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New possibilities for the gauging of chiral bosons

E. M. C. Abred
UNIFEI, Av. BPS 1303, Pinheirinho, 37500-903, Itajd4G, Brazil
and FEG/UNESP, P.O. Box 205, 12516-410, Guaratingus® Brazil

A. de Souza Dutra
FEG/UNESP, P.O. Box 205, 12516-410, Guaratingu&a, Brazil

C. Wotzasek ’
FEG/UNESP, P.O. Box 205, 12516-410, Guaratingu&®, Brazil
and IF, UFRJ, P.O. Box 68528, 21945-970, Rio de Janeiro, RJ, Brazil
(Received 25 October 2002; published 27 February 2003

We study a new mechanism for the electromagnetic gauging of chiral bosons showing that new possibilities
emerge for the interacting theory of chiral scalars. We introduce a chirally coupled gauge field necessary to
mod out the degree of freedom that obstructs gauge invariance in a system of two opposite chiral bosons
soldering them together.
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In the last few years there has been a great amount afile gauge the system through the chiral derivative substitu-
investigation into the proper way to gauge 2D self-dual fieldgtion rule 9. ¢—d, ¢ andd_¢—D_¢ whereD.p=0d. ¢
[1-7] and itsd-dimensional extensiof8,9]. Despite the suc- +A.. The EM for the scalar field now reads. D_¢~E
cesses of these indirect gauging schemes for the Floreaniniith E being the electric field on the line. Notice that the
Jackiw (FJ) model, the results reported [i2] show clearly  imposition of the gauge invariant constrairi? (¢~0) be-
that the explicitly covariant model for chiral bosons put for- comes inconsistent with the field equation due to the appear-
ward by Siegel[1] also suffers from the same difficulties ance of the gauge anomaly. Suppose that the equations of
regarding the coupling to gauge fields. In this work we showmotion for some general chiral theory reads, before gauging,
how the results already reported in the literature can be ob=d_¢ =0, with L being the differential operator convenient
tained directly from first principles using the compatibility for the Euler-Lagrange matter equation. If the gauging pro-
between field equations and chiral constraints as a guidingedure chosen is, for instance, the direct substitution of par-
rule. We also show that, once this rule is relaxed, new andial derivatives by their covariant counterparts, the outcome
interesting possibilities emerge. These new gauging rules a@fter gauging will readLD_¢~E, displaying the above-
the main result of this paper. mentioned inconsistency. For chiral bosons, the question one

We will show the incompatibility between the gauge in- may ask is if there exists any gauging procedure in which the
variant constraint and the field equations. Then we introducehiral constraint remains compatible both before and after
a gauge field, chirally coupled to chiral matter, which is nec-turning on the interactions. As a matter of fact, by examining
essary in order to sold¢t0] together a right and a left chiral the Lagrangian density proposed [8,7], L=, ¢d_¢
boson. Our main result follows, where we use the dual pro—d_¢d_¢+2e(d.p—Jd_¢d)A_+gauge terms, we get, as
jection scheme, proposed [i1,12, to study new gauging the EM for the matter field9;D® #=0 (whereD% ¢=4.
schemes. Last, final discussions and perspectives are deeA.), and this equation shows that the imposition of a
scribed. gauge invariant chiral constraint is not obstructed by the

In the literature about this subject, the basic difficulty in gauge anomaly. To obtain this result from first principles we
chiral boson gauging is pointed out to be the loss of Lorentzeed to find out what the direct gauging scheme leading to
covariance which refrains us from using the minimal substithis action is. This we do next using the iterative Noether
tution scheme. Itis in fact easy to see that there is an incomapproach. To keep the most generality in the formulation of
patibility between the chiral constraint and the matter fieldthe problem, we consider the case of a scalar field minimally
equation. For instance, the action for a flat space-time freeoupled to a background gravitational field.
scalar field in the light-front coordinatdsur notation:x* The action for the standard minimal coupling of a scalar
=(IN2)(x°=xY), €' " =€ T=1] is L=, ¢Jd_¢. The field to a metricg,,, is
chiral constraint _ ¢~0 is consistent with the equations of
motion (EM) before gauging, but not after. Indeed, suppose

