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Analytic properties of thermal corrected boson propagators
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We investigate the analytic properties of finite-temperature self-energies of bosons interacting with fermions
at one-loop order. A simple boson-fermion model was chosen due to its interesting features of having two
distinct couplings of bosons with fermions. This leads to a quite different analytic behavior of the bosons
self-energies as the external momentkith= (kO,IZ) approaches zero in the two possible limits. It is shown that
the plasmon and Debye masses are consistently obtained at the pole of the corrected propagator even when the
self-energy is analytic at the origin in the frequency-momentum space.
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I. INTRODUCTION whereg is a nondimensional positive coupling constant and
Lo( ) is the free Klein-Gordon Lagrangian for the bosons.
It is well known that the analytic properties of self- More recently the Gell-Mann and Levy model has been
energies at finite temperature are extremely important, sinceonsidered to obtain the thermal masses of the fermions and
they are related to physical processes such aspile bosons at high temperature by using a modified self-
physics' Nevertheless, they have attracted some attentioronsistent resummatiogfMSCR) 5], to study the renormal-
only in the past decade, as pointed out by Weldon in Réf.  ization of the effective action at finite temperat(iéd and to
The existence of a unique limit as the external momentunstudy the issue of analyticity of bubble diagrafids.
K,—0 has been admitted only if the internal lines of the To one loop order, the zero temperature retarded self-
loop have propagators with different masf2k We show by  energies for the pion and sigma fields in the Minkowski
using a simple theory thdt) even if the self-energy is ana- space read
lytic at the origin in the frequency-momentum spaed-

though the limits need not commut8]), it still leads to the _ d*p

plasmon and Debye masses which arise from the consistent H(K)Zlng 5 211 (@ys—b)

calculation at the pole of the corrected propagators @nd (2m)

the analyticity, at the origin, exhibited by one of the one-loop 1 1

graphs is due to its very peculiar dependence on the external X———(ays— b)—l, 2
momenta. P+K—m P—m

The paper is organized as follows. In Sec. Il, we discuss
the one-loop self-energy of the bosons due their interactionghere for the pion one has=1 andb=0 and for the sigma
with fermions. In Sec. lll, we study the pole physics whicha=0 andb=i. As is well known, theys matrix will be
lead to the correct determination of the plasmon and Debyéesponsible for a minus sign in pion self-energy which will
bosons masses. In this section we also obtain the high tenwing the differences between the corrections for the two
perature limit for these masses. In Sec. IV we analyze th&osons. After performing the trace, this expression gives
dispersion relation which relates the real and imaginary parts

of a one-loop self-energy. We conclude in Sec. V. P2+ PHK ,+ cn?

II(K)=—4i 2f il
= —4j ,
V) em [Pk PP me
Il. THE BASIC INTERACTIONS 3

Let us consider the boson-fermion interactiome have
ignored, for simplicity, isospindescribed by the Lagrangian
density which is part of the Gell-Mann and Levy model in its
broken chiral symmetry phagd]

where c=—1 for the pion andc=1 for the sigma. This
allows us to write

T1(K) ,=TI(K) . +T1(ko k), (4)

— o .5 _
A ) = 0, =m0 T Lol D) iherek=|K| and

11(K) ,=4g’[ F+4], )
*Email address: hcaldas@funrei.br _
TEmail address: hott@feg.unesp.br [I(ky,k)=40%H, (6)
The dispersion relation, the plasmon and Debye masses, the
damping and decay rates, etc. with
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f(mT)——if o'P - ()
) eotirrk)i-m?]
[ d*'P P*K,
g(m’T’K)__'f (2m)* [(P+K)2=m?][PZ—m?]’
8
and
H(m, Tk k)——iJ o'P Gl
M= G [ )E PR me
9

Since we are interested in studying the thermal effects on
the analytic structure of the self-energy, we shall take only
the nonzero temperature parts of the integrals above. Apply-
ing the usual finite temperature techniques in the imaginary-

time formalism from Egs(7) to (9), we find the following
expressions:

ny(w)
®

pZdp
, 10
22 (10

fﬁ(m,T):zf: (

where n, is the fermion distribuction functiomn (w)

=1[exp@/T)+1], o= \p?+m?, and

=p%dp ny(w) 1
0 (2m)? 4pk

K2
Ga(m,T,K)=K »

(2pk+k?—k3)?— 4k3w?

XIn , (11
(—2pk+k2—k§)2—4k§wzl -y

= p?dp ny(w) 1
0 (2m)? 2pk

Hp(m, T Ko, k)= —2m?

w

(2pk+k?—Kk3)2— 4Kk w?

XIn
(—2pk+k2®—k3)2—4kZw

, (12

whereK?=K*#K ,=k§—k?.
From here on, for the sake of simplicity of the notation,
we drop the subscrigs in the self-energies, whose limits are

I (kg=0k—0), =II(ky—0k=0)_=4g>Fm,T),
(13

= p?dp ny(w)

0o (27)? w°

I1(ky—0k=0),=F(m,T)—8g’m?

