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Microscopic approach for the n-d efFective interaction
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A three-boson model is applied to the nucleon-deuteron (n-d) system to construct an effective
energy-dependent two-body potential in configuration space. The three-nucleon observables at low

energy are well reproduced with just one free parameter (related with the range of the nucleon-
nucleon interaction). We show that the present results give support to a previous phenomenological
n-d potential.

I. INTRODUCTION

The present status of theoretical study of three-nucleon
systems requires one to solve the Faddeev equation with
inclusion of three-nucleon forces added to a realistic
two-nucleon interaction in order to reproduce the experi-
mental three-nucleon observables. The extension of this
procedure for more nucleons is a very difBcult task be-
cause the number of degrees of freedom increases and the
exact approach becomes more and more involved. For
more complex systems, using a short-range nucleon-
nucleon interaction, one can construct a microscopic
nucleon-nucleus potential, which has a small diffusivity.
A phenomenological nucleon-nucleus optical potential is
usually constructed by fitting the parameters of a com-
plex Woods-Saxon potential to the experimental elastic
scattering data. But this simple method does not work
for the spin doublet neutron-deuteron (n d) syste-m. In
fact a short-ranged n doptica-l potential fitted to repro-
duce correctly the triton binding energy (E, ) and the spin
doublet scattering length (a„d ) fails dramatically on
several accounts. ' First, it fails to reproduce the low-
energy scattering phase shifts and even produces an
effective range of wrong sign. Second, it fails to produce
the excited virtual state of triton. Finally, the pole in en-
ergy of the effective range function, which is expected to
appear below the scattering threshold, appears in the
wrong place. However, all these diSculties can be solved
satisfactorily by a Faddeev calculation using three-body
dynamics. The peculiar properties of the n-d system,
such as, the behavior of the effective range function and
the correlations among various low-energy observables
led people to think that they were manifestations of the
detailed three-body dynamics. Any contribution which
shows that this long time belief may not be correct is im-
portant for the development of a microscopic n-d optical
potential.

Recently, it has been shown that the low-energy n-d

system can be treated without using three-body dynam-
ics. The important role of such a model was the intro-
duction of a phenomenological n-d optical potential not
limited to the usual class of potentials such as experimen-
tal, gaussian, Yukawa, and Woods'-Saxon types. The
very small binding energy of deuteron on the nuclear
scale and correspondingly its large size imposes that the
n-d optical potential should not decay as rapidly as the
usual potentials. Physically, the one-nucleon exchange
part of the n-d optical potential should have a long-range
tail: Two nucleons in the trinucleon system experience
an effective interaction well outside the range of nucleon-
nucleon interaction by exchanging the third nucleon.

It has been conjectured that in the two-body model of
Ref. 2, the long-range part should have the form of
exp( —Ar)lr, where A is given by the deuteron binding
energy, as also suggested in Refs. 1 and 3. By "long
range" we mean that the behavior of the interaction is ex-
ponentially much weaker than the normal nucleon-
nucleon range of the interaction. The short-range part
which depends on some average properties of the
nucleon-nucleon interaction was chosen as constant.
Holding the deuteron energy fixed and modifying these
average properties correspond to changing the interior
part of the neutron-deuteron optical potential. In calcu-
lations involving three-body dynamics these correspond
to modifying the off-shell properties of the nucleon-
nucleon interaction, introduction of a tensor force model,
or a three-body force. The correlation between a„d and
E, (Phillips' curve ) was very well reproduced by this
model which has only two body dynamics.

After the use of the above model we posed the follow-
ing question to ourselves: Would it be possible to derive
from a three-body model (off-the-energy-shell effects in-
cluded) any equivalent two-body effective interaction? To
answer this question we followed a suggestive comment
by Noyes, and based on the zero range theory we de-
rived the tail of such an interaction, with some approxi-
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mations using as the effective n-d wave function the over-
lap of a deuteron-triton wave function. In the asymptotic
limit this overlap function must be equal to the spectator
function which enters into the separable model potential
equations for the triton. So, to get the effective long-
range behavior of the n-d potential we conjectured that
both approaches should be equivalent. In fact, the form
of the n-d potentials presented in Refs. 2 and 7 are
different but have the same qualitative features in their
long-range behavior. But as the short range of the model
of Ref. 7 is not yet parametrized with the essential infor-
mation about the nucleon-nucleon force range it is not in
a suitable form to produce the three-nucleon observables.
Also the final drastic analytical approximation of the ex-
changed term for the case E&%0, in Ref. 7, does not seem
to be enough to give us the correct effective radial depen-
dence of the potential. These were the facts that led us to
look for the present approach directly based on the spec-
tator function.

The main purpose of this work is to give a clear
justification of the phenomenological approach of Ref. 2,
through the use of the spectator function to obtain the
effective two-body wave function. We modify the zero-
range equations for a three-boson system introducing a
cutoff chosen as (p +q ) ', where q is the n-d relative
momentum. It is interesting to point out that the value
of p that fit the three-nucleon observables is of the order
of the nucleon-nucleon force range. In this aspect we in-
terpret p as the short-range information that was missing
in the zero-range model.

