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Perturbative bosonization from two-point correlation functions
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Here we address the problem of bosonizing massive fermions without making expansions in the fermion
masses in both massive QEBnd QELR with N fermion flavors including also a Thirring coupling. We start
from two-point correlators involving theg/(1) fermionic current and the gauge field. From the tensor structure
of those correlators we prove that th€1) current must be identically conservé&dpologica) in the corre-
sponding bosonized theory in bolh=2 andD =3 dimensions. We find an effective generating functional in
terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the
Lagrangian density?’(i/)—m)zﬂr into a bosonic one in both dimensions. This map is nonlocal but it is
independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the
fermionic determinant.
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[. INTRODUCTION left with approximate methods like the one used in this work.
On one hand, the method used here is inspired in the ap-
One among the many dreams of theoretical physicistgroach carried out ift19], which is rather simple and based
nowadays is the possibility of extending to higher dimen-on two-point correlation functions. On the other hand, our
sions 0> 2) the bosonization of fermionic models. This can bosonization rules depart from those[ 9] in the sense that
be justified by some good properties of one formulation aghey are independent of the interactions. We extend the ap-
opposed to the other. For instance, strong coupling physics iaroach of(19] by introducing an electromagnetic interaction
one model corresponds to weak coupling in the other. A clas@nd making use of the l/expansion, which allows us to go
sic example is the map between the massive Thirring anfgeyond the lowest order in the coupling constants. In the

sine-Gordon models iD =2. Another interesting aspect of next sec'Fion we introduce thg model we are vyorking V.Vith
such a map is the fact that the usual electromagnetic char d obtain a general expression for the generating functional

. . . the current and gauge field correlators. The expression is
in the fermionic model corresponds to the topological charge _,. : . :
valid for arbitrary dimensions and depends on the vacuum

of the associated soliton field. Furthermore, we can have olarization tensor. In Secs. 11l and IV we make the calcula-
map between a linear theory such as massive free fermiorFﬁ)ns explicit in D¥2 andlj=3 dimensions, respectively.
and a nonlinear ongsine-Gordon model 98°=4 ) on the  \ya first obtain in the fermionic theory the two-point current
other side. . _ . correlation functions also involving the gauge field, and then
In view of these and other interesting properties a lot ofyye write the current in terms of bosonic fields and derive the
work has been devoted to the issue of bosonizafbr3]  corresponding action for such fields that reproduces their
(see alsq4]). There have also been many attempts to genercorrelators. In the final section we draw some conclusions
alize those ideas to higher dimensidiss-22. For massive  and comment on similar approaches in the literature.
fermions inD=2 most of the methods are based on expan-
sions around massless fields that are local conformal theo-
ries. InD =3, although the case of massless free fermions Il. GENERATING FUNCTIONALS

can still be mapped into a bosonic theg¢sge(8]) this theory We start by introducing the notation that will be used in
is nonlocal. In addition, the conformal group is finite bothD=2 andD=3. The generating functional for a gen-

=3 and not so powerful as i =2 which makes expansions eralized QED with Thirring self-interaction is given by
around the massless case nontrivial. The other possibility is

to employ functional methods. Once again the case of mass- N
less fermions is easier to deal with since the fermionic deters, _ " ; D
minant can be exactly calculated fior=0. For massive fer- z0 'K“]_f DA"rHl D Dz/frexp{ If d°x
mions in D=2 a nontrivial Jacobian under chiral

transformations plays a key role in deriving the sine-Gordon —
model (see[23-27). In D=3, chiral transformations play i
no role, and although some nonperturbative information is
known[21] about the fermionic determinant we are basically
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It is convenient to introduce an auxiliary vector fiddg and In order to proceed further we have to calculdi¢”,
work with the physically equivalent generating functional: which depends on the dimensionality of the space-time.

