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Perturbative bosonization from two-point correlation functions

D. Dalmazi,* A. de Souza Dutra,† and Marcelo Hott‡

UNESP, Campus de Guaratingueta´, DFQ, Av. Dr. Ariberto Pereira da Cunha, 333, CEP 12516-410, Guaratingueta´, SP, Brazil
~Received 10 January 2003; published 20 June 2003!

Here we address the problem of bosonizing massive fermions without making expansions in the fermion
masses in both massive QED2 and QED3 with N fermion flavors including also a Thirring coupling. We start
from two-point correlators involving theU(1) fermionic current and the gauge field. From the tensor structure
of those correlators we prove that theU(1) current must be identically conserved~topological! in the corre-
sponding bosonized theory in bothD52 andD53 dimensions. We find an effective generating functional in
terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the

Lagrangian densityc̄ r( i ]”2m)c r into a bosonic one in both dimensions. This map is nonlocal but it is
independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the
fermionic determinant.

DOI: 10.1103/PhysRevD.67.125012 PACS number~s!: 11.15.Bt
is
n
n
a
s
la
an
f
ar
rg
e
io

o

e

an
e
n

s
y
as
te

l
o

lly

rk.
ap-
d
ur

t
ap-
n

o
the
ith
nal

n is
um
la-
.
nt
en
the
eir
ns

in
-

n

I. INTRODUCTION

One among the many dreams of theoretical physic
nowadays is the possibility of extending to higher dime
sions (D.2) the bosonization of fermionic models. This ca
be justified by some good properties of one formulation
opposed to the other. For instance, strong coupling physic
one model corresponds to weak coupling in the other. A c
sic example is the map between the massive Thirring
sine-Gordon models inD52. Another interesting aspect o
such a map is the fact that the usual electromagnetic ch
in the fermionic model corresponds to the topological cha
of the associated soliton field. Furthermore, we can hav
map between a linear theory such as massive free ferm
and a nonlinear one~sine-Gordon model atb254 p) on the
other side.

In view of these and other interesting properties a lot
work has been devoted to the issue of bosonization@1–3#
~see also@4#!. There have also been many attempts to gen
alize those ideas to higher dimensions@5–22#. For massive
fermions inD52 most of the methods are based on exp
sions around massless fields that are local conformal th
ries. In D53, although the case of massless free fermio
can still be mapped into a bosonic theory~see@8#! this theory
is nonlocal. In addition, the conformal group is finite inD
53 and not so powerful as inD52 which makes expansion
around the massless case nontrivial. The other possibilit
to employ functional methods. Once again the case of m
less fermions is easier to deal with since the fermionic de
minant can be exactly calculated form50. For massive fer-
mions in D52 a nontrivial Jacobian under chira
transformations plays a key role in deriving the sine-Gord
model ~see@23–27#!. In D53, chiral transformations play
no role, and although some nonperturbative information
known @21# about the fermionic determinant we are basica
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left with approximate methods like the one used in this wo
On one hand, the method used here is inspired in the
proach carried out in@19#, which is rather simple and base
on two-point correlation functions. On the other hand, o
bosonization rules depart from those in@19# in the sense tha
they are independent of the interactions. We extend the
proach of@19# by introducing an electromagnetic interactio
and making use of the 1/N expansion, which allows us to g
beyond the lowest order in the coupling constants. In
next section we introduce the model we are working w
and obtain a general expression for the generating functio
of the current and gauge field correlators. The expressio
valid for arbitrary dimensions and depends on the vacu
polarization tensor. In Secs. III and IV we make the calcu
tions explicit in D52 and D53 dimensions, respectively
We first obtain in the fermionic theory the two-point curre
correlation functions also involving the gauge field, and th
we write the current in terms of bosonic fields and derive
corresponding action for such fields that reproduces th
correlators. In the final section we draw some conclusio
and comment on similar approaches in the literature.

