inverse is the screening leng
1-2
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for electric fields in the plasma@10#. We adopt the definition
of the Debye mass in terms of the location of the pole in
static propagator for complexk. It was shown by Rebhan
@11# that, both for QED and QCD, this definition is the co
rect one,2

kp
2 52P~k050,kp

2 52Mp,D
2 !p→Mp,D

2

54g2F~m,T!F11
Mp,D

2

4p2 G , ~20!

where in the last equation, before the identificationkp
2 5

2Mp,D
2 , we have expandedP(k050,kp)p in the limit kp

→0. The solution of Eq.~20! is straightforward:

Mp,D
2 54g2

F~m,T!

12g2F̃~m,T!
, ~21!

with

F̃~m,T!52E
0

` dp

~2p!2

nc~v!

v
. ~22!

B. The thermal corrected sigma propagator

1. The sigma plasmon mass

In the pole of the thermal corrected sigma boson pro
gator at zero~three-!momentum, we have

k0
25P~k0 ,k50!s54g2F~m,T!F11

k0
224m2

4v22k0
2G . ~23!

Repeating the same steps as before, fork0,s5Ms2 igs and
Is5P(k0,s5Ms2 igs ,k50)s , one finds

Ms
25P Re Is54g2F~m,T!, ~24!

gs52
1

2Ms
P Im Is5

g2

4p
MsS 12

4m2

Ms
2 D 3/2

nc~Ms/2!

→ g2

8p
Ms , ~25!

which gives the same results as for the pion case in the
fermion mass limit.

2In QED this definition provides for an exponential decay of t
screened Coulomb potential, whereas in QCD it gives a gau
invariant result@12#.
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2. The sigma Debye mass

We find next the sigma Debye mass in our ‘‘plasma’’
the same way as we did for the pion:

ks
252P~k050,ks

252Ms,D
2 !s→Ms,D

2

54g2F~m,T!F11
Ms,D

2 24m2

4p2 G , ~26!

which gives

Ms,D
2 54g2

F~m,T!2m2F̃~m,T!

12g2F̃~m,T!

5Mp,D
2 24g2m2

F̃~m,T!

12g2F̃~m,T!
. ~27!

It should be pointed out that since we are consider
vanishing zero temperature boson masses, resummation
niques are required in some order of the perturbative exp
sion to recover its validity. In the model and at the order
are studing, a resummation of one-loop boson diagra
@which could be interpreted as the replacement of thems,p

2 in
Eq. ~16! by effective boson thermal masses# would only shift
the bosons plasmon and Debye masses, since these effe
masses does not enter the~fermion! loop. Therefore, the
qualitative results found here would be kept. Howev
Nieves and Pal@13# considered another model where th
problem of the nonanalyticity of the one-loop self-ener
disapeared when the calculation was carried out using
proved propagatores for the particles that appear in the in
nal lines of the loop diagrams.

C. High temperature limit for the pion and sigma plasmon
and Debye masses

The high temperature limit of the functionsF̃ andF are
@14#

F̃~m,T!5
1

2p2 S 2
1

2
ln

m

p
2

1

2
g

1
1

2 (
n51

`
1

n F S 11
m2

4p2n2D 21/2

21G D
5

1

2p2 S 2
1

2
ln

m

p
2

1

2
g1

z~3!

16p
m2

2
3z~5!

64p2
m41O~m6!D , ~28!

wherem5m/T, g50.57721 . . . isEuler’s constant and the
numerical values of thez function at important points are
z(2)5p2/6, z(3)51.2020 . . . , z(4)5p4/90, z(5)
51.0369 . . . , and so on,whereasF is given by

e-
1-3
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F~m,T!5
T2

2p2 S p2

12
1

1

4
m2ln

m

p
1

1

4 S 2
1

2
1g Dm2

2
z~3!

32p
m41O~m6! D . ~29!

So one sees thatF̃ is less relevant at high temperature th
F. Thus, the pion and sigma, respectively, plasmon ma
are

Mp
2 5

g2T2

6
1

g2T2

2p2 S 2
1

2
1g1 ln

m

p Dm21O~m4! →
H.T.g2T2

6
,

~30!