. _ IIl. BOSONIZATION FROM TWO-POINT CORRELATORS
Z[3}, K,1= f DA, DB, 11 Dy Dy, IN D=2
1 1 In this section we restrict ourselves to the=2 case.
« d°x| — ZF2 + =B B~ Usmg dimensional regularization we obtain, below the pair
exp{ f 4"~ mvo Q7K creation thresholdz=k?/4m?<1),
Y _ e n,,=I(k?»6,, (6)
+ 5 (A | 10—m— —=A w0,
m with
B KA @ fige=2)a ! 2 o<z<1
=—|1-— — <z<
\/N T [Z(l Z)]1/2 1—z
7
Integrating over the fermionic fields we obtain 0
e 1] 1 1 (\/1 2)+— H %
2 -_ - A Z .
Z[J, K, 1= fDA DB exp{ fd” —ZFW+ B B~ 2 \/z(z—l) V(1-2)— -
®
A
+2KMAM+§((9MA“)2 ] Once the tensadil*” is calculated one is left with a Gaussian

integral over the vector field&, andB, from which a gen-
erating functional quadratic in the sources is derived. This
(3) generating functional furnishes the following two-point

N 1
I detiéd—m——=(eA+gB)+ 2
=1

N correlators:
Now we compute the fermionic determinant, keeping L [12(e?—k3g?) v T s
terms of order (M)° and (1N)Y2. Higher order terms will (F(O5(=k)=— ND O +116476", (9)

be neglected. Furthermore, since we are interested only in

two-point correlators, the terms higher than quadratic in the ofl

sourcesJ), will not be taken into account either. This (5,00A,(—k)= oHY (10
D

M
amounts to the quadratic approximation for the fermionic VN

determinant, which gives

1 1+¢4l g~”
| dPk <A"(k)A”(—k)>=< —?Jr D o"” NZL
zZ[J ,K,L]zf DA, DB, expzf 2mp (11)
where
x{ —A,[0#k*(1—\)+\k?g“ 1A, 5 5
D=[Ile?—k?(1+g?II)]. (12)

The tensor structure of the above correlation functions is in
full agreement with the corresponding Ward identities based
on theU(1) symmetry, and it will play a key role in our
bosonization procedure. At this point it is important to stress

' that our approach deviates from that of Reif9]. The 1N
expansion we have relied upon, which coincides with the

(4)  quadratic approximation for the fermionic determinant, is not
equivalent to the second order weak coupling expansion used

where #7=g*”—k*k”/k? and the tildes over the fields rep- in [19].

resent their Fourier transformations in momentum space. The

guantity IT#” is the vacuum polarization tensor:

IMore precisely, we should have written explicitly the two-point

d®p 1 1 functions in the form{G(k)H(p))=1(k) 5®(k+p) but in this ar-
H’“’(k)=if tr a i ticle we will not display the delta function as a matter of conve-
(2m)P |[p—-m+ie  (ptk)—m+ie nience. Notice also that when we writg;=F + G4, it is assumed

(5) that F multiplies anNX N matrix where all entries are equal to 1.
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Now, in order to derive a bosonized expression for theAssuming thatR,s is a symmetric nonsingular matrix, we
currents;j’, = ¢, v, %, we write down the most general de- have performed the Gaussian integrals in E{) and ob-

composition for a vector in the momentum space:
i) =€k 0" (k) + kg (K).

Substituting it in Eq.(9) and using the identity z5k°€,,.,K”
=k?6,5, We obtain

(Ja(Kiz(—k)=—k?0,5( " (k) *(—K))
—kakg(e"(K) 03(—K))
— €askkg( @' (K) °(—k))
— €p,KK (@' (K) p%(—K))
ﬁ2(eZ_ k292)

= T 0aﬁ+ 11 0aB5rS.

13

(14

From the above it is not difficult to derive

(¢"(k)p*(—k))=0, (15
(" (k) @%(—k))=0, (16)
: . 1 [12(e?—k3g?) - "
<¢(k)¢(—k))——ﬁ -——p T
(17)

from which one can safely set=0. On the other hand,
substituting the general decomposition

($(KAL(—K)=Me ,k’+Qk,

in the mixed correlation function§, (k)A,(—k)) given in
Eq. (10), we conclude that

(18

ell
($" (KA, (—k)=— meﬂgké. (19

Now we are in a position to derive the bosonic Lagrang—(ijj})oce

tained an explicit formula foZg[ X",K,] from which the
two-point correlators can be obtained. By matching these
correlators with (11), (17), and (19) we determine the
bosonic Lagrangian uniquely:

2 2

1 N k g N N
ACAP
- [(1-N)K?8,5+Nk?g,4]
e N
+\/—NEW, A“k”( 21 o' . (22)

All the steps that led us to E¢22) are technically simple
and not very elucidating. We should mention only that no
expansions in either I/ or any of the coupling constants
have been made in those intermediate calculations. Further-
more, notice that if we quantiz€g(A,,¢") and integrate
over the scalar fieldg" in Eg. (22) this will lead to a non-
local effective action for the photon, which was studied in
[28], where we concluded that, although nonlocal, the theory
is free of tachyons. Next, by comparing with the Lagrangian
density written in terms of fermionic fields in Eql) we
have the bosonization formulas for each fermion flagy
sum over repeated roman indices below

Yoy, (K) =€,k " (K), (23)

— 1 k2
—wr(k)(k+m)¢r(k)=§¢rﬁ¢r- (24)

Now some comments are in order. First of all, if for some
given flavor we do dJ(1) transformation ¢,—e'“¢,) in
the expectation valug L) and use any regularization scheme
preserving théJ (1) symmetry, it will be easy to derive the
Ward identity(j',4"j’,) =0 which implies the tensor structure

v, and consequently we will have E@3). So

ian densityLg(A,, ,¢") which is compatible with the corre- the current is topological due to thé(1) global symmetry

lation functions(11), (17), and (19). For this purpose, we
start from the following ansatz:

Lg(A,,¢")= ' Risd°+2S ¢, K'A*

+ARA(T10,,+T20,,), (20

whereR,s, S;, T1, and T, are determined as follows. We

introduce the external sourc¥$ andK , and define the gen-
erating functional

N
Zg[ X, K, 1= f r1;[l D¢" DA, exp(i J d>X[ Lg(A, . ¢")

. (21

+ X, ¢+ K AR

and that must hold nonperturbatively. On the other hand, the
bosonization rul€24) is only approximate since the full ex-
pression would require, in our approach, a complete knowl-
edge of the fermionic determinant, which is possible only for

m—0. In this casdl— 1/7 and we end up wittN massless
scalar fields topologically coupled to the gauge field. Integra-
tion over the gauge field leads td—1 massless scalar
modes and one mode wit®=e?/(Nw+g?), thus repro-
ducing the particular case of the so called Schwinger-
Thirring model forN=1 [29], as well as the Schwinger
model resulm?=e?/ 7 for g—0 andN=1. In the opposite

limit of large mass ¢—0) we haver— —2z/3 at leading
order. Substituting back in E§22) we arrive at a divergent
result atm—oo which is in agreement with ther— oo limit
of the corresponding sine-Gordon model. £&@ for a simi-
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lar comparison in the case of the massive Thirring modefrom which we get

without electromagnetic coupling.

IV. BOSONIZATION FROM TWO-POINT CORRELATORS
IN D=3

In D=3 dimensions the vacuum polarization tengbr

calculated by means of dimensional regularization is given

by
IT#7(K)=iT1,E*"+ I1,k2 6", (25)
with E#"= €#*?k,, and, in the range €z<1,
1 1+2'2
== 8712 n 1—72)"
. 1 1+z| [1+Z2 o6
2716mmz| = | 912 n 1-72] |’ (26)
while for z<0 we have
I1 ! t
=— ———arctan/—z,
Y 4m(—)W?
1 1+z
szlﬁwmz — () arctan/—z|. (27

In fact thell; amounts to a regularization dependent finite<Au(k)Bu(_k)>: -
term[6,7], which was taken equal to zero due to the dimen- S

sional regularization used.
Substituting Eq(25) in the general expressidd) we can
obtain the two-point functions

(1u(Kj3(=k))

1], P _ k?
:_N k H2+6 GMV‘FIHl 1—6 E;w
+(k?,0,,+i11,E,,) s, (28)
o e .
(AL (KA k))—g’”+ e’P  (1+\) ie?Il,
S A2 [K2Q Ak | kO M
(30
where we found it convenient to define
P=(e?—k?g?)(K’I15—112)—K?II,, (32
Q=K (e*~K?g?) I, — 1]~ (e*~k?g?) I}, (32

In analogy with theD =2 case, we use for thd(1) current
a general decomposition in the momentum space