Lo=3\=99""0,¢d,¢. @
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2N__ T+Np N rated affine invariances for the left and right chiral sectors.
IN—gg¥ =\ T+x. o\ 2 , (20 These symmetries are reflected by the fact that both the right
Pt A and left chiral currents have only one nonzero component

wherex=(1-\, .\ _)~L For definiteness, from now on, Jy=J)(x") and J(g=J(r)(x"), since _J;;,=0 and
let us consider the case of left chiral models. Theft) FJ ~ d+J(r=0 and generate two commuting affine algebras.
and Siegel models can be obtained simply by truncation oHowever, in the chiral case, only one of these currents keeps
this metric as\__=0 for Siegel and__=0\, . =—1for  this property, i.e., eithed  ,=J.,(x") but J g #J ) (x")
FJ, and this will be called thehiral limit. By computing the — or J;y#J.,(x") butJ g =Jx(x"). This can also be seen
EM for the ¢ field we observe thatbefore gaugingthe from the fact that, for chiral theories, while the vector and
chiral constraint cannot be imposed compatibly for an arbi-axial-vector transformations are global symmetries, the af-
trary metric's components, differently from what happens infine transformations are semilocal symmetries. Take, for in-
the flat space-time case. However, if we restrict ourselves tetance, the case of a left Siegel boson. The semilocal shift
the (left) chiral model limit above, wherd __=0, then we ¢— ¢+ a(x") certainly leaves the action invariant, bt
have compatibility for the free theoryL¢_¢=0 above — ¢+ a(x™) does not. The Noether current is immediately
with the chiral constraint 9_¢=0. This is easily identified asJ” =2(d,¢+\ ., Jd_¢) andI*=0 which is
seen if we examine more closely the EM of Ed) before  easily seen to be thgeft) chiral limit ofJ(*L) andJ , above.
gauging, G=0, {N2N__d,d+(L+N N__)d_o]} We shall examine next the coupling of all these four cur-
+d_{N2N, d_dp+(L+N, N__)d.¢]}. The chiral con- rents with an external electromagnetic field. We do this itera-
straint is not compatible with the EM. However, the tively, introducing the necessary Noether counterterms. Let
restriction to the chiral limit gives 0=(d,+d_A,.  us firstexamine the coupling with the vector currdf and
+N;,d)d-¢ for Siegel's EM and 6-(d,—d_)d_¢ for ., in the standard wayLo—L1=Lo+AL I +A .,
FJ's EM, which shows compatibility with_ ¢~0. After the  wherer, is defined by Eq(1). The global vector symmetry
Noether gauging witt{left) chiral currents(see below, the  present inz, has been lifted to a local symmetry &y. We
result is 0=(d,+d_N..+N,,.d_)D_¢ for Siegel's EM  gpserve that, after gauging, the vector current remains con-
and 0=(d,—d_)D_¢ for FJ's EM. We see that fofleft)  served, but the axial-vector current does not. A direct calcu-
chiral couplings, _the gauge invariant constraint can be imiation shows thaw,Jfsy=d_A, —d,A_=E, which, again,
posed over the field equations without being obstructed byeing independent of the metric elements, is valid for all
the gauge anomaly. This is the only consistent possibility folases. By computing the EM faf, we clearly see that the
the (left) chiral boson. original compatibility between the constraint and EM has

