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The dynamics of a fragmentation model is examined from the point of view of numerical 
simulation and rate equations. The model includes effects of temperature. The number n (s,t) of 
fragments of size s at time t is obtained and is found to obey the scaling form n(s,t) 
- s-rP’Ye-Pff(s/tZ) where f(x) is a crossover function satisfying f(x) N 1 for x< 1 and 
f(x) gl for x) 1. The dependence of the critical exponents 7; w, 7, and z on space 
dimensionality d is studied from d= 1 to 5. The result of the dynamics on fractal and nonfractal 
objects as well as on square and triangular lattices is also examined. 

I. INTRODUCTION 

Fragmentation of objects occurs in a variety of physi- 
cal and chemical phenomena in nature, which include ex- 
plosion, fracture, grinding and crushing of solids, such as 
rocks and minerals,’ droplet breakup,’ chemical or radio- 
active consumption,3 polymer degradation,4 nuclear 
fragmentation,5 among many others. All these fragmenta- 
tion processes can be broadly classified into two categories: 
(i) those that conserve mass, e.g., grinding and crushing of 
rocks,6 and (ii) those that consume mass, e.g., the chemi- 
cal dissolution of an object by a reactive agent.3’7-g Though 
the phenomena of fragmentation is of interest in a host of 
areas, the present understanding of the dynamics associ- 
ated with these nonequilibrium fragmentation processes is 
very limited compared to other equilibrium phenomena. 
The scope of the present work is to shed light on the dy- 
namics of breakage, or fragmentation, using numerical 
simulations under a variety of situations. 

The term fragmentation is usually referred to as any 
process that reduces the connectivity of an object and thus 
generates smaller objects known as fragments. However, in 
the present work, we would like to restrict ourselves to 
fragmentation processes with a physical motivation. 

Formation of large, random clusters by nonequilib- 
rium processes is common to a class of physical and chem- 
ical phenomena in nature which include (a) fragmentation 
processes, 1p369 (b) aggregation processes, lo and (c) an ap- 
propriate mixture of aggregation and disaggregation’ ’ 
among others. Most of the theoretical studies of these pro- 
cesses have concentrated on a microscopic evaluation of 
the cluster size distribution n(.s,t), the number of frag- 
ments of size s at time t, and of the total number of frag- 
ments N(t) at time t. A simple dynamic scaling for n(s,t) 
of the form 

n&t) -s-Tt-wf(s/f), (1.1) 

was first observed in cluster-cluster aggregation, lo where 
the cutoff function f(x) N 1 for x< 1 and f(x) <l for 

x% 1. The interesting feature of Eq. ( 1.1) is a power law 
decay in both t and s for large t and small s. Later other 
studies have confirmed scaling ( 1.1) . 

It is interesting to ask whether scaling (1.1) has only 
limited validity or is valid in other nonequilibrium pro- 
cesses dealing with cluster size distribution. Here we study 
the behavior of n(s,t) in three different fragmentation 
models: corrosive rain, random walk, and alternate hori- 
zontal and vertical lines models. The corrosive rain model 
is a realistic fragmentation model and can describe the 
fragmentation of a solid produced by oxidation or dissolu- 
tion. The other two models perhaps simulate fragmenta- 
tion under stress and under some other conditions.‘~4P’2Y’3 
These two other models are studied in order to investigate 
the model dependence of the results found with the corro- 
sive rain model. The variance with respect to dimensional- 
ity, finite size, and geometric properties of the fragmented 
solid is also studied. 

Initially, we studied in detail a particular case of the 
corrosive rain model at infinite temperature ( T = CO ) . In 
this case, the statistical thermal fluctuations are greater 
than any energy variations caused by the process of frag- 
mentation. Therefore we call it the random domain. In this 
domain the equations for some variables, e.g., mass, 
M( t):dM( t)/dt= --M(t), can be easily solved. However 
others variables, such as, n(s,t), do not have a trivial be- 
havior during the process. 

We have studied fragmentation processes through nu- 
merical simulation and dynamical probabilistic rate equa- 
tions. Specifically, we studied the quantities, n&t), N(t), 
the total mass M(t) =Bp(s,t)s, F(t) =M(t)/N(t), aver- 
age coordination q(t), and the diversity of fragments 
D(t>.9 The diversity D(t) is the number of different mass 
fragments (irrespective of shape) present at time t. We 
tried to find out solutions to dynamical probabilistic rate 
equations, whenever possible, under simplifying assump- 
tions and compared these solutions to predictions of nu- 
merical simulation. 

In our numerical simulation of fragmentation we find 
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that the s dependence of n (s,t) is always given by ( 1.1)) 
e.g., n(s,t) -s-‘f(s/r’). However, we find a distinct t de- 
pendence of n(s,t). Explicitly, we find the following gen- 
eral distribution in our numerical simulation of fragmen- 
tation processes 

n(s , t) -s-TFye-P’f(s/f) , (1.2) 

where r, w, y, and z are exponents that satisfy certain 
conditions, and p is a constant that controls the exponen- 
tial consumption of mass for large t. It is found that w = (7 
-2)~ for y=O, and that the exponent y exhibits a rapid 
variation when the initial coordination of the object, qo, is 
near 3: for qo,(2.5, y=O and for qo>3.2, y=O.28*0.03. By 
coordination we mean the number of neighbors or chemi- 
cal bonds of an occupied site. Scaling ( 1.2) also governs 
the t dependence of the total number of fragments N(t). 
Hence we are led to conclude that the s dependence of Eq. 
( 1.1) is more universal, while the t dependence is not. 
Scaling ( 1.2) is valid in fragmentation models considered 
by us and is distinct from scaling ( 1.1). First, the exponent 
w has changed sign. Second, in Eq. ( 1.1) the cutoff func- 
tionfdestroys the algebraic scaling in t for small t, whereas 
because of the exponential function in Eq. ( 1.2) the alge- 
braic scaling in t is destroyed for large t. Consequently, in 
Eq. (1.2) n(s,t) [and also N(t)] exhibits a power law in- 
crease in t for small t and an exponential decay for large t. 
In Eq. ( 1.1) n (s,t) first increases to a maximum and then 
exhibits a power law decay in t for large t. Though we have 
studied the s dependence of n(s,t) in our models, we are 
mostly concerned with the results for the t dependence of 
I? (s,t) and N(t) as they are distinct from scaling ( 1.1). In 
Sec. IV A we present a discussion of scaling ( 1.2), espe- 
cially its t dependence. 