Jo(K) = €4,kPBY(K) + ko' (K), (33

(LK) 3(—k))y = —kokg( @' (k) p3(—k))
+E 4, E 55(BY(K)B(—K))
+KoEps( @' (K)BI(—K))

+KgE o (BY(K) bs(—K)). (34
Multiplying the last expression bi*k?, we conclude that
(¢"(k) 5(—k))=0. Now, multiplying the resulting expres-
sion byk®, we haveEaB(d)’(k)Bf(—k)):O. A similar ma-
nipulation was used in the last section to derive HG$),
(16), and(17). Concluding, we can certainly neglect the sca-
lar fields ¢"=0 and minimally bosonize thg (1) current in
D=3 in terms of a bosonic vector field. The bosonic version
of the current is once again of topological nature and identi-
cally conserved. As in th® =2 case, this happens because
of the U(1) global symmetry of the fermionic Lagrangian.
Taking ¢"=0 and substituting the decompositigB3) in
Egs.(28) and(29), after some trivial manipulations we end
up with

(BY(K)BJ(—K))=—C,sg”"+

. E) gro_ (lexsEy,s
rs

k2 k
(39
iell, +D) " eP "
— gV _ — v
Wwo /7 LNk
+Dg6"", (36)
whereC,; andDg are arbitrary and
i i, [ k2
(Hl)rs:|H15r5+W 6_1 ) (37)
5 k2 P
(Ha)s=k H25rs_ﬁ I+ 6 - (38

The arbitrariness o€,s andDg shows that the bosonization
fields B must be gauge fields, but the corresponding gauge
symmetry is independent of the electromagnetic one. Analo-
gous to the last section, we next derive a Lagrangian density
compatible with the two-point correlator85), (36), and
(30). Let us suppose we have a bosonic Lagrangian density
Lg(A, ,B;) of the form

Lg(A,,B)= B':‘O;fVB;’+ uBLE,, A”
+A,U,Av(vla,u,v+l)29,u,v)r (39)

whereO 7, has a general tensor structure in both momentum
and flavor space,

0'%,=a"0,,+b"E,, +d"g,,. (40)
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rameterd= —\k?/2. In the momentum space we have

matching the two-point correlators derived from the generat-

ing functional

N
Zg[Y' K, 1= f L[l DB DA, exp(i f d?x[ Lg(A,,,B})
+Y B+ KNA"]) , (41)

with the correlatorg35), (36), and (30). Assuming that the

matricesa’s,b's,d"s are symmetric and nonsingular, our first

step is to perform the Gaussian integrals over theector
fields B;, which furnishes

1
= (YEr u,AgEPH)

ZB[YL,KM]zf DA, exp[if d?x

X(O™HE(Ye+UEPA)

+AMA (010, Tv20,,) K, A"

] . (42

The inverse operataP ~* has the same structure as E4p):
(0~ h,,=a"™0,,+b"E, +d"®g,,, where the tilde vari-
ables are functions of the nontilde ones. In particuth,
=(d"1),s. Since we have the contractionB*’E,,,=

—k20*, E*'9,,=E", it becomes clear from E@42), with

a little thought, that even after integrating owey, the only
term in logZg quadratic in the sourced’ and contracted via

the metric tensor is— %Y#Y;ﬁrsgw. Therefore the two-

point functions(35) require the identificatiorC"s=(d/2)™
=(d~Y2)'s,
Given that the matrixC's is arbitrary, in order to simplify

N

1 Ba(k2H26Qﬂ+iH1€
£B<A,“Bf‘>=—§[2 :

K2TI5—112

aﬁyky)BF

r=1

N N

3, oo 3 o

r=1 s=1

A*AP
2

2
g
N

[(1=N)k?0,5+ NG 5]

N
€0, K'AR Y, B!

+

- 3o
o9}

/Bf
L2

J’_
r

[XKk20,5—NK?Q ] (43)

Notice that\ and\ are interpreted as independent gauge
fixing parameters such that the generating functiodd)
reproduces the correlation functio(80), (35), and(36) with

1
Crs=— X_kz Ors s (44)
D iell; 45
VNQ

Integration over the vector field3 will lead to an effective
electromagnetic theory, which was also studied28] (see
also [23]), where we analyzed its pole structure and con-
cluded that no tachyons appear, just as in its two-dimensional
counterpari22).