II. GENERATING FUNCTIONALS

We start by introducing the notation that will be used
both D52 andD53. The generating functional for a gen
eralized QED with Thirring self-interaction is given by

Z@Jm
r ,Km#5E DAm)

r 51

N

Dc r Dc̄ rexpH i E dDxF2
1

4
Fmn

2

1c̄ rS i ]”2m2
e

AN
A” D c r2

g2

2N
~ c̄ rg

mc r !
2

1
l

2
~]mAm!21Jm

r ~ c̄ rg
mc r !1KmAmG J , ~1!

where N is the number of fermion flavors and summatio
over the repeated flavor indexr (r 51,2, . . . ,N) is assumed.
©2003 The American Physical Society12-1
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It is convenient to introduce an auxiliary vector fieldBm and
work with the physically equivalent generating functional

Z@Jm
r ,Km#5E DAm DBm )

r 51

N

Dc r Dc̄ r

3expH i E dDxF2
1

4
Fmn

2 1
1

2
BmBm

1
l

2
~]mAm!21c̄ rS i ]”2m2

e

AN
A”

2
g

AN
B” 1J” r D c r1KmAmG J . ~2!

Integrating over the fermionic fields we obtain

Z@Jm
r ,Km#5E DAm DBm expH i E dnxF2

1

4
Fmn

2 1
1

2
BmBm

12KmAm1
l

2
~]mAm!2G J

3)
r 51

N

detF i ]”2m2
1

AN
~eA” 1gB” !1J” r G . ~3!

Now we compute the fermionic determinant, keepi
terms of order (1/N)0 and (1/N)1/2. Higher order terms will
be neglected. Furthermore, since we are interested onl
two-point correlators, the terms higher than quadratic in
sourcesJm

r will not be taken into account either. Thi
amounts to the quadratic approximation for the fermio
determinant, which gives

Z@Jm
r ,Km#5E DAm DBm exp

ı

2E dDk

~2p!D

3H 2Ãm@umnk2~12l!1lk2gmn#Ãn

1B̃mB̃m1(
r 51

N S e
Ãm

AN
1g

B̃m

AN
2 J̃m

r D
3Pmn~k2!S e

Ãn

AN
1g

B̃n

AN
2 J̃n

r D 12K̃mÃmJ ,

~4!

whereumn5gmn2kmkn/k2 and the tildes over the fields rep
resent their Fourier transformations in momentum space.
quantityPmn is the vacuum polarization tensor:

Pmn~k!5 i E dDp

~2p!D
trF 1

p”2m1 i e
gm

1

~p”1k” !2m1 i e
gnG .

~5!
12501
in
e

c
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In order to proceed further we have to calculatePmn,
which depends on the dimensionality of the space-time.

III. BOSONIZATION FROM TWO-POINT CORRELATORS
IN DÄ2

In this section we restrict ourselves to theD52 case.
Using dimensional regularization we obtain, below the p
creation threshold (z[k2/4m2,1),

Pmn5P̃~k2!umn ~6!

with

P̃~k2!5
1

p F12
1

@z~12z!#1/2
arctanA z

12zG . 0,z,1,

~7!

P̃~k2!5
1

p F12
1

2

1

Az~z21!
lnS A~12z!1A2z

A~12z!2A2z
D G , z,0.

~8!

Once the tensorPmn is calculated one is left with a Gaussia
integral over the vector fieldsAm andBm from which a gen-
erating functional quadratic in the sources is derived. T
generating functional furnishes the following two-poi
correlators:1

^ j m
r ~k! j n

s~2k!&52
P̃2~e22k2g2!

ND
umn1P̃umnd rs, ~9!

^ j m
r ~k!An~2k!&5

eP̃

AND
umn, ~10!

^Am~k!An~2k!&5S 2
1

lk2
1

11g2P̃

D D umn1
gmn

lk2
,

~11!

where

D5@P̃e22k2~11g2P̃!#. ~12!

The tensor structure of the above correlation functions is
full agreement with the corresponding Ward identities ba
on the U(1) symmetry, and it will play a key role in ou
bosonization procedure. At this point it is important to stre
that our approach deviates from that of Ref.@19#. The 1/N
expansion we have relied upon, which coincides with
quadratic approximation for the fermionic determinant, is n
equivalent to the second order weak coupling expansion u
in @19#.