The present scaling ( 1.2) should be considered as a 
generalization of results of Gomes and Vasconcelos’ and 
Sahimi and Tsotsis’ to include large intervals oft and some 
other models of fragmentation. However, the appearance 
of a power law in an exponent in scaling ( 1.2) is new to 
numerical simulations of not only fragmentation models 
but also aggregation models. But such scaling is not un- 
common in other areas of physics. Dynamics involving 
disordered systems frequently exhibit power laws in an ex- 
ponent. For example, much attention has been focused re- 
cently on relaxation phenomena in complex condensed 
matter systems where correlation functions decay as 
4(t)-exp(-wty), with O<y<l, or 4(t) - t-w(1nt)y.14 

In addition to studying the cluster size distribution in 
fragmentation we also studied certain macroscopic vari- 
ables of fragmentation processes to seek universal scaling 
relations among them. We believe that these macroscopic 
properties, unlike the cluster size distribution, will be gov- 
erned by some general characteristics of the dynamics 
rather than its full intricate complexities. 

In particular we studied two quantities during the frag- 
mentation processes: the total fragment number N(t), and 
the diversity of fragments D(t). For several kinds of frac- 
tal and nonfractal objects and attacks in space dimensions 
d= l-5 we find as a result of numerical simulation that 
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M--MOB0 (1.3) 

and 

.N--.Q2, (1.4) 

where JY is the maximum of N( t) and 9 is the maximum 
of D(t), and MO is the initial mass and q. is the average 
initial coordination of the object. Essentially, the same 
scaling properties are established using nondynamical ar- 
guments independent of space dimension, and using ana- 
lytic dynamical rate equations under some simplifying as- 
sumptions. 

The present scalings (1.2) and (1.4) were first ob- 
served in studies of fragmentation in the random domain of 
the corrosive rain model. In the random domain all parti- 
cles on a lattice when attacked by an external agent could 
be removed with equal probability. This is true when the 
statistical thermal energy of the particles is much higher 
than their binding energies, which is the actual state of 
affairs at infinite temperature. In order to take the real 
significance of our results, we compare them with those at 
finite temperature, known as the kinetic domain. In this 
case the particles near the boundary of the object, which 
are loosely bound to the object are more vulnerable to 
removal. In this domain there is a competition between the 
thermal energy and the energy variation caused by the 
fragmentation process in the corrosive rain model. There- 
fore, we call it the kinetic domain. 

In our numerical simulations at finite temperature of 
the corrosive rain model (kinetic domain), we observe the 
same scalings (1.2) and (1.4) found in the random do- 
main, and the numerical values of the exponents r, w, y, 
and z remain unchanged. In order to test the generality of 
these exponents, we also compare it with experimental’5”6 
and theoretica19”‘*” exponents. Certain quantities, such as, 
the total mass of the object M(t), have the trivial expo- 
nential behavior in the random domain. It is relevant to 
point out that the quantities governed by scaling relations 
(1.2) and (1.4), which are the principal results of this 
work, maintain the power law behavior in the random do- 
main. 

Another interesting observation is that the relationship 
N-9’ is valid both in the random and the kinetic do- 
main of the rain model and in two other models studied 
(random walk model and alternate lines model). Though 
scaling relations have been observed in various nonequilib- 
rium phenomena the present scalings ( 1.3) and ( 1.4) in- 
volving N and 9 are unique in yielding the same expo- 
nent for different space dimensions, lattice symmetry, and 
various types of attacks. In contrast to other scalings the 
robustness of the present scaling is worth emphasizing. 

In Sec. II we present the models of fragmentation 
which we use in numerical simulation. In Sec. III we de- 
velop the probabilistic rate equations for various quantities 
in the three models of fragmentation and find out solutions 
to some of these equations under simplifying assumptions. 
In Sec. IV we present results of numerical simulations in 
the present models of fragmentation and compare them, 
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wherever possible, to the analytic solutions of the rate 
equations. Finally, in Sec. V we present a brief discussion 
of our findings. 

II. THE MODELS 

In this work we shall employ three attack algorithms 
for fragmentation: (i) fragmentation by corrosive rain, (ii) 
fragmentation by random walk, and (iii) fragmentation by 
cutting the object by alternate horizontal and vertical seg- 
ments. 

First, we propose to model the attack of an object by a 
kind of corrosive rain. The units that form this rain may be 
considered as molecules of a chemical reagent in some cor- 
rosion process.’ In the numerical simulation of fragmenta- 
tion by corrosive rain with mass consumption we use the 
following algorithm. An attack is made on- site i of an 
object, defined on a lattice of size L, chosen at random. The 
reactivity (or probability of successful attack) at a lattice 
site i of the solid is taken to be proportional to the Boltz- 
mann factor exp( -Ei/kT), with Ei=q$, where the coor- 
dination qi refer to site i, E is some characteristic energy of 
each (chemical) bond, k is the Boltzmann constant, and T 
is the temperature. Here, Ei represents the energy to break 
qi chemical bonds of site i, each of energy E at temperature 
T. With this reactivity, the sites that are weakly connected 
to the system, e.g., the ones with low qi are more vulnerable 
to the attack. The Boltzmann factor is particularly inter- 
esting to control the attack or the reactivity at site i in view 
of its relationship with many situations in chemical kinet- 
ics. For a finite T one is in the kinetic domain where the 
rate of consumption is controlled by the rate of reaction. 
For an intinite T one has the random domain where the 
rate of consumption is controlled only by the randomness 
of the selection of sites. 

If site i is unoccupied, it continues to be unoccupied. If 
it is occupied, it is unoccupied with probability 
p(qi,e) =exp( --q/e), where 0( rkT/E) is the reduced 
temperature., With this reactivity the sites that are weakly 
connected to the system are more vulnerable to the attack 
at a finite temperature. The above procedure is repeated 
until all sites are unoccupied. This model simulates the 
fragmentation of a solid (with mass consumption) at- 
tacked by a chemical reagent. This model of attack is more 
physical in one and two space dimensions. The results for 
higher dimensions confirm the universality of the scaling 
relations. 

In the process of fragmentation by random walk the 
only difference from the above process of fragmentation by 
corrosive rain is in the way the site i is chosen. First, an 
attack is made on a site i of the object chosen at random. If 
site i is unoccupied, it continues to be unoccupied. If it is 
occupied, it is unoccupied with probability p(qi,0). Next 
an attack is made on any of the nearest neighbors of site i 
chosen with equal probability. This procedure is repeated 
until all sites are unoccupied. This random walk model is 
subject to the periodic boundary conditions. Although, this 
model is not related in an obvious way to a specific physical 
system, there are considerations which have led us to ex- 
amine its properties. The simple rules of this model are 

reminiscent of dynamic processes of failure in brittle ma- 
terials. These materials fragment when cracks appear, 
grow, and propagate as a result of dynamical processes, 
such as in rock blasting.12 If the solid is homogeneous the 
first crack will propagate unstably and lead to complete 
fracture. l3 Fragments are formed when the crack density is 
sufficiently high so as to fully surround pieces of matter. 
Also, in two dimensions this model reminds the walk of an 
ant which cuts a leaf as it walks on the surface of the leaf. 
In the present model the random walker simulates the 
propagation of crack or of the ant. 