We intend to compare the present model with that em-
ployed in Ref. 2, but this approach gives an energy-
dependent potential. ' So we have to clarify how a Phil-
lips' curve is generated in this case. For a given binding
energy of the triton, we calculate numerically the corre-
sponding n dpotenti-al by choosing the p parameter in or-
der to fit the experimental value of a„z. This process is
further applied for distinct values of the triton binding
energy keeping the p value fixed and obtaining distinct
values of a„&.

Our results show a good agreement with the Phillips'
curve calculated previously by other models, enforcing
the argument that the correlation between E, and a„z is
not dependent on three-body dynamics. Another impor-
tant aspect of such effective n-d interaction is its applica-
tion for the construction of microscopic deuteron-nucleus
optical potentials as already discussed in Ref. 2.

We present the model in Sec. II; the numerical results
in Sec. III and our conclusions in Sec. IV.

II. THK MICROSCOPIC MODEL
FOR THK n-d POTENTIAL

As in a previous work our derivation starts from the
zero-range model (ZRM). Here we briefly describe the
ZRM which exploits the limiting case of zero-range
forces between the nucleons. In this model the nucleons
have free propagation except when they overlap. As a
consequence of this hypothesis, if two nucleons interact,
the third nucleon (spectator) receives from the remaining
pair of nucleons only the asymptotic information contain-
ing in the on-the-energy shell two-nucleon scattering am-
plitude. The ZRM is the simplest approach for handling
the three-nucleon system involving its dynamics. In
terms of the three-nucleon Faddeev equations, the ZRM
means replacing the complete off-the-energy shell two-
nucleon t matrix by the on-the-energy-shell t matrix.

In the ZRM the equation for the spectator function for
a three-boson system in the bound state reads

(E )1/2+(E + 3q2)1/2

y(q) =
2'1T p +g

d pX
2 2 y(P),E +e'+p'+q p

where E„ is the deuteron binding energy, I2 = ', (E, Ez)—. —
Our units are such that A and the nucleon mass are equal
one. The three-boson system in the ZRM has a bound
state collapse (Thomas EfFect)' unless a cutoff in the
momentum integration is introduced. As the third par-
ticle approaches the two-particle subsystem there is grad-
ually an increase in the interaction with each particle in-
dividually, and in Eq. (l) the free propagation of the sys-
tem must be modified for typical distances less than the
two-particle interaction range. The cutoff has this mean-
ing. Also it plays the same role as the parameter that has
dimension of inverse range in the case of the simple
Yamaguchi form factor, in the three-body system. This
means that if the range goes to zero, the three-nucleon
system collapses. ' In dealing with such an equation we
choose a Yamaguchi form factor to take care of the
short-range region in the three-nucleon coordinate space.
In our model we simulate the triton as a three-boson sys-
tem to simplify the calculation but retain its essential
physics. The minimal physical ingredient of y(q) is a
simple pole at q =ipThe int, e. gration in Eq. (l) is per-
formed by replacing y(p) by (p +p )

' on the right-
hand side, and inserting the cut as (P +p2)

y(q) = arctan,
q(p +q )(P +q ) q +4[P+(E,+ ,'q )' )[p+(E, + ,'—q )' )—

The above approximation for the spectator function in-
corporates two important features of the three-boson sys-
tem, namely the Efimov and Thomas effects' . The first
one is connected with the change of the asymptotic form
of the wave function which (for finite-range potential) is

I

given by the pole at q =ip. One can see the Efimov limit
as the limit when Ez goes to zero. In this case, the Eq.
(2) no longer has the simple pole related to the energy
characteristic of the short range of the interaction, and a
longer range starts to appear which can easily be seen by
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taking its Fourier transform. In the Efimov limit, we
have just a square-root cut starting at q =i@ modifying
the asymptotic form of the wave function. This gives rise
to a long-range potential. The Thomas effect is related to
the limit of P going to infinity. In this case, for q going to
infinity, the spectator function exhibits q behavior,
characteristic of a Dirac delta potential type, which for
three dimensions causes the binding to collapse.

The wave function in configuration space is given by
the Fourier transform of Eq. (2)

+(r) =f exp(iq r)y(q)d q, (3)

where r = ~r~ is the n-d relative distance. The effective n

d interaction is therefore obtained by inverting a two-
body Schrodinger equation for 4,
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III. NUMERICAL RESULTS

The value of the only parameter (P) we have in the
model is 6xed by the experimental value of the nucleon-
deuteron scattering length (a„d =0.65 fm), which is nu-

merically calculated using the potential, Eq. (4), with the
experimental values of Ed(2.226 MeV) and E,(8 48 Me.V).
The fitted value of P is 1.19 fm ', and the corresponding
value of P ' is consistent with the range of the nucleon-
nucleon interaction. We have also calculated the asymp-

where 4(r)=r4(r).
The present model has only one free parameter P, that

can be associated with the range of the two nucleon in-

teraction, as we observe in the next section.