Comparing Eq(43) with the original Lagrangial) writ-
ten in terms of fermionic fields, we have the bosonization
rules for each fermion flavor& 1,2, ... N):

DY uthe (K) = €,k BE(K), (46)

the calculations, we have chosen it proportional to the iden-

tity, and consequently we reduce the undetermined param-

1 a(k2H20a5+iH1Eaﬁ)

eters in our original ansatz for the bosonic Lagrangian since ek (ktm) g (k)= — 25 K212 —T12 f'
2 1

d'®*=dé". For analogous reasons, after integrating ovgr
the crossed terms in the sourcés andK” are contracted
only by the tensor€&,, and 6,,,. Thus, the term propor-

(47)
As in theD =2 case, we obtained E6) from the fact that

tional to g”# on the right hand side of the correlation func- for each fermion flavor we have the tensor structure

tions (36) must vanish, which fixe® = —iell,/\NQ. Fi-
nally, comparing the other parts of the correlat(85), (36),
and (30) with the final expression for logig one can deter-
mine the quantitiea", b", andu® as functions ofl, which

(Ju in=ab,,+bE,,, which was derived by calculating the
fermionic determinant up to quadratic order. However, this
tensor structure must hold beyond that approximatimm-
perturbatively as a consequence of the Ward identity

remains unfixed. We spare the reader the lengthy detail§ ,d"j,)=0, which must be true also iD=3, by using a
since they are totally technical and not very illuminating. Wegauge invariant regularization. On the other hand, the
stress only that no further simplification hypothesis is usedosonization rulg47) holds as a consequence of the qua-

and no expansion is made in eitheN1ér any of the cou-

dratic approximation for the fermionic determinant. Taking

pling constants. In those intermediate steps all correlators af—0 (or z— —=) in the expression&7) we havell;—0

treated as if they were exact.

and I1,—1/(16J—k?). Plugging these values back in Egs.

In order to make the final answer for the bosonic Lagrang{46) and (47), we recover the result 48] with 8=1/4 and
ian density more familiar, we have redefined the unfixed pa#=0 in that reference, which deals with massless fermions.
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Our rules(46) and (47) also agree with the case of massive which is true nonperturbatively if there is d(1) anomaly.
fermions treated ifi15]. We stress, however, that in bdiBi In particular, there is no need to look at higher point func-
and[15] only free fermions were considered, while our re-tions or compute the fermionic determinant beyond the qua-
sults were derived for an interacting theory with Thirring anddratic approximation to confirm that. On the other hand, our
electromagnetic couplings. This indicates that our bosonizamaps for the Lagrangian densiti€&4) and (47), which are
tion rules are rather universal at the quadratic level. In thealso independent of the interactions, hold only perturbatively
opposite limit of heavy fermionskf/4m?)=z—0 in Eq. due to our quadratic approximation for the fermionic deter-
(26) we have, at leading ordef],—0 andIl;— —1/(4mw) minant, which amounts to neglecting terms of order higher
which leaves udsee Eq.(47)], with a bosonic local and than (1N)Y?in the fermionic determinant and considering at
topological Chern-Simons Lagrangian for the fi@#, in ~ most two-point current correlators to derive the bosonization
agreement with the findings ¢10] (see alsd11] and[12] rules.
for higher orders Finally, we should mention that the results derived here
could have been obtained in a technically more direct way
V. CONCLUSIONS along the lines of20] (see alsd32]) but the approach used
here does not use any auxiliary field and clarifies the funda-
We derived bosonization maps for th{1) currents and mental role of the two-point correlators. It might also be
the fermion Lagrangian densities for both QE&nd QER  useful (work in progress for deriving approximate bosonic

with N fermion flavors and Thirring self-interaction. Both maps for other fermion bilinears, like the mass teﬁzp’z in
results hold for finite fermion masses and no derivative eXp=3. which apparently could not be done using the ap-

par)sion ink/m is made as if31]. By turning off the .inter- proach of[20].
actions we can reproduce the resultd 1] for a particular

choice of the regularization parameter in that reference. Our

calculations show that th&/(1) currents, when written in

terms of bosons, must be identically conser(&qbologica) This work was patrtially supported by CNPq and FAPESP,
as a direct consequence of the Ward identity”j,)=0, Brazilian research agencies.