In the process of the fragmentation by cutting with 
alternate horizontal and vertical lines in two space dimen- 
sions, without mass consumption, we use the following 
algorithm. In this case the attack does not consume mass 
but only breaks certain links or (chemical) bonds between 
tiny objects, such as molecules, arranged on a lattice. In a 
two-dimensional fragment a site i which has the horizontal 
link to the left intact is chosen at random. Then this link 
and other (71i- 1) parallel horizontal links needed to break 
the fragment in two parts are broken with probability 
p(ni,0) =exp( -n/e) where 6( =kT/E) is again the re- 
duced temperature, here ni links specify the size of the 
fracture. Next a site i with an upward vertical link intact is 

‘chosen at random. Then this vertical link and other 
(ni- 1) parallel vertical links needed to break the fragment 
in two parts are broken with probability p(n,,0) so that 
the fragment is broken into two pieces. Such horizontal 
and vertical fractures are repeated alternately until all the 
links are broken. This model simulates the fragmentation 
of a solid under mechanical stress. In contrast to the first 
two models of fragmentation, where there is consumption 
of mass, this model conserves mass. This fragmentation 
model is a generalization of a model considered and stud- 
ied in detail by Mott and Linfoot in 1943,18 and also ex- 
haustively discussed recently by Grady and Kipp.6 The 
Mott-Linfoot model corresponds to infinite temperature 
and can be solved analytically. 

Ill. PROBABILISTIC RATE EQUATIONS 

Before presenting results of actual numerical simula- 
tion of fragmentation, we present in this section probabi- 
listic rate equations for time evolution of some macro- 
scopic quantities. There has been studies of fragmentation 
using rate equations for n(q) by various authors in di- 
verse contexts. 19120 Instead of presenting general rate equa- 
tions for n&t) we develop simplified rate equations for 
certain quantities studied in our numerical simulation. 
Such simplified rate equations allow analytic solutions un- 
der some restrictions, which will allow us to compare the 
results of numerical simulations with those of the rate 
equations. Usually, the general rate equations presented 
recently’9’20 are quite involved and do not permit analytic 
solutions to be compared with numerical simulation. Also, 
in the present work we are mainly interested in processes 
involving mass loss. They are essential in chemical kinetics, 
e.g., during oxidation and dissolution of solids. Most of the 
recent analytical studies on fragmentation’9’20 were limited 
to processes where total mass is conserved. 
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In particular, we derive rate equations for the number 
of fragments (zero order moment), N(t) =X8 (s,t), mass 
(first order moment), M(t) = Q~(s,t)s = Bqim(qi,t), 
average fragment size, F(t) =M( t)/N( t), and average co- 
ordination, P(t) = X,im(qi,t)qi/M(t), where m(q,,t) is 
the number of occupied sites at time t with coordination Qi. 

In the present work, every time an attack is made on a 
site the time t is increased by At=l/Rc, where a, is the 
total number of sites-occupied and unoccupied-of the 
lattice available for the attack. Hence in unit time all the 
sites of the lattice may be visited, independent of the size or 
the topology of the object, or the dimension of the space 
employed. Also at about t= 10 the whole mass is consumed 
independent of initial size, connectivity, or space dimen- 
sionality of the object. In this time millions or even trillions 
of attacks could be made on the object, but the variation of 
time in the present units remain of the order of 10. 

A. Fragmentation by corrosive rain 

In this case the rate equation for the variation of mass 
could be written as 

&f(r)= c- m(qjJ) 
Pi I 1 7 P(4ive) 

M(t+ l/G)) --M(t) 
X 1 l/fit ’ (3.1) 

where the quantity in the first square bracket on the right 
hand side is the probability to visit an occupied site of 
coordination qi, and the quantity p(qi,O) represents the 
probability of unoccupying this site. The quantity in the 
last square bracket denotes the variation of mass as a result 
of this attack. Finally, this expression is summed over co- 
ordination qi in order to include all possible attacks. Now 
noting that M( tf l/n,) =[M( t) - 11, this equation sim- 
plifies to 

i&f(t) =- C- m(qi,f)P(4iSe). 
4i 

(3.2) 

Similarly, one can write the following equation that 
determines the time evolution of the average coordination, 
q(t), for all occupied sites of the solid 

$ [“(t)q(t) I= C m(qi9t)P(qi,e) [ -22qil, 
Qi 

(3.3) 

where the term in the square bracket on the right-hand side 
of this equation is the variation of M( t)q( t) after success- 
fully unoccupying site i. The first two terms on the right- 
hand side of Eq. (3.3) are written in analogy to Eq. (3.1). 
Equations (3.2) and (3.3) provides dq( t)/dt. 

The rate equations presented in the last two para- 
graphs determine the time evolution of M(t) and q(t). 
However, they can not be easily handled except in the 
special case of infinite reduced temperature, 8 = CO, and we 
consider this special case in the following. In this case the 
fragmentation is random in nature, and the rate of con- 

sumption is only determined by the randomness in choos- 
ing a site, as the probability of consumption is unity in this 
case. 

At infinite temperature p(qi,8) = 1 and noting that 
ZZqi m(qi,t) = M(t) Eq. (3.2) becomes 

$&f(t) =---M(t), (3.4) 

which yields the simple solution 

M(t) =Mo exp( -t), (3.5) 

with MO the initial mass. Under same conditions Eq. (3.3) 
becomes 

Equations (3.4) and (3.6) easily lead to 

which yields the simple solution 

40) =q0 exp( -0, (3.8) 
with go the initial average coordination. Equations (3.5) 
and (3.8) are the principal results in this case, which will 
be verified in actual numerical simulation. 