Ms
25

g2T2

6
1

g2T2

2p2 S 2
1

2
1g1 ln

m

p Dm21O~m4! →
H.T.g2T2

6
,

~31!

whereH.T. denotes the dominant term in the high tempe
ture limit ~or, equivalently, the zero fermion mass limit!,
while the Debye masses are written as

Mp,D
2 54g2F~m,T!@11g2F̃~m,T!1„g2F̃~m,T!…2

1O„g6F̃~m,T!3
…#

5
g2T2

6 F12
g2

~2p!2 S ln
m

p
1g D1S g2

~2p!2D 2

3S ln
m

p
1g D 2

1•••G , ~32!

Ms,D
2 5Mp,D

2 24g2m2F̃~m,T!@12g2F̃~m,T!#21

5Mp,D
2 1

g2m2

p2 S ln
m

p
1g D F12

g2

~2p!2 S ln
m

p
1g D

1S g2

~2p!2D 2S ln
m

p
1g D 2

1•••G . ~33!

These results clearly show that, despite the pion s
energy being analytic at the origin in the momentum spa
its physical plasmon and Debye masses are different, as
should be, thanks to the consistency of the calculations a
pole of the corrected propagator.

IV. THE DISPERSION RELATION

Usually, the noncommuting limits have been traced ba
to the cut structure of the one-loop self-energy through
dispersion relation@2,15#

ReP~k0 ,k!5
1

p
PE

2`

`

du
Im P~u,k!

u2k0
. ~34!

However this relation is not general. IfP(k0 ,k);k0
n (n

>0) for k0→`, as is the case of the pion self-energy in t
04501
es

-

f-
e,
ey
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k
e

approximation used here, a more general relation should
used@16–18#. Particularly for the pion case we have

ReP~k0 ,k!5ReP~0,0!1
1

p
~k0

22k2!P E
2`

`

du
Im P~u,k!

u2~u2k0!
,

~35!

with Im P(k0 ,k) given by

Im P~k0 ,k!52
1

2E d3pW

~2p!2

1

2vV
$~V1v!2@d~k01V1v!

2d~k02V2v!#1~V2v!2@d~k01V2v!

2d~k02V1v!#%tanhS bv

2 D , ~36!

whereV[A(p2k)21m2.
One can check that Eq.~35! can also be used to show th

the analytic behavior of ReP(k0 ,k) is due to the kinectic
term multiplying the integral and that in both limits (k0
50,k→0 andk50,k0→0) this contribution vanishes leav
ing the first term as the sole contribution.

V. CONCLUSIONS

In this paper we have studied the analytic properties
thermal corrected boson propagators through their inte
tion with fermions. A particular model was chosen based
the fact that its two kinds of bosons couple differently wi
the fermions, which leads to distinct~unexpected! behavior
of their self-energy. We have shown that the pion self-ene
is analytic at the origin in the frequency-momentum space
finite temperature, whereas the sigma self-energy is non
lytic. In spite of this, we have shown that the analytic beha
ior found for the pion self-energy does not spoil the diffe
ence between the plasmon and Debye pion masses. We
also shown that the two physical masses arise from the c
sistent calculation at the pole of the corrected propaga
Then, we have derived the plasmon and Debye masses
both the pion and sigma bosons. We note here that the
swer to the question of which mass of a certain field is ma
fested in a plasma in a given temperatureT depends strictly
on the situation encountered~or assumed! by its four mo-
mentum. Besides, the specific dependence on the exte
momenta of the pion self-energy graph implies a modifi
tion in the usual dispersion relation which allows us to tra
back the origin of the analyticity. Similar behavior seem
also to be found in derivative coupling models@19#. This has
been shown to be a criteria other than the existence of
tinct masses running in the upper and lower internal lines
a diagram@2#, which could be used to predict the analyt
behaviors of bubble diagrams as the external momen
Km→0.
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