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New possibilities for the gauging of chiral bosons
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We study a new mechanism for the electromagnetic gauging of chiral bosons showing that new possibilities
emerge for the interacting theory of chiral scalars. We introduce a chirally coupled gauge field necessary to
mod out the degree of freedom that obstructs gauge invariance in a system of two opposite chiral bosons
soldering them together.
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In the last few years there has been a great amoun
investigation into the proper way to gauge 2D self-dual fie
@1–7# and itsd-dimensional extension@8,9#. Despite the suc-
cesses of these indirect gauging schemes for the Florea
Jackiw ~FJ! model, the results reported in@2# show clearly
that the explicitly covariant model for chiral bosons put fo
ward by Siegel@1# also suffers from the same difficultie
regarding the coupling to gauge fields. In this work we sh
how the results already reported in the literature can be
tained directly from first principles using the compatibili
between field equations and chiral constraints as a guid
rule. We also show that, once this rule is relaxed, new
interesting possibilities emerge. These new gauging rules
the main result of this paper.

We will show the incompatibility between the gauge i
variant constraint and the field equations. Then we introd
a gauge field, chirally coupled to chiral matter, which is ne
essary in order to solder@10# together a right and a left chira
boson. Our main result follows, where we use the dual p
jection scheme, proposed in@11,12#, to study new gauging
schemes. Last, final discussions and perspectives are
scribed.

In the literature about this subject, the basic difficulty
chiral boson gauging is pointed out to be the loss of Lore
covariance which refrains us from using the minimal sub
tution scheme. It is in fact easy to see that there is an inc
patibility between the chiral constraint and the matter fi
equation. For instance, the action for a flat space-time
scalar field in the light-front coordinates@our notation:x6

5(1/A2)(x06x1), e125e2151] is L5]1f]2f. The
chiral constraint]2f'0 is consistent with the equations o
motion ~EM! before gauging, but not after. Indeed, suppo
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we gauge the system through the chiral derivative subs
tion rule ]1f→]1f and ]2f→D2f whereD6f5]6f
1A6 . The EM for the scalar field now reads]1D2f;E
with E being the electric field on the line. Notice that th
imposition of the gauge invariant constraint (D2f'0) be-
comes inconsistent with the field equation due to the app
ance of the gauge anomaly. Suppose that the equation
motion for some general chiral theory reads, before gaug
L]2f50, with L being the differential operator convenie
for the Euler-Lagrange matter equation. If the gauging p
cedure chosen is, for instance, the direct substitution of p
tial derivatives by their covariant counterparts, the outco
after gauging will readLD2f;E, displaying the above-
mentioned inconsistency. For chiral bosons, the question
may ask is if there exists any gauging procedure in which
chiral constraint remains compatible both before and a
turning on the interactions. As a matter of fact, by examin
the Lagrangian density proposed in@6,7#, L5]1f]2f
2]2f]2f12e(]1f2]2f)A21gauge terms, we get, a
the EM for the matter field,]1D2

e f50 ~whereD6
e f5]6

1eA6), and this equation shows that the imposition of
gauge invariant chiral constraint is not obstructed by
gauge anomaly. To obtain this result from first principles
need to find out what the direct gauging scheme leading
this action is. This we do next using the iterative Noeth
approach. To keep the most generality in the formulation
the problem, we consider the case of a scalar field minim
coupled to a background gravitational field.

The action for the standard minimal coupling of a sca
field to a metricgmn is

L05 1
2 A2ggmn]mf]nf. ~1!

A convenient parametrization of the metric is given by~ob-
serve that it does not correspond to a partial gauge fixing
it is consequence of the Weyl symmetry!

0-
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1
2 A2ggmn5lS 2l22 11l11l22

11l11l22 2l11
D , ~2!

wherel5(12l11l22)21. For definiteness, from now on
let us consider the case of left chiral models. The~left! FJ
and Siegel models can be obtained simply by truncation
this metric asl2250 for Siegel andl2250,l11521 for
FJ, and this will be called thechiral limit. By computing the
EM for the f field we observe that~before gauging! the
chiral constraint cannot be imposed compatibly for an a
trary metric’s components, differently from what happens
the flat space-time case. However, if we restrict ourselve
the ~left! chiral model limit above, wherel2250, then we
have compatibility for the free theory (L]2f50 above!
with the chiral constraint ]2f50. This is easily
seen if we examine more closely the EM of Eq.~1! before
gauging, 05]1$l@2l22]1f1(11l11l22)]2f#%
1]2$l@2l11]2f1(11l11l22)]1f#%. The chiral con-
straint is not compatible with the EM. However, th
restriction to the chiral limit gives 05(]11]2l11