B. Fragmentation by random walk 

In special case of infinite reduced temperature, 0 = CO, 
the rate equations of the random walk model are very sim- 
ilar to the equations of the last subsection. In this case in 
Eq. (3.1) only the quantity in the first square bracket on 
the right hand side representing the probability to visit an 
occupied site has to be modified to the probability to find 
an occupied neighbor by the random walker. If the fully 
occupied lattice has coordination Z for any site i, then the 
random walker has access only to (Z- 1) occupied sites of 
the Z available neighbors, because one neighbor, the last 
step, must be unoccupied. Hence the probability to find an 
occupied neighbor by the random walker will be [(Z 
- l)/Z]Z,Jm(qi,t)/fic], sincep(qi,O) = 1. Consequently, 
Eqs. (3.2) and (3.3) should be modified in this case by the 
introduction of the factor (Z- 1)/Z on the right-hand 
side. Explicitly, these equations become 

(Z-1) &)=-7 $ m(qiJ) 
1 

and 

(Z-1) 
$ [M(t)~(t)l=~ I2 m(t?iJ)[-22qil- (3.10) 

4i 
The solutions for two equations above could be easily ob- 
tained to lead to the following solutions: 
M(t) =Mo exp( -ct) and g(t) =% exp( -ct), where 
c= (Z- 1)/Z. 

Hence the sets of rate equations for corrosive rain and 
random walk, at infinite reduced temperature, differ only 
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by a multiplicative constant which depends on the dimen- 
sion of the space and lattice symmetry. Note that in both 
cases one has the following simple relation 

M(t) MO -=- 
$7(t) To * (39 

C. Fragmentation by alternate horizontal and vertical 
lines 

In this case the actual mass is conserved and it is in- 
teresting to introduce an active mass d(t) =Z,+m( q,t>, 
where J(t) represents number of sites vulnerable to at- 
tack, e.g., the number of sites which has either the hori- 
zontal link to the left or the upward vertical link intact and 
m(ni,t) represents the number of sites vulnerable to attack 
which requires breaking ni links in order to generate a new 
fragment. The rate equation in this case can be written as 

X 
d4(t+ 1/n,> -&Y(t) 1 l/Q * 

(3.12) 

The quantity in the first square bracket in this equation is 
the probability to visit an active site and the factor p (ni,0) 
represents the probability to break ni links and generate a 
new fragment. The quantity in the last square bracket in 
this equation represents the variation in active mass d due 
to this attack. Finally, one has to sum this expression over 
all possible ni to find the total variation. Recalling that 
&(f+ I/a,) =[&(t) -nil Eq. (3.12) readily simplifies to 

$Jw = - ; ~p(ni,e)npo. (3.13) 

In this case it is interesting to write the following rate 
equation for total fragment number N(t) following the 
same reasoning used to write Eq. (3.12): 

J&(r) = z *,(&,e) N(t+ ‘;:;I -N(t) ( 
. 

0 ) 

(3.14) 

Noting that N(t+ 1/fro) -N(t) = 1 Eq. (3.14) simplifies 
to 

gw) = c m(niJ) 
-Ph,@)~o. ni Jf(t> (3.15) 

Equations (3.13 ) and (3.15 ) determines the rate of varia- 
tion of active mass d(t) and number of fragments N(t) in 
this case. 

In the infinite temperature limit Eq. (3.13) for active 
mass does not simplify enough to be analytically tractable. 
But, recalling that Bnim(ni,t) = &Z(t), andp(n,,0) = 1 in 
the infinite temperature limit, Eq. (3.15) for total number 
of fragments, N(t), reduces to 

which has the simple solution 

N(t)=l+Q (3.17) 

IV. NUMERICAL SlMULATlON 

We used in numerical simulation various compact 
(nonfractal) objects on linear (d=l, and 
1.997<%<2.000), square (d=2, and 3.85<%<4.00), tri- 
angular (d=2, and 5.71<qoo<6.00), cubic (d=3, and 
5.40<qo<5.94), and hypercubic (d=4, and 7.20<%<7.77; 
d= 5, and 8.75 <%<9.57) lattices. Among porous (fractal) 
objects we used Sierpinski carpets (d=2, and 
3.03<qo(3.20), percolation clusters (d=2 and 
2.45<cZjo<2.47), and Menger sponges (d=3, and 
3.36<qo<3.96). For every objects we made an average over 
fifty simulations. We employed different objects in space 
dimension d up to 5, q. up to almost 10, and MO up to 6.4 
million. 

We made numerical simulation employing three mod- 
els of fragmentations described in Sec. III for both finite 
and infinite temperatures. The infinite temperature domain 
is termed the random domain as the probability of frag- 
mentation is unity and independent of details. This domain 
deserves special attention as in this case we have some 
analytic results of rate equations to be compared to the 
results of numerical simulation. The finite temperature do- 
main is termed the kinetic domain as the probability of 
fragmentation depends on physical details, such as, tem- 
perature, strength of chemical bonds, etc. In order to test 
the universality of our results we also considered finite 
temperature domain in present numerical simulation. 

A. Random domain: Infinite temperature 

First, we consider fragmentation by corrosive rain in 
the infinite temperature limit. This model of attack simu- 
lates an acid rain that attacks a surface. With time both the 
total number of fragments N(t) and diversity D(t) first 
increase till diversity reaches a maximum value a at time 
tg . With further attack N(t) continues to increase with 
large fragments giving birth to many small fragments of 
same mass/size, but diversity starts to decrease. Finally, 
one encounters a very large number of small fragments, 
and N(t) attains its maximum value J’V at time tss. These 
features of N( t) and D(t) are very universal and are main- 
tained for fractal and nonfractal objects in all space dimen- 
sions and for a general class of attack. A typical plot of 
N(t) and D(t) vs t is exhibited in Fig. 1. 

In this case using the results of rate equations we first 
make certain previsions for the critical quantities JtT, tJv, 
9, and tg . Later we shall present the study on the time 
evolution of the quantities. Using the definition, M(t) 
= N( t)S( t), and Eq. (3.11) we have the relation 

MO CT(t) 
N(t) =T T 

qo s(t) . (4.1) 

At the maximum of N( t), where the fragments are small in 
size and large in number, the average coordination q( tss) 
is related to S(t,) purely by geometric arguments. For 
example, for &2, a=??--- 1; for larger Sthe relation between 
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FIG. 1. The number of fragments (A) and diversity (0) as a function of 
time for an Euclidean square in a lattice with length L=243. The data 
refers to the corrosive rain model at 9= m. 

S and B is, however, more complex. In actual numerical 
simulation we observe that F( fdkp) u 2, and (r( t,v) =Z 1, inde- 
pendent of the initial properties of the object. This has two 
consequences. First, the ratio, q( tx)/S(t,t-), should be a 
constant independent of MO and qo. Consequently, one has 
in agreement with Eq. ( 1.3) that 

N-M&. (4.2) 

Secondly, using q( t/v) N 1 in Eq. (3.8)) at t= t,,~, we easily 
have the following relation: 

t,v= In qo. (4.3) 

From Eqs. (4.2) and (4.3) we realize that till this stage of 
fragmentation the process depends on the initial properties 
of the object, such as initial mass and average coordination. 

