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Unified treatment of bound-state and scattering problems
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The iteration-subtraction method for the unified treatment of bound-state and scattering prob-
lems is compared and contrasted with a similar method for the two-body bound-state problem via

nonsingular scattering equations developed recently. We also compare another recent method for
solving bound-state problems with the iteration-subtraction method.

I. INTRODUCTION

A recently proposed iteration-subtraction method'
for the unified treatment of bound state and scattering
problems in the momentum space suggests that solutions
to both these problems can essentially be constructed us-

ing the iterative solution of an auxiliary integral equa-
tion of the Fredholm type. This auxiliary integral equa-
tion has a kernel which is free from singularities and is
also sufBciently weak in order to allow a convergent
iterative solution for a wide class of potentials. The
solution of the original Lippmann-Schwinger scattering
equation in the momentum space is then related to that
of the auxiliary equation. At the bound state energy the
solution of the auxiliary equation satisfies a certain con-
dition which is used to pick up the binding energy, and
the bound-state wave function is readily constructed us-

ing the solution of the auxiliary equation at this energy.
This method has been used to define a class of Jost-

like functions and has been studied in the case of nonlo-
cal potentials. This method has also been extended to
the case of multichannel scattering problems and applied
to three-body scattering problems. The approach has
been demonstrated by Dzhibuti and Tsiklauri to be very
useful to solve three- and four-body bound state prob-
lems using the hyperspherical harmonics method in
momentum space. The method has easily been extend-
ed to study virtual states and resonances.

Sasakawa proposed an eKcient method for computing
phase shifts using a wave-function description of scatter-
ing. Later it was shown that the Sasakawa method can
be reformulated to yield a practical method for comput-
ing half-on-shell t matrix elements using the
momentum-space Lippmann-Schwinger equations. Also,
a method by Kowalski and Noyes' has the advantage of
the methods of Refs. 1 —7 in that it treats the scattering
problem through the solution of an auxiliary equation.
The above mentioned iteration-subtraction method'
should be considered a generalization of methods of
Refs. 8-10 to calculate fully-off-shell t matrix elements,
binding energies, and bound state wave functions.

More recently, and specially after the completion of

the works of Refs. 1-7, Bartnik, Haberzettl, and San-
dhas" proposed a method for two-body bound state
problems via nonsingular scattering equations which has
been claimed to have all the advantages of the method of
Refs. 1-7, to be applicable to both local and nonlocal
potentials, to yield a useful continuation of the momen-
tum space representation of the Jost function, and to
suggest an investigation of resonance phenomena (and
virtual states). The striking similarity between these two
approaches has led us to undertake the present study of
comparing and contrasting the two methods —that of
Refs. 1-7 on one hand and that of Ref. 11 on the other.

Also, after the completion of Ref. 2, Sasakawa and
Ishikawa' proposed a method for the bound state prob-
lem, which transforms, as in Ref. 2, the homogeneous
bound state equation to an inhomogeneous equation
which is then solved by the method of continued frac-
tions developed by Horacek and Sasakawa. ' We show
that the method of Sasakawa and Ishikawa uses essen-
tially the idea of Refs. 2 and 14 in order to transform the
homogeneous bound state equation to an inhomogeneous
equation and subsequently solve it.

It is also pointed out, as has been noted in Ref. 3, that
special care is needed in order to extend the methods of
Refs. 11-13 to the case of multichannel equations,
which deal with essentially a nonlocal potential, because
of the presence of spurious and continuum bound state
solutions. Only for a local potential is the scattering for-
malism of Ref. 11 free of such spurious and continuum
solutions.

The plan of the paper is as follows. In Sec. II we
present a very brief review of our approach, which is ap-
propriate for its comparison with the approach of Ref.
11. The actual comparison with the approach of Bart-
nik, Haberzettl, and Sandhas is presented in Sec. III. In
Sec. IV we compare the bound state approaches of Refs.
2 and 12. Finally, in Sec. V, concluding remarks are
given.

II. ITERATION-SUBTRACTION METHOD

In this section we present a brief summary of our ap-
proach. In order to be more objective, we consider only
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the S-wave case, though generalization to other partial
waves is straightforward. The S-wave Lippmann-
Schwinger equation (in units of %=2m =1) is written
as1 —3
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In Eq. (2.1) and throughout the rest of the paper the
momentum space integration limits are from 0 to ao.
The solution of Eq. (2.1) is conveniently expressed in
terms of the solution of the following auxiliary equation:
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where k =E and E is the total center of mass energy.
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where y(k„q) is an arbitrary function of the yet arbi-
trary momentum k &. At positive energies we take
k& ——k, the on-shell momentum, and the property

y(k, k)=1, (2.6)

Xy(k, , q)&q
I

I (E)
I k, & =0, (2.7)

one has a bound state, and the bound state wave func-
tion is given by

(q)= —( Ik'I +q') '&q
I
r(E) Ik, & . (2.8)