FIG. 2. The Phillips' plot for E, against a„q. In the present
result (solid line) and in the calculation of Ref. 2 (dashed line).

totic normalization parameter for the triton, and we ob-
tain 1.9, in agreement with the accepted value" of 1.82.
The numerical integration of Eq. (3) needs some care for r
equal to zero. In this limit we introduce in Eq. (3) a
high-momentum cutoff of Gaussian type exp( —aq ),
with a=0.001 fm . This was necessary due to our nu-

merical integration method, but we have checked that the
results we get for Fq. (3) are cutoff' independently by per-
forming the same calculation using a=0.01 fm with the
same results.

The numerical n-d potential we have obtained for
E, =8.48 MeV is shown in Fig. 1(a) in comparison with

that proposed in Ref. 2. The curves display a different
behavior up to r=2 fm. As we pointed out before, the re-
gion (r (2 fm} where the information about two nucleons
is present is not important for the three-nucleon observ-
ables once the triton binding is given. We have also
displayed in Fig. 1(a) our early analytical results obtained
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FIG. 1. The nucleon-deuteron potential. (a) Solid line —the
present result for E, =8.48 MeV; dashed line —the phenomeno-
logical potential of Ref. 2. Also, the dotted line reflects the po-
tential of Ref. 7 for Ed =0, V(r)= —{3p)/(4r) —3/{Sr ). The
dashed-dotted line is the direct term of the potential given by
Eq. (7) of Ref. 7 [in this question a multiplicative factor equal to
( —)' is missing]. (b) Medium-range behavior of the present re-
sult for E, = 10.5, 8.5, and 6.5 MeV as indicated.
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FIG. 3. (kcot5) ' as a function of the neutron lab energy; in
the present result for E, =8.48 MeV and a„d =0.65 fm (solid
line), Ref. 12 (solid circles), and the experimental results from
Ref. 14 (empty circles).
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changes the form of the potential at short range. The re-
sults for kcot5 for the doublet state are shown in Fig. 3
and are again in a good agreement with a separable mod-
el calculation' which yields a„d =0.65 fm. We notice a
deviation near the deuteron breakup threshold because at
this point an irregularity appears' and our model does
not take account of the breakup channel. The kcot6
dependence of the scattering length for laboratory ener-
gies of 1 and 3 MeV, presented in Fig. 4, reproduces pre-
vious three-nucleon separable model calculation. ' ' We
can also observe the consistency with the experimental
data'" below the threshold.

IV. CONCLUSIONS
FIG. 4. The correlation between (kcot5) and the n-d scatter-

ing length: Our results (solid line) and in the calculation of Ref.
12 for two energies as shown in the figure (solid circles).

in Ref. 7. As can be seen in this figure, just the direct
term obtained in Ref. 7 yields good qualitative behavior
for the potential. In the limit Ed~0 we have deduced
only the direct part of the contribution for the effective
potential. The simple analytical expression for Ed&0 in
Ref. 7 gives us the longer-range contribution in terms of
the nucleon-deuteron distance. But, as such a term is
strongly energy dependent it may not be enough to give
us the correct effective r dependence. (In this respect we
observe also that for Ed =0 the energy dependent term of
the approximation obtained in Ref. 7 alone does not yield
the correct behavior of the effective potential. ) Other
terms may be also important. Thus, if we include the ex-
changed term of Ref. 7 for Ed =2.225 MeV the result be-
comes poor. This fact, however, does not appear in the
present context, using the spectator function. The
present potential for medium range (2 fm&r &6 fm) is
very sensitive to the values of the triton binding, as is
shown in Fig. 1(b) for E, = 10.5, 8.48, and 6.5 MeV.

In Fig. 2, we show the Phillips plot for our potential.
The small deviation from a straight line is due to the vari-
ation of the form of the potential in the medium-range ra-
dius with the triton energy. The calculation of Ref. 2

In this work we have used for the three-boson system a
model based on the zero-range theory as a starting point
to get an effective n-d potential. In this framework we
need to introduce one free parameter, related to the range
of the nucleon-nucleon force, which is obtained by the
known values of the triton and deuteron bindings ener-
gies and doublet n dscat-tering length.

Our numerical calculation gives a justification of an
early phenomenological potential used for the low-
energy three-nucleon system. We note a difference com-
ing from the dependence of the potential on the triton
binding in the region of 2-6 fm. We have obtained a
good description of the low-energy correlations between
various observables. This emphasizes the origin of these
correlations as coming from the existence of a universal
long-range interaction for the tri-nucleon system. Some
improvements are still needed in order to go further in
the energy necessary to complete this description above
the breakup, where, for example, a curious irregularity
appears. ' Work is in progress along these lines.
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