In Figs. 2 and 3 we exhibit results for Jlr vs M&O and 
tJ,< vs In q. for a wide variety of objects. These plots are 
fitted, respectively, to N=hwqo)“, and 
tx=E In qo+e, with a=0.50&0.02, (r= 1.00~0.01, 
e=l.OOf0.05, and e=0.00~0.05. 

The result of numerical simulation in the present 
model shows that in the beginning of fragmentation diver- 
sity D increases rapidly, reaches a maximum, and then 
decreases. At the maximum of diversity, 9, the number of 
fragments is still low compared to the maximum of frag- 
ment number, Jzr. At this point usually, one has on the 
average one fragment of each size except the very small 
ones where multiple fragments are possible. We could use 
this information to explain qualitatively the scaling prop- 
erty ( 1.4). Assuming that at t = tg in the ideal case one has 
only one fragment of each type, the total mass is given by 

M(tg)Zl+2+3+ *~*+~~-GJ(97+1)/2. (4.4) 

Note in Fig. 1 that at the maximum of diversity, 9, N(t) 
is larger than 9. This happens because there are usually 
several small mass fragments of each diversity. But for 
large systems this should only contribute to small correc- 
tions to Eq. (4.4). For large systems relation (4.4) is ex- 
pected to hold and it simplifies to M( tg ) ,9*/2. Using 
this in Eq. (3.11) one arrives at the following relation: 
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FIG. 2. log,cJlr vs log,c(Mdcr,) for the corrosive ram model at 0= 00 
for Euclidean objects on square lattices in space dimension d= 1 (V) of 
size L=750,2000,4CtlO, 6000, 10000,20OLQ and 6OooQ; d=2 (0, of 
size L=U, 81, 150,200,243,729, and 1OCQ d=3 (*) ofsize L=lO, 15, 
20, 25, 28, 30, 32, 35, and 100, d=4 (0) of size L=lO, 15, 20, 25, 30, 
32, and 35; and d=5 (Cl) of size L=8, 10, 13, 15, 18, 20, and 23; on 
triangular lattice d=2 (A) of size L=27,81, 110, 150,200,500,729, and 
1OCQ for Sierpinski carpet (+) with L=27, 81, 243, 729, and 2187; for 
percolation cluster (0) with L=80, 150, 200, and 729; for Menger 
sponge (X) with L=27 and 81. The straight line is fitted to 
N- (M&e)” with (I= 1.00*0.01. 

MO 
9*-T-q(tg). (4.5) 

On the scale of variation of M&jo, the quantity @(t;s) 

could be considered a constant and thus one has 

~*-M&jcp (4.6) 
Equations (4.2) and (4.6) lead to Eq. ( 1.4). In Fig. 4 we 
plot JV vs 9*. The results have been fitted to ,Y--gw, 
with /3= 1.0*0.2. With this plausible argumentation we 
have been able to identify the essential ingredients respon- 
sible for scaling ( 1.4). 

In order to test the robustness of these scaling relations 
we also made numerical simulation for J%‘- and 9 for frag- 

2.5 
I 

2.0 

L 1.5 - 

1.0 

0.5 - .m ~ ~~~ -. 
0.5 1.0 1.5 2.6 _ 25 

1nc <) 

FIG. 3. <,’ vs loglo for all the objects of Fig. 2 for the corrosive rain 
model at 0= 00. The straight line is fitted to [ I’=e In qe+e with E= 1.00 
*0.05 and e=0.00&0.05. 
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FIG. 4. log,,(N) vs logic(@) for all the objects of Fig. 2 for the 
corrosive rain model at 8= 00. The inset displays the results for the 
random walk model  (g) and for the alternate lines model (#), at 0= m  
for squares in space dimension d=2. All the straight lines are fitted to 
~v-9~ with p=1.00*0.15. 

mentation by random walk and by alternate lines presented 
before. In the case of the random walk model Eqs. (3.11) 
and (4.1) hold and also, the arguments leading to Eqs. 
(4.2) and (4.6). Consequently, scaling relations ( 1.3) and 
(1.4) should hold in this case. Results of simulations in 
these models are also shown in Fig. 4. 

The case of fragmentation by alternate lines deserves 
special attention. In this model the mass is conserved, 
M(t) =Mc. The number of fragments increases monoton- 
ically till one has the desired label of fragmentation, 
namely, F( tx) = 1. As M(t) =N(t)F(t), one should have 

N-A&J. (4.7) 

At the maximum of diversity, as before, it is plausible to 
assume there is one fragment of each possible size. Then 
the mass M(tg) =Mc could be written as 

M,~l+2+3++~~++=~(~+1)/2, (4.8) 

which for large system simplifies to M0-g2. Conse- 
quently, one establishes Eq. ( 1.4) in this case. We  have 
verified scaling relations (4.7) and (4.8) via numerical 
simulation. We  have exhibited in the inset of Fig. 4  the 
results of simulation with this model. 

Next, we present results of numerical simulation on 
the time evolution of the system at infinite temperature. 
We  have made prevision for time evolution of M(t)/M,, 
IJXq. (3.5)] and q(t)/& b. (3.8)]. In Figs. 5(a) and 5(b) 
we plot the time evolution of these quantities which are 
fitted to M(t)/Mc=rexp( -pt), and !7(wql 
= u exp ( -it), respectively, where r, u  = 1 .OO f 0.03, p, 
Y= 1.00 +0.02. These results are in excellent agreement 
with the theoretical previsions: r, u, p, Y= 1. The results of 
numerical simulation in Fig. 5  are particularly relevant 
because the analytical results are known in this case. This 
gives credibility to our numerical simulation, specially, in 
more complex situations where the analytic result is not 
known. 

2 
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FIG. 5. (a) ln[iW(t)/&] vs f, and (b) ln[q(t)/&] vs tfor all the objects 
of Fig. 2 for the corrosive rain model at 0= 00. The straight lines are 
fitted to Eqs. (3.5) and (3.8), respectively. 

From an analysis of the results of numerical simulation 
one finds the following scaling relation: 

t z F (t)= - 
( ) ln ~70 

+I. (4.9) 

This is a generalization of the scaling relation S(t) - t” con- 
sidered previously. Note that in fragmentation z is a neg- 
ative exponent. This is consistent with the physical large t 
limit, S( t$ 1) = 1, and the result of simulation at t=tN, 
s( tx) =2, tx=ln I&. Utilizing a log-log plot of [F(t) - l] 
vs (t/hi &> the numerical value of the exponent z is found 
for each type of object. These values are presented in Table 
I together with other exponents. 