1l11]2)]2f for Siegel’s EM and 05(]12]2)]2f for
FJ’s EM, which shows compatibility with]2f'0. After the
Noether gauging with~left! chiral currents~see below!, the
result is 05(]11]2l111l11]2)D2f for Siegel’s EM
and 05(]12]2)D2f for FJ’s EM. We see that for~left!
chiral couplings, the gauge invariant constraint can be
posed over the field equations without being obstructed
the gauge anomaly. This is the only consistent possibility
the ~left! chiral boson.

To implement the Noether procedure we need to comp
the conserved currents associated to the global symmetri
the model. The axial-vector current for Eq.~3! is J(A)

1

5l@2l22]1f1(11l11l22)]2f# and J(A)
2

5l@2l11]2f1(11l11l22)]1f#. Defining the vector
current as dual to the axial-vector current is not really
restriction of our method since this is a feature of two dime
sions. In any case, one can show that in the non-Abe
case, where the vector current can be defined as a Noe
current, everything works as discussed here. Hence, the
tor current is defined as dual to the axial one,J(V)

m 5 * J(A)
m ,

where the usual Hodge transformation must be general
to * J(A)

m 5A2ggmnenlJ(A)
l in order to take into account th

presence of the gravitational background. A simple calcu
tion shows thatJ(V)

1 52]2f and J(V)
2 5]1f are topologi-

cally conserved, as they should be. Observe that the ve
current is metric independent, being the same for the ch
models defined by truncation of the metric.

Having the axial-vector and vectorial currents in hand,
are now in position to compute the right and left chiral cu
rents. We find J(L)

1 52l22l(l11]2f1]1f) and J(L)
2

52l(l11]2f1]1f) for the left current and J(R)
2

52l11l(l22]1f1]2f) and J(R)
1 52l(l22]1f

1]2f) for the right current. Observe that the~left! chiral
bosonlimit (l2250) destroys theJ(L)

1 component, leaving
the left current holomorphically conserved, while the rig
chiral current has both components nonvanishing. This
certainly a desired result for the chiral case. In fact, in the
space-time theory for the free scalar field, there are two se
04770
f

i-

to

-
y
r

te
of

a
-
n

her
c-

ed

-

tor
al

e
-

t
is
t
a-

rated affine invariances for the left and right chiral secto
These symmetries are reflected by the fact that both the r
and left chiral currents have only one nonzero compon
J(L)

2 5J(L)
2 (x1) and J(R)

1 5J(R)
1 (x2), since ]2J(L)

2 50 and
]1J(R)

1 50 and generate two commuting affine algebr
However, in the chiral case, only one of these currents ke
this property, i.e., eitherJ(L)

2 5J(L)
2 (x1) but J(R)

1 5” J(R)
1 (x2)

or J(L)
2 5” J(L)

2 (x1) but J(R)
1 5J(R)

1 (x2). This can also be see
from the fact that, for chiral theories, while the vector a
axial-vector transformations are global symmetries, the
fine transformations are semilocal symmetries. Take, for
stance, the case of a left Siegel boson. The semilocal s
f→f1a(x1) certainly leaves the action invariant, butf
→f1a(x2) does not. The Noether current is immediate
identified asJ252(]1f1l11]2f) and J150 which is
easily seen to be the~left! chiral limit of J(L)

1 andJ(L)
2 above.

We shall examine next the coupling of all these four c
rents with an external electromagnetic field. We do this ite
tively, introducing the necessary Noether counterterms.
us first examine the coupling with the vector currentJ(V)

1 and
J(V)

2 in the standard way:L0→L15L01A1J(V)
1 1A2J(V)

2 ,
whereL0 is defined by Eq.~1!. The global vector symmetry
present inL0 has been lifted to a local symmetry inL1. We
observe that, after gauging, the vector current remains c
served, but the axial-vector current does not. A direct cal
lation shows that]mJ(A)

m 5]2A12]1A25E, which, again,
being independent of the metric elements, is valid for
cases. By computing the EM forL1 we clearly see that the
original compatibility between the constraint and EM h
been destroyed for gauging with vector currentsJ(V)

1 andJ(V)
2

due to the presence of the anomaly. Therefore, we hav
rule out vector current gauging as inappropriate for ch
theories.