(14
» d
M1(ko=0k—0), = Am.T) - 8g% | _(2:)2 nule)
(15
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which shows that the successive limits do not coincide at the
origin of the external four-momentum only in the sigma self-
energy, as has already been shown recently in a slightly dif-
ferent mannef7].

Ill. THE POLE PHYSICS

Although the pion self-energy by itself is analytic at the
origin of the frequency-momentum space, it is the pole of the
corrected propagator which has physical relevance. In order
to investigate the effect of the thermal corrections due to the
interactions with the fermions, let us consider the zero-
temperature bosons as massless. Below we calculate the ef-
fective boson masses induced by the thermal medium.

A. The thermal corrected pion propagator

The thermal corrected boson propagator is given by

Do,w(wn 1|2)71:D00,w(wn 1|2)71+H(wn 1|2)

o,

= w2+ K2+m2 _+T1(w, k) (16)

whereDO(m(wn,IZ) is the tree-level boson propagator.

1. The pion plasmon mass

It is well known that particles immersed in a hot medium
have their properties modified. As they propagate in this
plasma, they become dressed by the interactions. Examples
of immediate consequences are the appearance of an effec-
tive thermal mass and the damping rate of collective excita-
tions [8,9]. As we are considering massless bosomﬁl(,
=0), at the pole of the pion corrected propagator at zero
momentum k=0), we have

Ko

1+ ———
4w2—kg

k3=TI(ko,k=0),=4g?F(m,T)

l. (17)

Since the right-hand sid&kRHS) of Eq. (17) has singularities,
we writekq =M ,—iv,, whereM , andy are real. Let us
now define | =II(ky,=M —ivy,,k=0),. This allows us

to get the leading contribution for the plasmon thermal mass
as well as thgweak damping rate;y<M, respectively, of
the pion:

M2=PRel,=4g>F(m,T), (18)

2 2

1/2
= ! | I—g M_[1 4m M_/2
’Yﬂ'__ZMW,P m W_E m _M_f_r nl//( T )
2
M., (19
8

whereP is the principal part of the integral. The arrow in Eq.
(19) refers to the limit of vanishing fermion mass.
2. The pion Debye mass

Another example of a fundamental property of a plasma is
the Debye massdyip, whose inverse is the screening length
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for electric fields in the plasmd0]. We adopt the definition 2. The sigma Debye mass
of the Debye mass in terms of the location of the pole in the \ye find next the sigma Debye mass in our “plasma” in
static propagator for complek It was shown by Rebhan o same way as we did for the pion:
[11] that, both for QED and QCD, this definition is the cor-
rect onet K= ~TI(ko=0k2=~M2 ) ,—~ M2,
2 _ _ 2 _ 2 2 2 _ 2
k7T H(kO O,k,n. MW,D)']T_)M#,D :492.7:(m,T) 1+ Ma’,D 24m , (26)
M?2 4p
=4g?Fm,T)| 1+ ”fl, (20)
4p which gives
where in the last equation, before the identificatkfp= 5 2J’-"(m,T)—m27-'(m,T)
—Mf,VD, we have expandell (ko=0k) . in the limit k , MGo= 1-g2FHmT)
—0. The solution of Eq(20) is straightforward: ¢ '
=M2 - 4g2m2—f(T’T) : (27)
2 , JFmT) ' 1—-g?F(m,T)
M3 p=49"——————, (21)
1-g“FHm,T)
It should be pointed out that since we are considering
. vanishing zero temperature boson masses, resummation tech-
with nigues are required in some order of the perturbative expan-
sion to recover its validity. In the model and at the order we
= dp ny() are studing, a resummation of one-loop boson diagrams
7—"(m,T):2f Aty (220 [which could be interpreted as the replacement ofttfje, in
0o (2m)? @ Eq. (16) by effective boson thermal mas$egould only shift

the bosons plasmon and Debye masses, since these effective

masses does not enter tlfermion) loop. Therefore, the

qualitative results found here would be kept. However,

1. The sigma plasmon mass Nieves and Pa[13] considered another model where the

In the pole of the thermal corrected sigma boson propap.rOblem of the nonanalyt|C|ty_ of the one—l_oop self-e_nergy
disapeared when the calculation was carried out using im-

gator at zerdthreejmomentum, we have : . )
proved propagatores for the particles that appear in the inter-

nal lines of the loop diagrams.