1More precisely, we should have written explicitly the two-poi
functions in the form̂ G(k)H(p)&5I (k)d (2)(k1p) but in this ar-
ticle we will not display the delta function as a matter of conv
nience. Notice also that when we writeArs5F1Gd rs it is assumed
that F multiplies anN3N matrix where all entries are equal to 1
2-2
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Now, in order to derive a bosonized expression for
currentsj m

r 5c̄ rgmc r , we write down the most general de
composition for a vector in the momentum space:

j b
r ~k!5ebdkdf r~k!1kbw r~k!. ~13!

Substituting it in Eq.~9! and using the identityebdkdeagkg

5k2uab , we obtain

^ j a
r ~k! j b

s ~2k!&52k2uab^f r~k!fs~2k!&

2kakb^w r~k!ws~2k!&

2eadkdkb^f r~k!ws~2k!&

2ebgkgka^w r~k!fs~2k!&

52
P̃2~e22k2g2!

ND
uab1P̃uabd rs.

~14!

From the above it is not difficult to derive

^w r~k!ws~2k!&50, ~15!

^f r~k!ws~2k!&50, ~16!

^f r~k!fs~2k!&52
1

k2
F2

P̃2~e22k2g2!

ND
1P̃d rsG ,

~17!

from which one can safely setw50. On the other hand
substituting the general decomposition

^f~k!Am~2k!&5MPmdkd1Qkm ~18!

in the mixed correlation functionŝj m
r (k)An(2k)& given in

Eq. ~10!, we conclude that

^f r~k!Am~2k!&52
eP̃

ANk2D
emdkd. ~19!

Now we are in a position to derive the bosonic Lagran
ian densityLB(Am ,f r) which is compatible with the corre
lation functions~11!, ~17!, and ~19!. For this purpose, we
start from the following ansatz:

LB~Am ,f r !5f rRrsf
s12Srf

remnknAm

1AmAn~T1umn1T2gmn!, ~20!

whereRrs , Sr , T1, and T2 are determined as follows. W
introduce the external sourcesXr andKm and define the gen
erating functional

ZB@Xr ,Km#5E )
r 51

N

Df r DAm expS i E d2x@LB~Am ,f r !

1Xrf
r1KmAm# D . ~21!
12501
e

-

Assuming thatRrs is a symmetric nonsingular matrix, w
have performed the Gaussian integrals in Eq.~21! and ob-
tained an explicit formula forZB@Xr ,Km# from which the
two-point correlators can be obtained. By matching the
correlators with ~11!, ~17!, and ~19! we determine the
bosonic Lagrangian uniquely:

LB~Am ,f r !5
1

2 F (
r 51

N

f r
k2

P̃
f r1

g2

N
k2S (

r 51

N

f r D S (
s51

N

fsD G
2

AaAb

2
@~12l!k2uab1lk2gab#

1
e

AN
emn AmknS (

r 51

N

f r D . ~22!

All the steps that led us to Eq.~22! are technically simple
and not very elucidating. We should mention only that
expansions in either 1/N or any of the coupling constant
have been made in those intermediate calculations. Furt
more, notice that if we quantizeLB(Am ,f r) and integrate
over the scalar fieldsf r in Eq. ~22! this will lead to a non-
local effective action for the photon, which was studied
@28#, where we concluded that, although nonlocal, the the
is free of tachyons. Next, by comparing with the Lagrang
density written in terms of fermionic fields in Eq.~1! we
have the bosonization formulas for each fermion flavor~no
sum over repeated roman indices below!:

c̄ rgmc r~k!5emnknf r~k!, ~23!

2c̄ r~k!~k”1m!c r~k!5
1

2
f r

k2

P̃
f r . ~24!