It is to be noted that k2 in Eq. (2.8) is negative and

I
k

I
is the binding energy. The bound state wave func-

tion %(q) of (2.8) is independent of the subtraction point
k, . Thus one can generate the solution of bound-state
and scattering problems essentially via the solution of
the auxiliary equation (2.2). It has been stressed ' that

which has the advantage of making the kernel of Eq.
(2.2) nonsingular. At negative energies the momentum
variable k, can be left arbitrary as in Refs. 2 and 3 and
no special condition, such as (2.6), on y is necessary,
though such a condition can be maintained. It has been
shown that at the zero of the denominator of Eq. (2.4),
given by

F(k ) =1——f q dq (k q+ie)—

if y(k„q)=1 and k& ——k, the on-shell momentum, the
function F (k2) defined by (2.7) is identically equal to the
Jost function'5 —both for local and nonlocal potentials.
It has been pointed out that if we maintain k, =k and
use a restricted class of y(k„q), Eq. (2.7) defines a wide
class of functions F(k ) with all the properties of the
Jost function. This class of Jost-like functions may have
spurious poles for certain real k —both for local and
nonlocal potentials. Such spurious poles were known to
appear' in the case of nonlocal potentials and were con-
sidered peculiar to such problems. The generalization of
Ref. 3 of the Jost function makes the appearance of such
poles for nonlocal potentials much less anomalous. It
has been pointed out that such poles appear at discrete
real energies and correspond to solutions of the homo-
geneous version of Eq. (2.2). The appearance of such
poles may render the method numerically inapplicable at
and near certain discrete real energies where I tends to
infinity. The presence of these poles has been demon-
strated " in the case of a simple separable (nonlocal) in-
teraction.

It has also been noted that if k, is taken to be the
on-shell momentum at negative energies, then k& be-
comes imaginary and, because of the left-hand cut, in-
trinsic to many potentials, the function F(k ) of Eq.
(2.7) can only be calculated up to certain negative energy
E = Ep ~ Hence, for this choice of k &, binding energy
and bound state wave functions cannot be calculated if
the energy of the bound state is smaller than —Ep.
Also, negative energy t matrix elements cannot be calcu-
lated using (2.3) for E & Eo if k& is chosen —to be k.
This diSculty, however, can be avoided, as has been
done in finding binding energies and bound state wave
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functions numerically in Refs. 2 and 6—by taking k& to
be a real momentum variable at negative energies. How-
ever, with this choice no meaningful Jost function can be
defined using Eq. (2.7).

III. COMPARISON WITH THE METHOD
OF BARTNIK, HABERZETTL, AND SANDHAS

Now it is easy to compare our approach presented in
Sec. II with the approach of Bartnik, Haberzettl, and
Sandhas" (BHS hereafter) presented recently. Though
BHS have claimed in the text of Ref. 11 that their
method is original in treating the bound state problem
via an inhomogeneous integral equation, they have kind-

ly admitted in their "note added in proof" that their
bound state technique is similar to that of Ref. 2, with a
special choice of the function y(k&, q), which provides
the connection to the well-known coordinate space re-
sults and which, in particular, leads to an important gen-
eralization of the Jost function. BHS, however, failed to
realize that their off-shell t matrix given by Eq. (42) of
Ref. 11 is the same as (2.3) with a special choice of
y(k&, q). The choice of y of Ref. 2 resulted after an ex-
tensive study' aimed at obtaining a rapid convergence of
the iterative solution of Eq. (2.2). We also considered
other choices of y, especially that suggested by BHS,
both numerically and formally in Refs. 1 and 3. In fact,
it is easy to realize that the approach of BHS is the same
as that of Refs. 1 —7, briefly summarized here in Sec. II,
where at positive energies k~ ——k and y(k, q)=1, and at
negative energies k, is taken to be arbitrary together
with y(k&, q)=1. (Remember that we are considering
only the S wave analysis of BHS.) With this particular
choice of y and k &, BHS claim that their approach (a} is,
of course, valid irrespective of whether the potential is
local or not, (b) leads, in particular, to an important gen-
eralization of the Jost function, and (c) is valid for reso-
nance phenomena.

Substantial work is needed, as has been shown in Ref.
3, in order to incorporate nonlocal potentials in this ap-
proach. The statement of BHS, namely that the ap-
proach is valid for nonlocal potentials, does not and can-
not replace a proof or demonstration of the type present-
ed in Ref. 3 to that effect. BHS did not worry about the
possible spurious and continuum states of the nonlocal
potential that make the development of any approach
for this potential very subtle and delicate. As pointed
out in Sec. II and in Ref. 3, the spurious states are solu-
tions of the homogeneous version of Eq. (2.2) that make
I infinite at certain discrete energies. For k, =k and

y(k, q)=1 such states do not appear in the approach of
BHS at positive energies for local potentials, but they
may appear, in general, at negative energies —both for
local and nonlocal potentials if k& is arbitrary. Such
states may also appear at discrete positive energies for
nonlocal potentials in the approach of BHS. It has been
pointed out in Ref. 3 that extreme care is needed in ex-
tending this method to the case of nonlocal potentials or
multichannel scattering.