To implement the Noether procedure we need to com.putgeen destroyed for gauging with vector curre]f(;‘, andJ;,
the conserved currents associated to the global symmftrles 8fie to the presence of the anomaly. Therefore, we have to
the model. The axial-vector current for E@) is Ji)  rule out vector current gauging as inappropriate for chiral
:)\[2)\__ﬂ+¢+(1+)\++}\__)a_¢] and J(A) theories.
=N[2\y - ¢+ (1+N A__)d, ] Defining the vector | et us consider next the case of axial-vector coupling.
current as dual to the axial-vector current is not really arhe free action changes toﬁo_)£1:£0+A+J(+M
restriction of our method since this is a feature of two dlme_n—+A7J(fA) . Differently from the vector case, under an axial-
sions. In any case, one can show that in the non-Abeliage v, transformation the actiofy does not remain invariant
case, where the vector current can be defined as a Noethgr, ic  variation is given by 8C;=—S{\[\__AZ
current, everything works as discussed here. Hence, the VEG, A2 1L n ALA 11. A further modification of

; ; ; — * ++A- ++ AL A [y

tor current is defined as dual to the axial odg,= *J(4), the action as
where the usual Hodge transformation must be generalized
to *Jfa == 09""€,\ I, in order to take into account the

presence of the gravitational background. A simple calcula- L1— Lo= L1+ —— [)\__Ai +)\++A2_
tion shows thatl\,=—d_¢ andJ.,,=d, ¢ are topologi- I=Aih o
cally conserved, as they should be. Observe that the vector F(1HN A )ALA] 3

current is metric independent, being the same for the chiral

models_ defined k_)y truncation of the metric. . leaves the actiof, invariant under an axial-vector transfor-
Having the axial-vector and vectorial currents in hand, Wey a0 1t is simple to check that here the axial-vector cur-
are now in p93|t|o+n to compute the right and left chiral CUrrent remains conserved, while the gauge coupling modifies
rents. We findJq)=2A__MA;.d-¢+d.¢) and i) the vector current, which now fails to be conserved. Finally,
=2N(N;4d-¢p+d.¢) for the left current andJry,  py checking the EM, one notices the incompatibility of the
=2 NA-_d,9p+d_¢) and (R=2\M(A__d,é  gauged constraint with the field equation, which also rules
+d_¢) for the right current. Observe that tlikeft) chiral  out this coupling as inappropriate for the chiral models.
bosonlimit (A__=0) destroys the](t) component, leaving We are then left only with the possibilities of chiral cur-
the left current holomorphically conserved, while the rightrent couplings. We have explicitly checked that for left chiral
chiral current has both components nonvanishing. This i®osons, the coupling with the right chiral current results in-
certainly a desired result for the chiral case. In fact, in the flatcompatible. Now, let us work out explicitly the coupling of
space-time theory for the free scalar field, there are two sepahe left chiral current and verify that this is the only possible
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consistent way of coupling. The Noether procedure therspace component of the gauge field, i&.is the so-called
gives £0—>£1=£0+A+J(+L)+A,J(’L) whose variation reads soldering field, an auxiliary field that will be eliminatéuh-

5£1=)\[(2)\++)\,,A+o’?,a+2A,ﬁ+a)—5()\,,Ai tegratedl through the field equationér through the path
+X.,A?)]. The second term can be reabsorbed into a reintegral, as below Although each individualgauged action
definition of the action as is variant under a gauge transformation, as we have seen in
the last sectiorjsee Eq.(4)], one can verify that the new
Ly Lo=Ly+ N, A2 +N_ A2 (4) actionf=Ly +L; —2A%is indeed invariant. The last term

is a contact term that compensates for the noninvariances of

: . I . each chirality. Now, we can integrate out the gauge fisld
but the first piece cannot be eliminated by any choice of a exp(fd2W) = [[dAlexp([d?xL) to obtain W