Now some comments are in order. First of all, if for som
given flavor we do aU(1) transformation (c r→eiac r) in
the expectation valuêj m

r & and use any regularization schem
preserving theU(1) symmetry, it will be easy to derive th
Ward identity^ j m

r ]n j n
r &50 which implies the tensor structur

^ j m
r j n

r &}umn , and consequently we will have Eq.~23!. So
the current is topological due to theU(1) global symmetry
and that must hold nonperturbatively. On the other hand,
bosonization rule~24! is only approximate since the full ex
pression would require, in our approach, a complete kno
edge of the fermionic determinant, which is possible only

m→0. In this caseP̃→1/p and we end up withN massless
scalar fields topologically coupled to the gauge field. Integ
tion over the gauge field leads toN21 massless scala
modes and one mode withm25e2/(Np1g2), thus repro-
ducing the particular case of the so called Schwing
Thirring model for N51 @29#, as well as the Schwinge
model resultm25e2/p for g→0 andN51. In the opposite
limit of large mass (z→0) we havep̃→22z/3 at leading
order. Substituting back in Eq.~22! we arrive at a divergen
result atm→` which is in agreement with them→` limit
of the corresponding sine-Gordon model. See@30# for a simi-
2-3
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lar comparison in the case of the massive Thirring mo
without electromagnetic coupling.

IV. BOSONIZATION FROM TWO-POINT CORRELATORS
IN DÄ3

In D53 dimensions the vacuum polarization tensor~5!
calculated by means of dimensional regularization is giv
by

Pmn~k!5 iP1Emn1P2k2umn, ~25!

with Emn[emnrkr and, in the range 0<z,1,

P152
1

8pz1/2
lnS 11z1/2

12z1/2D ,

P25
1

16pmzF12S 11z

2z1/2D lnS 11z1/2

12z1/2D G , ~26!

while for z,0 we have

P152
1

4p~2z!1/2
arctanA2z,

P25
1

16pmzF12S 11z

2~2z!1/2D arctanA2zG . ~27!

In fact theP1 amounts to a regularization dependent fin
term @6,7#, which was taken equal to zero due to the dime
sional regularization used.

Substituting Eq.~25! in the general expression~4! we can
obtain the two-point functions

^ j m
r ~k! j n

s~2k!&

52
1

N Fk2S P21
P

Q̃
D umn1 iP1S 12

k2

Q̃
D EmnG

1~k2P2umn1 iP1Emn!d rs , ~28!

^ j m
r ~k!An~2k!&5

e

Q̃AN
@Pumn2 iP1Emn#, ~29!

^Am~k!An~2k!&5
gmn

lk2
1F e2P

k2Q̃
2

~11l!

lk2 Gunm2
ie2P1

k2Q̃
Emn ,

~30!

where we found it convenient to define

P5~e22k2g2!~k2P2
22P1

2!2k2P2 , ~31!

Q̃5k2@~e22k2g2!P221#22~e22k2g2!2P1
2 . ~32!

In analogy with theD52 case, we use for theU(1) current
a general decomposition in the momentum space

j a
r ~k!5eabgkbBr

g~k!1kaf r~k!, ~33!
12501
l

n

-

from which we get

^ j a
r ~k! j b

s ~2k!&52kakb^f r~k!fs~2k!&

1EagEdb^Br
g~k!Bs

d~2k!&

1kaEbd^f
r~k!Bs

d~2k!&

1kbEag^Br
g~k!fs~2k!&. ~34!

Multiplying the last expression bykakb, we conclude that
^f r(k)fs(2k)&50. Now, multiplying the resulting expres
sion byka, we haveEab^f r(k)Bs

b(2k)&50. A similar ma-
nipulation was used in the last section to derive Eqs.~15!,
~16!, and~17!. Concluding, we can certainly neglect the sc
lar fieldsf r50 and minimally bosonize theU(1) current in
D53 in terms of a bosonic vector field. The bosonic versi
of the current is once again of topological nature and ide
cally conserved. As in theD52 case, this happens becau
of the U(1) global symmetry of the fermionic Lagrangian
Taking f r50 and substituting the decomposition~33! in
Eqs. ~28! and ~29!, after some trivial manipulations we en
up with

^Br
g~k!Bs

d~2k!&52Crsg
gd1S C2

H2

k2 D
rs

ugd2
~H1!rs

k2
Egd,

~35!