Now recalling the definition N(t) rM( t>/F( t), and 
Eqs. (3.5) and (4.9), one encounters the following expres- 
sion for N(t) : 

(4.10) 

where z is the exponent listed in Table I. In the limiting 
conditions t< 1, N(t) - t-“(z < 0), and tg 1, iV( t) -e-‘. 

In order to test the scaling relations (4.9) and (4.10) 
we have plotted in Fig. 6  (a), S(t) vs t and in Fig. 6(b) 
N(t)/(M&&) vs t for a  two-dimensional square of size 

TABLE I. The numerical values of the exponents z, 7; w, r, for various 
objects in numerical simulation. The numerical accuracy of the exponents 
is about 10%. 

Object d al z  7 W  Y 

ILine 1 2.0 -1.1 0.2 1.7 0 
Percolation cluster 2 2.5 -1.4 1.3 1.1 0 
Sierpinski carpet 2 3.2 -2.6 1.5 2.1 0.28 
Menger sponge 3 3.7 -2.9 
Square 2 4.0 -3.5 1.6 3.6 0.28 
Trapezoid 2 6.0 -4.2 1.5 4.2 0.28 
Cube 3 6.0 -4.4 1.9 4.5 0.28 
Hypercube 4 8.0 -5.2 2.1 6.5 0.28 
Hvuercube 5 10.0 -5.8 2.3 7.0 0.28 
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FIG. 6. (a) log,,@(t)] vs logic(t) and (b) log,e[N(t)/(M&,)] vs t for 
a two-dimensional square of size L=200 for the corrosive rain model at 
G= m. The straight lines are fitted to Eqs. (4.9) and (4.10), respectively, 
with z= -3.5. 

L =200. The full line in these cases are predictions of scal- 
ing relations (4.9) and (4.10) for z= -3.5 and agrees well 
with results of numerical simulations. 

Now we would like to establish the scaling property 
( 1.2) for the cluster size distribution, n (s,t), from the 
present numerical study. The scaling property ( 1.1) has 
been established in detail for aggregation processes by di- 
verse authors for large t.” Qualitatively, fragmentation 
process can be considered as a time reversed version of 
aggregation. In aggregation for large t one has a small 
number of fragments, whereas in fragmentation for small t 
one has a small number of fragments. The n(s,t> values in 
the small and large t limits for fragmentation and aggre- 
gation, respectively, are supposed to be related by argu- 
ments of time reversal. Thus, for small t the cluster size 
distribution for fragmentation processes is expected to 
obey scaling ( 1.1) with the sign of w reversed. For small c, 
larger the t, larger is the number of fragments. This is 
reflected by a positive w in Eq. ( 1.1). Thus one should 
expect intuitively the following scaling relation in case of 
fragmentation: 

n(q) -s-‘t”f(s/f). (4.11) 

However, in our numerical simulation of fragmentation 
processes we found this to be true for average initial coor- 
dination of the object, &,, up to 3. For higher &,, and for 
small t, the t dependence of n (s,t) is given, as in Eq. ( 1.2), 
by twsy rather than by tW. Also, after an initial increase in 
the number of fragments, for large t the number of frag- 
ments has to reduce in the process of fragmentation with 
consumption of mass, until all mass is consumed. This 
reduction is given by the exponential e--P’ in Eq. ( 1.2). For 
small t this exponential yields essentially a constant. The 
large t behavior of n  (s,t), given by Eq. ( 1.2), bears some 
similarity with the “shattering” transition observed by var- 
ious authors in fragmentation, where suddenly the rate of 
fragmentation is enhanced.19S20 In our fragmentation mod- 
els, after the number of fragments, N(t), has reached a 

7584 J. Appl. Phys., Vol. 74, No. 12, 15 December 1993 

lo&,( s  ) 
:I.0 0.0 1.” 

I r , 4.0 

zz.0 
3 
2 

0 
E 

I .o * x 

* 
x 0 

0.0 -2.u u.u 1.0 2.0 

FIG. 7. (a) log,,,[n(s,t)] vs log,,(s) with t=O.lO (O), 0.35 (A), and 
0.70 (Cl), and (b) Iog,e[n(s,t)] vs log,,(t) with s= 1 (Cl), 2 (0), 5 (A), 
10 ( X ), and 20 (*), for a percolation cluster with L=2OQ for the cor- 
rosive rain model at 0= 00. The straight lines are fitted to n&t) --s-r 
and n(s,t) -r*, respectively, with T= I.30*0.05 and W= 1.10*0.05. 

maximum the rate of fragmentation increases rapidly and 
the whole mass is quickly consumed as can be seen in 
Fig. 1. 

Next the results of numerical simulation of time evo- 
lution of cluster size distribution n(s,t) are presented. It is 
to be noted that n(s,t) is related to s and t via power law 
scaling in both aggregation [Eq. ( 1.1 )] and fragmentation 
[Eq. (1.2)]. In Fig. 7  we present results of a  percolation 
cluster with L=200. Figure 7(a) presents n (s,t) vs s at 
times t=O.lO (0), 0.35 (A), and 0.70 (El), which corre- 
sponds, respectively, to lo%, 30%, and 50% consumption 
of mass. We  note in passing that the best power-law scaling 
relation for n(s) is observed at the time tg of maximum 
diversity irrespective the system [in Fig. 7(a), tg =O. 11. 
Figure7(b) presentsn(s,t) vst,forfixeds=l (0),2 (0), 
5  (A), 10 (X), and 20 (*). 

From Fig. 7(a) one can see that for t( 1, n(s,t) has a 
power-law scaling in s combined to a cutoff function for 
large s. From Fig. 7  (b) one can see that for t ( 1, n  (s,t) has 
a power-law scaling in t combined to a exponential decay 
in t for large t. These two types of scaling could be com- 
bined to yield 

n(q) -s-‘Fe-‘f(s/f), (4.12) 

where the cutoff function f is defined after Eq. (1.1). 
A relation between the exponents of Eq. (4.12) can be 

found from definition M(t) sZg(s,t)s, which we rewrite 
in this case using Eq. (4.12) as 

M(t) - 
s 

n(s,t)s ds-e-9’” 
s 

s++‘f (s/tz)ds. 