Noether counterterm. This is true even for the truncated chi® . b _ ]
ral limit but it is hardly a surprise since the gauged action for= 2 ,$“®, which is the action for the scalar field
chiral models is not expected to be gauge invariant. How= ¢ —¢_ defined as a combination of a right and a left
ever, this action has the nice property of having its varianc&hiral boson.
independent of the matter fields. In this section we consider another approach to the chiral
The important point to observe is that the truncation pro-gauge problem based on the dual projecfibh 12| of scalar
cess used to go from the nonchiral to the chiral case does néiglds. The basic idea in this scheme is to gauge the scalar
change the nature of the coupling, which means that the vedheory, using the obvious covariance that it possesses, and
tor, axial-vector, and chiral couplings studied above remairihen “break” the basic fields, in phase space, into its chiral
the same after truncation. This is certainly different from thecomponents. For definiteness, let us consider a well-known
projection process using chiral constraints that transform, fogeneralized chiral SMGCSM)
instance, the vector coupling into a chiral coupling.
It must be pointed out that the FJ chiral limit 65 in Eq. — [ 1+ ys 1—ys
(4) is identical to that in Refd6,7], obtained via left projec- EZ‘I’V”(W,ﬁ eRA,uT_"eLAMT)\Pr
tion of the chiral Schwinger modéBM), but the other limits
here are new results. In particular we emphasize that we digihere ¥ is a two-component spinor
not invoke the chiral SM at any level, but derive our result

from first principles. y
Finally, we believe that for chiral boson actions which use \]f:( R) ,
infinite auxiliary fields[5] (the equivalence between both i

proposals was demonstrated in Rgf3]), the procedure is q q h | q
the same, but now we have a sum of infinite chiral currents®nd ¥ and yr are the Weyl components. lts guantum dy-

one for each field, which are embedded in an external eled?@Mics is €asily computed using the bosonized version after
tromagnetic field. Similarly, for the Paiti-Sorokin-Tonin & convenient redeﬁmgon of tr21e field€yoson=1/20, 3" ¢
(PST) formulation[14] of the Siegel chiral boson, it is not —&-Aud” ¢+ e, A €79, ¢+g"al2A A* , W2r1ere €r
difficult to see that that procedure also works. =1/2(e. +e ), e,=1/2(e. —e ), g°=(eZ +e})/2, anda
As a simple illustration of the use of the gauged theory,’S an ar_bltrary regulanzauon parameter. The interesting point
the property mentioned above is explored now in order tgn Working with the GCSM is that one can easily obtain the
solder together two bosons of opposite chiralities. Detaildour versions of the SM cons_ldered in the literature: vector
can be found in Ref10]. The soldering process is nontrivial SM (e-=0=€ =eg=¢€), axial SM (,=0=e_ =—eg
since the simple sum of the actions of a right and a left chira= ©). right chiral SM ¢, =0=e,.=e_=e), and left chiral
boson is not equal to the action of a single scalar field. =~ SM (eg=0=e.=—e_=e). The dual projection scheme
For computational convenience we use front-form vari-permits one to realize that the second-order differential EM
ables. In this coordinate system, the action for left and righfor the matter field coming from the actiofy,s,, contains
FJ chiral bosons reads, respectivelg )= . ¢’ both right and left moving solutions. Let us reduce this ac-

—(¢>’2i), where the overdot and prime have their usual sig-tIon o its first-order form as

nificance as time and space derivatives, respectively. We v 1 2 1,42
know, from their field equations, that these models have a L=mp=zm—z(d) —(e-Acte Aym
residual invariance under a semilocal transformatipn +(e Ajte Ay d + %AMM,WAV, (5)

—¢.=c¢.+a.(t). Therefore, if one defines a scalar field

as a combination of these chiral onesdas ¢, — ¢_, then whereA ,M MVAV:angMAM_(eiAO_F e+A1)2 andr is the
clearly the combination of the two semilocal transformationssecond field mentioned above obtained through Legendre
above will not lead to a vector transformation for the scalartransformation fromc,s,,. We observe that the fieldg
field, unless some constraint is imposed over each individuadnd 7 cannot be our chiral fields describing, independently,
component. This is the role played by the gauge field. Wahe right and left dynamics since they appeared coupled in
can then follow the gauging procedure described above tehe symplectic sector of E@5). We must therefore look for
obtain the action of an interacting chiral boson coupled to & linear combination of them that diagonalizes the action. If
gauge field through their chiral' left and right currents: re-we introduce the new fieldg andp as an SQ®) rotation of
spectively, Lo — L] =L, F2A(p.*+ ). Here A is the  the m and ¢ fields as
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proved that its spectrum is composed by a FJ particle and a

77) ( cosf sind\[ ¢’

L= . s PST version of the notofi2].