ACKNOWLEDGMENTS

[1] S. Coleman, R. Jackiw, and L. Susskind, Ann. PIiisY.) 93, [17] J.C. Le Guillou, C. Nuez, and F.A. Schaposnik, Ann. Phys.

267 (1975. (N.Y.) 251, 426 (1996.
[2] S. Coleman, Phys. Rev. DL, 2088(1975; Ann. Phys.(N.Y.) [18] R. Banerjee and E.C. Marino, Phys. Rev5B, 3763(1997).
101, 239(1976. [19] R. Banerjee and E.C. Marino, Nucl. Phy&507, 501 (1997%.
[3] S. Mandelstam, Phys. Rev. T1, 3026(1975. [20] D.G. Barci, L.E. Oxman, and S.P. Sorella, Phys. Re\6®
[4] E. Abdalla, M.C. Abdalla, and K.D. Roth&Jon-Perturbative 105012(1999.
Methods in Two Dimensional Quantum Field Thedworld [21] D.G. Barci, V.E.R. Lemes, C. Linhares de Jesus, M.B.D. Silva
Scientific, Singapore, 1991 g.gl;’;rto, S.P. Sorella, and L.C.Q. Vilar, Nucl. Phi&24, 765

[5] A.M. Polyakov, in Field Theory and Critical Phenomepa
1988 Les Houches Lectures, edited by E.Zneand J. Zinn-
Justin(Elsevier, Amsterdam, 1989

[6] A. Coste and M. Luscher, Nucl. PhyB323 631(1989.

[7] M. Luscher, Nucl. PhysB326, 557 (1989.

[8] E.C. Marino, Phys. Lett. 263 63(1991).

[9] C.P. Burgess, C. Lutken, and F. Quevedo, Phys. Le33® 18

[22] A. de Souza Dutra and C.P. Natividade, Mod. Phys. Left4A
307 (1999; Phys. Rev. D61, 027701(2000.

[23] D. Dalmazi, A. de Souza Dutra, and M. Hott, Phys. Re\6 D)
125018(2000.

[24] K. Furuya, R.E. Gamboa-Saravi, and F.A. Schaposnik, Nucl.
Phys.B208, 159 (1982.

[25] C.M. Naon, Phys. Rev. 31, 2035(1985.

(1994. . [26] L.C.L. Botelho, Phys. Rev. 33, 1195(1986.
[10] E. Fradkin and F.A. Schaposnik, Phys. Lett. 388 253  |57] py. Damgaard, H.B. Nielsen, and R. Sollacher, Nucl. Phys.
(1994); G. Rossini and F.A. Schaposnibjd. 338 465(1994}. B385, 227 (1992; B296, 132 (1992'
[11] R. Banerjee, Phys. Lett. B58 297 (1995. [28] E.M.C. Abreu, D. Dalmazi, A. de Souza Dutra, and M. Hott,
[12] R. Banerjee, Nucl. Phy®3465 157 (1996. Phys. Rev. D65, 125030(2002.
[13] F.A. Schaposnik, Phys. Lett. 856, 39 (1995. [29] A. de Souza Dutra, C.P. Natividade, H. Boschi-Filho, R.L.P.G.
[14] N. Bralic, E. Fradkin, V. Manias, and F.A. Schaposnik, Nucl. Amaral, and L.V. Belvedere, Phys. Rev.35, 4931(1997.
Phys.B446, 144(1995. [30] K-1. Kondo, Prog. Theor. Phy€4, 899 (1995.
[15] D.G. Barci, C.D. Fosco, and L.E. Oxman, Phys. Lett3B, [31] S. Ghosh, “Bosonization and Duality int2L Dimensions: Ap-
367(1996. plications in Gauged Massive Thirring Model,”
[16] N. Banerjee, R. Banerjee, and S. Ghosh, Nucl. PB#831, hep-th/9901051.
421(1996. [32] C.P. Burgess and F. Quevedo, Nucl. Pr§421, 373(1994.

125012-6