(4.13) 
If one uses the transformation x=s/f in Eq. (4.13), the 
following result is obtained: 

M(t) ,e-r~-r(T-2). (4.14) 
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FIG. 8. (a) log,,,[n(s,t)] vs log,,(s) with t=O.lO (0), 0.35 (A), and 
0.70 (Cl), and (b) logJn(s,t)] vs loglo withs=l (Cl), 2 (01, 5 (A), 
10 (X ), and 20 (*), for a two-dimensional square with L=200 for the 
corrosive rain model at 0= CO. The straight lines are fitted to n(Q) -s-’ 
and n(s,t) -PCS), respectively, with T= 1.60*0.05 and g(s) =3.6,4.4,6.1, 
6.6, and 8.7AO.l. 

Comparing Eqs. (3.5) and (4.14) one obtains the con- 
straint w=z(r-2). This relation was also obtained by Vic- 
sek and Family for aggregation” (which conserves mass). 
However, in their study the factor emf was absent. 

For all the objects utilized in numerical simulation in 
Fig. 2  we made plots similar to Fig. 7  and from such plots 
we found out the exponents r and w. In these analyses we 
found that for objects with initial coordination 4, greater 
than a limiting initial coordination q1-3, n (s,t) -@“‘, 
where g is an increasing function of s. Gomes and 
Vasconcelos’ also observed a variation of g  with s for 
Menger sponges and Sierpinski carpets (contrary to what 
they found for percolation clusters) with a completely dif- 
ferent fragmentation dynamics. We  conjecture that the ex- 
istence of a  size dependent exponent g(s) is associated with 
an initial coordination & above the critical limit &,~13 and 
not with the particularities of the dynamics. To illustrate 
these facts we show in Figs. 8(a) and 8(b) (&=4.00) the 
same plots of Fig. 7  (&0,2.5) but now for squares with 
edge L=200. Although the dependence of n with s re- 
mains essentially the same (n-s- 1.30 for percolation clus- 
ters [Fig. 7(a)], n-,s-1.6o for squares [Fig. 8  (a)]), the 
variation of n  with t for squares is completely different 
since now n scales with t as n-@) [Fig. 8(b)] and not as 
the percolation clusters where y1- tl.’ [Fig. 7(b)] irrespec- 
tive the size s of the fragments. For the sake of complete- 
ness we studied the behavior of all the objects with & > 3 
employed in our numerical simulations. From a plot of 
g(s) vs s, exhibited in Fig. 9  we find that g(s) = wsy, where 
y=O.28&0.03 for all such objects. Actually, for &<2.5, 
y=O, and one has the relation w= (r-2)2, and for q&3.2 
y=O.28&0.03, and the relation among the various expo- 
nents is not known. We  find that the time dependence of 
n (s,t) suffers a sudden modification at qo=ql- 3, where ql 
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3  
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FIG. 9. log,&(s)] vs log,,(s) for compact objects on square lattice for 
d=2 (o), d=3 (*), d=4 (0), d=5 (Cl), on triangular lattice for d=2 
(A) and for Sierpinski carpet (+). The straight lines are fitted to 
g(s) =w SY with y=O.28&0.03 and w given in Table I. 

is termed limit coordination and is found to play an im- 
portant role in the process of fragmentation. 

In Table I the values of the exponents for the different 
objects studied in the present article are exhibited. Analyz- 
ing these exponents, we see that the dynamic exponents z 
and w are mainly correlated with the limit coordination ql 
and secondarily with the space dimensionality d. The ex- 
ponent z varies logarithmically with qr as 
z=3.00 In qr- 1.00. On the contrary, the static exponent 7 
presents a strong correlation with d and a weak correlation 
with ql. The exponent r varies logarithmically with d as 
7=0.90 In d+0.85. The interval of variation of Q- in Table 
I is quite restricted: r=1.6+0.3 for d=2 and 3, and 
2.5gq1<6.0. Turcotte15 has compiled experimental and the- 
oretical data referring to 21 different fragmentation pro- 
cesses including chemical and nuclear explosions, interstel- 
lar grains and impacts of granular igneous rocks. The 
major part of their data is experimental and suggests that 
Q-= 1.2 f 0.2. This overall estimate for the exponents 7 is in 
agreement with the results of Table I (r= 1.6hO.3). 

We  note that the exponent r= 1.9 reported in Table I 
for a  cube submitted to the fragmentation dynamics of the 
rain model studied here is also close to the values r-0.7- 
1.7 obtained with the maximum-entropy formalism’7 in 
physical space. Also, the 7 values for critical events is close 
to 2.2, as in percolation in three dimensions around the 
critical point. This is also in agreement with our results. 
However, a  recent estimate,16 2<r<4, for nuclear fragmen- 
tation process is not consistent with present findings, pos- 
sibly reflecting the difference in the dynamics of the frag- 
mentation processes. 

It is also interesting to observe that cluster cluster ag- 
gregation (CCA) studied by Vicsek and Family lo in d =2 
presents z=1.4&0.2, w=1.7&0.2, r=O.75=t=O.15, and 
q. N 2. The exponents z, r and w for CCA are close to those 
shown in Table I for the percolation cluster which has 
qo=2.5 in d=2. 
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FIG. 10. (a) log,,(N) vs log,,(a2), and (b) log&N) vs 
log,,,(M&o) for ail the objects of Fig. 2 for the corrosive rain model at 
0=5. The straight lines are fitted to M=b(d,8) ~2~ and JY=a(d,B) 
(M,,/&)a, respectively, with a=l.CO*O.Ol and /3=1.0*0.1. 

B. Kinetic domain: Finite temperature 

Next we consider the more realistic reactivity 
pi=exp( -q/El), where qi is the coordination of site i, and 
8 is the reduced temperature. In numerical simulation we 
used two temperatures 8=5 and 1. The time evolution of 
N(t) and D(t) are similar to the infinite temperature case. 
From a critical study of the maxima ( tdt-,..N) and 
(tg ,LS), we find that Jlr decreases with decreasing tem- 
perature 8, and B remains constant. However, the scaling 
relations ( 1.3) and ( 1.4) remain unchanged. In Figs. 
IO(a) and 10(b) we plot X vs (Ms/qo) and JV vs .$S2, 
respectively, for all the objects in Fig. 2  at temperature 
0=5. The lines are fitted toM- (LV&~)~ andM-LSw, 
respectively, with a = 1 .OO f 0.0 1 and fl= 1 .O f 0.1. 

The times to reach the maxima tJt- and tg in the ki- 
netic domain vary linearly with qo, in contrast to the infi- 
nite temperature limit where this dependence is logarith- 
mic. As a result of numerical simulation at 0=5 we find 
the numerical relations tN=0.68ijo-0.55 and 
tg =0.80qo- 1.60. For 8= 1, we also observed similar lin- 
ear relations. 