BHS also suggest an "important generalization" of the
Jost function which is given essentially by F(k ) of (2.7)

with their choice of y(k„q) and k&, namely at positive
energies k, =k, y(k„q)=1, and at negative energies k&

is arbitrary and y(k„q)=1. Jost function' is a
mathematical function with desired analytic properties
in the entire complex k plane as has been detailed in
Refs. 3 and 15. As BHS do not define their important
generalization of the Jost function in the entire complex
k plane, it will not be appropriate to call their "Jost
function" a function in the usual mathematical sense.
Their important generalization of the Jost function
serves as an impetus for solving the bound state and
scattering problem on the real energy axis rather than
defining a mathematical function in the sense used in the
original definition of the Jost function. This is because it
will be extremely difficult, if not impossible, to define a
continuous analytic function in the complex k plane us-

ing the recipe of BHS, who leave the parameter k& arbi-
trary for negative energies. Unless the parameter k& is

defined in the complex energy plane, it is not clear how
the method of BHS can be extended to study resonance
phenomena, because one needs to define k, in the com-
plex energy plane in order to define a continuous Jost
function with desirable analytic properties. Their pro-
cedure may work in calculating a resonance state, but
certainly will not lead to a mathematically meaningful
Jost function. Also, it is worth mentioning that the pro-
cedure of BHS, which leaves k& arbitrary, was already
suggested and used before. '

%)=G,viq),
together with the normalization condition,

(r ~q)=I,
for the wave function, is rewritten as
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Here, Go=(E +i@ Ho) ' is t—he free Green's function,
and y is an arbitrary function such that

(r I q &=r(ki, q), (4.5)

where y(k, ,q) is essentially the same function defined in

Eqs. (2.2)—(2.5), and k& is an arbitrary momentum vari-
able. So one can solve Eq. (4.3) with a given (y

~

and
test whether Eq. (4.2) is satisfied. If Eq. (4.2) is satisfied,
one has an eigenfunction of Eq. (4.1). Equation (4.3} is
usually solved by iteration. ' In practice, the energy pa-
rameter E is varied, and when Eq. (4.2) is satisfied one
simultaneously has the eigenfunction and eigenvalue.

IV. COMPARISON WITH THE BOUND STATE
APPROACH OF SASAKAWA AND ISHIKAWA

Now it is easy to compare the bound state methods of
Ref. 2 and of Sasakawa and Ishikawa' (SI hereafter)
suggested recently. For this comparison we briefly state
our approach in operator notation. The Schrodinger
equation for the bound state,
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This method is the same as that presented in Sec. II, be-
cause condition (4.2) is, in an explicit momentum repre-
sentation, essentially given by (2.7) with

~

4 & defined by
(2.8).

The method of SI follows from Eqs. (4.1)—(4.5) if one
takes

tially uses the same idea to transform the homogeneous
Schrodinger equation to an inhomogeneous integral
equation.

Of course, other choices of &y
~

are possible in Eq.
(4.4). The last term of Eq. (4.4) can be substituted for by
any separable representation of the potential.
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Equations (4.7) and (4.8) are identical to Eqs. (15) and
(14) of SI, respectively. Then SI suggest Eq. (4.7) be
solved by the method of continued fractions, ' whereas
we solve it by iteration. ' The fact that the method of
continued fractions does not lead to special advantages
over the iterative method has already been emphasized
in Ref. 16. Though SI and the author of Ref. 2 do not
treat the same numerical problem, it is easily realized
that the rate of convergence of Ref. 2 is superior to that
obtained by SI in their Table 2 if we recall' that the
rank m of SI is to be multiplied by 2 before comparing it
with rank N of Ref. 2. Hence the method of SI essen-

V. CONCLUSIONS

A simple connection is established between a recently
proposed approach" to the bound state problem via
nonsingular integral equations and a formerly developed
approach' to the same problem. It is realized that the
recently proposed method is just a special case of the
method developed previously by us. Also, the claims"
about most of the advantages in this special case are not
well founded, as we have seen in Sec. III.

It is also pointed out that another recently proposed
method' for solution of the bound state problem uses
the same idea as a formerly developed approach ' to
the same problem does in transforming the homogeneous
integral equation to an inhomogeneous integral equation.
There is no apparent advantage in the recently proposed
version' of this method over the version developed pre-
viously by us, as we have seen in Sec. IV.
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