B. The thermal corrected sigma propagator

2_ 42
2_ — ) — a2 0
ko=11(ko,k=0),=4g"F(m,T)| 1+ 4w2—k3 - (23 C. High temperature limit for the pion and sigma plasmon
and Debye masses
Repeating the same Steps as before,km}r: Mo__i’ya_ and The h|gh temperature limit of the funCtiOI% and}— are
l,=11(Kg,=M,—i7,,k=0),, one finds [14]
5 ) ~ 1 1 o 1
MZ=PRel,=4g?F(m,T), (24 f(m,T)—ﬁ 55y
® —1/2
1 g° 4mz2\ ¥ +EEE w 1
702—2M0P|m|0=EM0 1_W n¢(M0/2) 25=1n A72n?
2 1 u 1 43

g =~ |22 2
which gives the same results as for the pion case in the zero O |, (28
fermion mass limit. 64

whereu=m/T, y=0.5772 ... isEuler’s constant and the
2In QED this definition provides for an exponential decay of the numerical values of thg function at important points are
screened Coulomb potential, whereas in QCD it gives a gaugel(2)=m%/6, {(3)=1.20D ..., {(4)==*90, ¢(5)
invariant resul{12]. =1.03® ..., and so onwhereasF is given by
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LR 1 )
F(m,T) Z(E Z/.L In— Z —§+’y),u,

£(3) .

~3on 4+O(M)>- (29

So one sees thak is less relevant at high temperature than
F. Thus, the pion and sigma, respectively, plasmon mass

are
2712 2712 H.T.q2T2
g°T° 9T 1 M g°T
2_ _= ~ o2 4
M2 6 +271-2< 2+y+|n77 netOo(p) — 6
(30)
212 272 H.T.2T2
g°Tc g°T 1 M T
2_ _Z ~) 2 4
M 6 2772( 2+'y+|n7T m+O0(u*) — 6
(31
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approximation used here, a more general relation should be
used[16-18. Particularly for the pion case we have

1., ., ©  ImII(u,k)
Rell(kq,k)=Rell(0,0) + ;(ko—k )'Pj dUm,
- — Ko
(35
é/gith ImII(ky,k) given by
Im IT(k k)=—3f iﬁ)—{(Qer)z[é(k +Q+w)
o 2} (2m)2 200 0

—8(kg— Q= )]+ (Q— ) 8kt Q— w)
Bw
—8(kg—Q+ w)]}tani‘(T) , (36)

whereQ = /(p—k)Z+n?.

One can check that E¢35) can also be used to show that

whereH.T. denotes the dominant term in the high temperathe analytic behavior of RE (kq,k) is due to the kinectic

ture limit (or, equivalently, the zero fermion mass liit
while the Debye masses are written as

M2 p=4g2F(m,T)[1+g?F(m,T)+ (g>F(m,T))?

+0O(g*Fm,T)%)]

:92T2 L 9° (Inﬁ+7)+( g2 )2
6 (2m?\ (2m)?
X |n%+7 2+~-~ , (32
M2 p=M2 5 —4g?m?H(m,T)[1-g?F(m,T)]*
:Mi’D-I-ngTZ(In%-F'y 1— Zg;z('”%*?’)
+<(29;2 2 In% y)2+ (33

term multiplying the integral and that in both limitkq
=0k—0 andk=0k,—0) this contribution vanishes leav-
ing the first term as the sole contribution.

V. CONCLUSIONS

In this paper we have studied the analytic properties of
thermal corrected boson propagators through their interac-
tion with fermions. A particular model was chosen based on
the fact that its two kinds of bosons couple differently with
the fermions, which leads to distin@inexpecteg behavior
of their self-energy. We have shown that the pion self-energy
is analytic at the origin in the frequency-momentum space at
finite temperature, whereas the sigma self-energy is nonana-
Iytic. In spite of this, we have shown that the analytic behav-
ior found for the pion self-energy does not spoil the differ-
ence between the plasmon and Debye pion masses. We have
also shown that the two physical masses arise from the con-
sistent calculation at the pole of the corrected propagator.
Then, we have derived the plasmon and Debye masses for
both the pion and sigma bosons. We note here that the an-
swer to the question of which mass of a certain field is mani-

These results clearly show that, despite the pion selffested in a plasma in a given temperatiirdepends strictly
energy being analytic at the origin in the momentum spacepn the situation encountergdr assumedby its four mo-
its physical plasmon and Debye masses are different, as thejlentum. Besides, the specific dependence on the external
should be, thanks to the consistency of the calculations at th@lomenta of the pion 5e|f-energy graph |mp||es a modifica-

pole of the corrected propagator.

IV. THE DISPERSION RELATION

tion in the usual dispersion relation which allows us to trace
back the origin of the analyticity. Similar behavior seems
also to be found in derivative coupling mod¢l®]. This has
been shown to be a criteria other than the existence of dis-

Usually, the noncommuting limits have been traced backinct masses running in the upper and lower internal lines of
to the cut structure of the one-loop self-energy through thea diagram[2], which could be used to predict the analytic

dispersion relatio2,15|

1 (= Im II(u,k)
ReH(ko,k):;Pf du——m.

—w u—Kkg (34)

However this relation is not general. I (kq,k) ~kg (n

behaviors of bubble diagrams as the external momentum
K, ,—0.
y
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