^An~k!Bs
m~2k!&52S ieP1

ANQ̃
1D D

s

gnm2S eP

ANQ̃k2D
s

Enm

1Dsu
nm, ~36!

whereCrs andDs are arbitrary and

~H1!rs5 iP1d rs1
iP1

N S k2

Q̃
21D , ~37!

~H2!rs5k2P2d rs2
k2

N S P21
P

Q̃
D . ~38!

The arbitrariness ofCrs andDs shows that the bosonizatio
fields Br

m must be gauge fields, but the corresponding ga
symmetry is independent of the electromagnetic one. Ana
gous to the last section, we next derive a Lagrangian den
compatible with the two-point correlators~35!, ~36!, and
~30!. Let us suppose we have a bosonic Lagrangian den
LB(Am ,Br

n) of the form

LB~Am ,Br
n!5Br

mO mn
rs Bs

n1usBs
mEmn An

1AmAn~v1umn1v2gmn!, ~39!

whereO mn
rs has a general tensor structure in both moment

and flavor space,

O mn
rs 5arsumn1brsEmn1drsgmn . ~40!
2-4
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The quantities ars,brs,drs,us,v1 ,v2 are determined by
matching the two-point correlators derived from the gene
ing functional

ZB@Yn
r ,Km#5E )

r 51

N

DBr
m DAm expS i E d2x@LB~Am ,Br

n!

1Ym
r Br

m1KmAm# D , ~41!

with the correlators~35!, ~36!, and ~30!. Assuming that the
matricesars,brs,drs are symmetric and nonsingular, our fir
step is to perform the Gaussian integrals over theN vector
fields Br

n , which furnishes

ZB@Yn
r ,Km#5E DAm expH i E d2xF2

1

4
~Yr

m1urAbEbm!

3~O 21!mn
rs ~Ys

n1usE
nbAb!

1AmAn~v1umn1v2gmn!1KmAmG J . ~42!

The inverse operatorO 21 has the same structure as Eq.~40!:
(O 21)mn

rs 5ãrsumn1b̃rsEmn1d̃rsgmn , where the tilde vari-

ables are functions of the nontilde ones. In particular,d̃rs
5(d21) rs . Since we have the contractionsEmnEna5
2k2ua

m , Emnuna5Ea
m , it becomes clear from Eq.~42!, with

a little thought, that even after integrating overAm the only
term in logZB quadratic in the sourcesYr

m and contracted via

the metric tensor is2 1
4 Yr

mYs
nd̃rsgmn . Therefore the two-

point functions~35! require the identificationCrs5(d̃/2)rs

5(d21/2)rs.
Given that the matrixCrs is arbitrary, in order to simplify

the calculations, we have chosen it proportional to the id
tity, and consequently we reduce the undetermined par
eters in our original ansatz for the bosonic Lagrangian si
drs5dd rs. For analogous reasons, after integrating overAm ,
the crossed terms in the sourcesYr

m and Kn are contracted
only by the tensorsEmn and umn . Thus, the term propor
tional to gnm on the right hand side of the correlation fun
tions ~36! must vanish, which fixesD52 ieP1 /ANQ̃. Fi-
nally, comparing the other parts of the correlators~35!, ~36!,
and ~30! with the final expression for logZB one can deter-
mine the quantitiesars, brs, andus as functions ofd, which
remains unfixed. We spare the reader the lengthy de
since they are totally technical and not very illuminating. W
stress only that no further simplification hypothesis is us
and no expansion is made in either 1/N or any of the cou-
pling constants. In those intermediate steps all correlators
treated as if they were exact.

In order to make the final answer for the bosonic Lagra
ian density more familiar, we have redefined the unfixed
12501
t-

-
-

e

ils

d

re

-
-

rameterd[2l̃k2/2. In the momentum space we have

LB~Am ,Br
a!52

1

2 F (
r 51

N Br
a~k2P2uab1 iP1eabgkg!Br

b

k2P2
22P1

2

1
g2

N S (
r 51

N

Br
aD k2uabS (

s51

N

Bs
bD G

2
AaAb

2
@~12l!k2uab1lk2gab#

1
e

AN
emngkgAm(

r 51

N

Br
n

1(
r 51

N Br
aBr

b

2
@ l̃k2uab2l̃k2gab#. ~43!