¢ —siné cosé\ p We are now in position to compare this result with the
chiral projection technique adopted in REf]. From the CTs

then we quickly realize that, in order to diagonalize the ac-defined above we getr—¢’'=—2p’ and 7+ ¢'=2¢, so

tion (5), we must haved= =/4, and consequently the follow- that the chiral constraintsr+¢’'=0 lead toe=0 and p

ing canonical transformation&CTe) [15] ¢'=¢’+p' and =0 as constraints, respectively. It should be observed that

m=¢'—p’, which we take as our definition of the chiral the chiral component eliminated through this process need
fields ¢ andp. In terms of these new fields the action for the NOt be a free component, so that one does not need to start

GCSM, Lposon NOW readslyosor=L,+ L,+ La Where L, with a chiral SM in order to get the gauged chiral boson. So

00 — 0212 o' A L= —bo' — 0?4 2e0n’A.  and except for some very awkward possibilities, any model will
(P_"D ¢ v Le £~ ° fp P RP At do. Finally, we must observe that the CTs above lead to a

La=12AMPA, With A =Ag* Ay, very sensible interpretation of the chiral bosansind p as

, There- are many intere_sting poi-nts to observe in this now eing the bosonized components of the Weyl fermions in the
diagonalized action. Notice that in the free case the chir

X ‘ CSM since they are coupled to the gauge field with the
fields satisfyd_¢=0 andd, p=0 so that they are, respec- g3me strength as their fermionic counterparts.

tively, left and right chiral modes. The actions for the free |, <qnclusion. in this work we have studied the problem
components are those proposed by FJ. Also, no matter whick ¢qpling self-dual scalar fields in 2D to an external elec-

model is in discussion, the interaction piece shows that thest‘?omagnetic field described by a vector potentg). We
fields only couple to a proper chiral combination of the eleC56 recognized the basic difficulty as an incompatibility
tromagnetic fieldA_ andA.. , respectively, but the coupling paryveen the gauge invariant chiral constraint and the field
constant is, obviously, model dependent. For the vector andq  ation for the matter field. Using consistency as a guiding
axial-vector SMs both chiral components are coupled to th‘?ule, we have worked out the coupling of gauge fields with
photon field but the chiral SM will leave one chirality free, itarent matter currents and observed that the only consis-
eithere whene, =0 orp wheneg=0. In all these cases the ent coupling for a left chiral matter is with a left chiral
mass term will change appropriately. What should be re¢rrent This explain the results obtained with the use of the
garded as the most important point is that this dual projectiorira| projector on the SM. As an application we verified that
shows the chiral bosons correctly coupled to the photon fielgh oger to solder together a left and a right chiral boson into
as proposed by Ref§6,7]. However, in our case we got the , gcqjar field, we musthirally) couple them to a gauge field

coupling of both chiralities at once. In the name of complete+h4; will mod out the degree of freedom that obstructs gauge
ness, analyzing the case of the chiral bosons models Wity ariance.

infinite auxiliary terms coupled to gravity, using the dual

projection, it was showi4] that this model has nonmover  This work was partially supported by Fundacde Am-
fields, the notongintroduced by Hul[16] to cancel the Sie- paro aPesquisa do Estado dedsBaulo(FAPESP and Con-

gel anomaly, which couple naturally with the gravitational selho Nacional de Desenvolvimento Cidieb e Tecnolgico
field. For the PST version of the Siegel chiral boson, it wasCNPg. CNPq and FAPESP are Brazilian research agencies.
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