We  observe that the time evolution of both mass M(t) 
and average coordination q(t) are quite different from 
those in the infmite temperature limit. From a result of 
numerical simulation we find that for t> 1, these time ev- 
olutions at finite temperatures are given by 

M(t) -MOe-pr (4.15) 

and 

q(t) - ~oe-vr, (4.16) 

to be compared with Eqs. (3.8) and (3.5), respectively, in 
the infinite temperature case. For small t imes the depen- 
dence is more complicated. In the finite temperature case 
both p and v are found to be positive constants less than 

FIG. 11. (a) log,,[n(s,t)] vs loglo for t=0.95 (0) and 1.65 (A) and 
(b) log,o[n(s,t)] vs log,,(t) fors=l (Cl), 2 (0). 5 (A), 10 (x), and 20 
(*) for a two-dimensional square with L=ux) for the corrosive rain 
model at 8=5. The straight lines are fitted to n(~,t)-s-~ and n&t) 
- P”‘, respectively, with ~=1.6, w=3.5, and pO.29. 

unity, independent of the initial properties of the object 
concerned, and a function of the reduced temperature, 8, 
only. 

For the average fragment size F(t), we find for t( 1, 
F(t) -fZ(z CO), where z is the same exponent of Table I. 
For the total number of fragments N(t), for t( 1  one has 
the same time dependence as in the infinite temperature 
case: N(t) -t-‘. However, for t) 1, N(t)[aV(t)/F(t)] 
suffers the same change as mass M(t) above, and one en- 
counters N(t) - exp ( - pt). 

For the cluster, size distribution, n(s,t), in the kinetic 
domain we find that the scaling relation (1.2) is valid at a  
finite temperature, where the exponents r, w, ‘y, z, and the 
cutoff function f were found to be the same as in the infinite 
temperature case. For all the objects utilized in Fig. 2, we 
made plots similar to Figs. 7, 8, and 9. To illustrate we 
show in Figs. 11(a) and 11(b) the results for n(s,t) vs s 
and t, respectively, at 8=5, for a two-dimensional square 
of size L =200. In Fig. 11 (a) we present results of numer- 
ical simulation at t=0.95 (0), and 1.65 (A). These cor- 
respond to 50% and 70% of mass consumption, respec- 
tively. We  note here that the best power-law scaling 
relation for n(s) is obtained at the time tg of maximum 
diversity irrespectively of the system [in Fig. 11 (a), 
tg =0.95], as in Fig. 7(a). If we plot n(s) vs s for t near 
tg , we Ford fits as good as in Fig. 8(a) where 0 represents 
t= tg and A represents t near tg . The straight lines rep- 
resent the analytical scaling relations n(s,t) -sm7 with 
r= 1.6. In Fig. 11 (b) we present results of the numerical 
simulation for s=l (Cl), 2  (0), 5  (A), 10 (X ), and 20 
(*). The straight lines represent n (s,t) - @). In order to 
analyze the function g(s), we plotted g(s) vs s as in Fig. 9  
and we found the scaling relations g(s) =wsy with w=3.5 
and y=O.29. 

It is interesting to note that the exponents w, r, z, and 
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y did not change with the introduction of temperature and 
are essentially the same as in Table I for all the objects. 
This fact suggests that these exponents are determined by 
the statistical nature of the process and not by any physical 
properties. Consequently, we believe that these exponents 
will be the same as in actual physical fragmentation pro- 
cess by corrosive rain. This expectation is further strength- 
ened by the numerical simulation of Gomes and 
Vasconcelosg who found essentially the same values for 
these exponents, wherever they calculated these exponents, 
in a different model of attack for fragmentation. 

V. SUMMARY AND CONCLUSIONS 

To our knowledge the present work is the first attempt 
to investigate systematically a fragmentation model in a 
wide range of space dimension ( l<d<S) and initial coor- 
dination (2<&< 10). We simulated an acid rain attack to a 
surface by a corrosive rain model and we studied some 
quantities involved in this process such as mass M(t), 
number of fragments N(t), diversity of fragments D(t), 
mean size of fragments S(t), mean coordination of system 
q(t) and the number of fragments of size s n (s,t). We 
developed analytic rate equations for the time evolution of 
mass and coordination of the system. We made also exten- 
sive numerical simulation of the process. 

We studied the random domain of this model (infinite 
temperature) in which the rate of corrosion is determined 
only by the randomness in choosing a site. In this special 
case the equations allow analytic solution that were in ex- 
cellent agreement with the results of numerical simulation. 
We have confirmed in our study two scaling relations 
X-9’ that related the maximum of fragments A‘- with 
the maximum of diversity 9, and n(u) 
- ~-‘t”“~e-f”,f (s/t”), where T, w, 7, and z are important 
exponents to describe the process (Table I), p is a constant 
that controls the exponential consumption of mass and 
f(x) is a cutoff function. 

Two other completely different models of fragmenta- 
tion were also considered. These were fragmentation by 
random walk and by alternate horizontal and vertical lines. 
In both cases the scaling relation X-g2 holds well. 
From the robustness of this relation with respect to varia- 
tion of attack, dimension, and topology of the object, this 
expression is found to play an equivalent role as the equa- 
tions of state in equilibrium processes. 

In order to test the generality of the exponents r, w, 7, 
and z, we made modifications in the model of fragmenta- 
tion, and considered fragmentation by corrosive rain in the 
kinetic domain at finite temperature. In this model the 
probability of successful attack on a site depends on its 
binding to the object. This model of attack depends on the 
physical properties of the system. However, the numerical 

values of the exponents remain unchanged. Hence these 
exponents are expected to remain unchanged in a wide 
class of fragmentation processes. 

Comparing the exponents obtained in our simulations 
7, w, y, and z with the experimental exponents obtained by 
Turcotte,15 and the theoretical exponents obtained by Vic- 
sek and Family” and by Gomes and Vasconcelos,g we 
noted that although they utilize different dynamics, the 
exponents are in good agreement with ours. These results 
lead us to conclude that critical exponents associated to 
different dynamics generating cluster distributions depend 
heavily on q. and d and not on the intricacies of a partic- 
ular dynamics. Indeed an examination of Table I shows 
that systems with a same value of d present completely 
different sets of critical exponents for different values of 
%, , i.e., the space dimension is not sufficient to specify the 
critical exponents and at least two “good” numbers, q. and 
d, possibly fix the critical exponents. This situation is dif- 
ferent if compared with equilibrium phenomena where the e 
space dimension fix the values of the critical exponents. 
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