Notice thatl and l̃ are interpreted as independent gau
fixing parameters such that the generating functional~41!
reproduces the correlation functions~30!, ~35!, and~36! with

Crs52
1

l̃k2
d rs , ~44!

D52
ieP1

ANQ̃
. ~45!

Integration over the vector fieldsBr
a will lead to an effective

electromagnetic theory, which was also studied in@28# ~see
also @23#!, where we analyzed its pole structure and co
cluded that no tachyons appear, just as in its two-dimensio
counterpart~22!.

Comparing Eq.~43! with the original Lagrangian~1! writ-
ten in terms of fermionic fields, we have the bosonizati
rules for each fermion flavor (r 51,2, . . . ,N):

c̄ rgmc r~k!5emnaknBr
a~k!, ~46!

2c̄ r~k!~k”1m!c r~k!52
1

2
Br

a ~k2P2uab1 iP1Eab!

k2P2
22P1

2
Br

b .

~47!

As in theD52 case, we obtained Eq.~46! from the fact that
for each fermion flavor we have the tensor structu
^ j m j n&}aumn1bEmn , which was derived by calculating th
fermionic determinant up to quadratic order. However, t
tensor structure must hold beyond that approximation~non-
perturbatively! as a consequence of the Ward ident
^ j m]n j n&50, which must be true also inD53, by using a
gauge invariant regularization. On the other hand,
bosonization rule~47! holds as a consequence of the qu
dratic approximation for the fermionic determinant. Takin
m→0 ~or z→2`) in the expressions~27! we haveP1→0
and P2→1/(16A2k2). Plugging these values back in Eq
~46! and ~47!, we recover the result of@8# with b51/4 and
u50 in that reference, which deals with massless fermio
2-5
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Our rules~46! and ~47! also agree with the case of massi
fermions treated in@15#. We stress, however, that in both@8#
and @15# only free fermions were considered, while our r
sults were derived for an interacting theory with Thirring a
electromagnetic couplings. This indicates that our boson
tion rules are rather universal at the quadratic level. In
opposite limit of heavy fermions (k2/4m2)5z→0 in Eq.
~26! we have, at leading order,P2→0 andP1→21/(4p)
which leaves us@see Eq.~47!#, with a bosonic local and
topological Chern-Simons Lagrangian for the fieldBr

m , in
agreement with the findings of@10# ~see also@11# and @12#
for higher orders!.

V. CONCLUSIONS

We derived bosonization maps for theU(1) currents and
the fermion Lagrangian densities for both QED2 and QED3
with N fermion flavors and Thirring self-interaction. Bot
results hold for finite fermion masses and no derivative
pansion ink/m is made as in@31#. By turning off the inter-
actions we can reproduce the results of@15# for a particular
choice of the regularization parameter in that reference.
calculations show that theU(1) currents, when written in
terms of bosons, must be identically conserved~topological!
as a direct consequence of the Ward identity^ j m]n j n&50,
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which is true nonperturbatively if there is noU(1) anomaly.
In particular, there is no need to look at higher point fun
tions or compute the fermionic determinant beyond the q
dratic approximation to confirm that. On the other hand, o
maps for the Lagrangian densities~24! and ~47!, which are
also independent of the interactions, hold only perturbativ
due to our quadratic approximation for the fermionic det
minant, which amounts to neglecting terms of order high
than (1/N)1/2 in the fermionic determinant and considering
most two-point current correlators to derive the bosonizat
rules.

Finally, we should mention that the results derived he
could have been obtained in a technically more direct w
along the lines of@20# ~see also@32#! but the approach use
here does not use any auxiliary field and clarifies the fun
mental role of the two-point correlators. It might also b
useful ~work in progress! for deriving approximate bosonic
maps for other fermion bilinears, like the mass termc̄c in
D53, which apparently could not be done using the a
proach of@20#.
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