Let us consider next the case of axial-vector couplin
The free action changes toL0→L15L01A1J(A)

1

1A2J(A)
2 . Differently from the vector case, under an axia

vector transformation the actionL1 does not remain invarian
but its variation is given by dL152d$l@l22A1

2

1l11A2
2 111l11l22A1A2#%. A further modification of

the action as

L1→L25L11
1

12l11l22
@l22A1

2 1l11A2
2

1~11l11l22!A1A2# ~3!

leaves the actionL2 invariant under an axial-vector transfo
mation. It is simple to check that here the axial-vector c
rent remains conserved, while the gauge coupling modi
the vector current, which now fails to be conserved. Fina
by checking the EM, one notices the incompatibility of th
gauged constraint with the field equation, which also ru
out this coupling as inappropriate for the chiral models.

We are then left only with the possibilities of chiral cu
rent couplings. We have explicitly checked that for left chir
bosons, the coupling with the right chiral current results
compatible. Now, let us work out explicitly the coupling o
the left chiral current and verify that this is the only possib
1-2
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consistent way of coupling. The Noether procedure th
givesL0→L15L01A1J(L)

1 1A2J(L)
2 whose variation reads

dL15l@(2l11l22A1]2a12A2]1a)2d(l22A1
2

1l11A2
2 )#. The second term can be reabsorbed into a

definition of the action as

L1→L25L11l11A2
2 1l22A1

2 , ~4!

but the first piece cannot be eliminated by any choice o
Noether counterterm. This is true even for the truncated
ral limit but it is hardly a surprise since the gauged action
chiral models is not expected to be gauge invariant. Ho
ever, this action has the nice property of having its varia
independent of the matter fields.

The important point to observe is that the truncation p
cess used to go from the nonchiral to the chiral case does
change the nature of the coupling, which means that the
tor, axial-vector, and chiral couplings studied above rem
the same after truncation. This is certainly different from t
projection process using chiral constraints that transform,
instance, the vector coupling into a chiral coupling.

It must be pointed out that the FJ chiral limit ofL2 in Eq.
~4! is identical to that in Refs.@6,7#, obtained via left projec-
tion of the chiral Schwinger model~SM!, but the other limits
here are new results. In particular we emphasize that we
not invoke the chiral SM at any level, but derive our res
from first principles.

Finally, we believe that for chiral boson actions which u
infinite auxiliary fields @5# ~the equivalence between bo
proposals was demonstrated in Ref.@13#!, the procedure is
the same, but now we have a sum of infinite chiral curre
one for each field, which are embedded in an external e
tromagnetic field. Similarly, for the Paiti-Sorokin-Toni
~PST! formulation @14# of the Siegel chiral boson, it is no
difficult to see that that procedure also works.

As a simple illustration of the use of the gauged theo
the property mentioned above is explored now in order
solder together two bosons of opposite chiralities. Det
can be found in Ref.@10#. The soldering process is nontrivia
since the simple sum of the actions of a right and a left ch
boson is not equal to the action of a single scalar field.

For computational convenience we use front-form va
ables. In this coordinate system, the action for left and ri
FJ chiral bosons reads, respectivelyL 0

(6)57ḟ6f68
2(f86

2 ), where the overdot and prime have their usual s
nificance as time and space derivatives, respectively.
know, from their field equations, that these models hav
residual invariance under a semilocal transformationf6

→f̃65f61a6(t). Therefore, if one defines a scalar fie
as a combination of these chiral ones asF5f12f2 , then
clearly the combination of the two semilocal transformatio
above will not lead to a vector transformation for the sca
field, unless some constraint is imposed over each individ
component. This is the role played by the gauge field.
can then follow the gauging procedure described above
obtain the action of an interacting chiral boson coupled t
gauge field through their chiral left and right currents:
spectively,L 0

6→L 1
65L 0

672A(ḟ66f68 ). Here A is the
04770
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space component of the gauge field, i.e.,A is the so-called
soldering field, an auxiliary field that will be eliminated~in-
tegrated! through the field equations~or through the path
integral, as below!. Although each individual~gauged! action
is variant under a gauge transformation, as we have see
the last section@see Eq.~4!#, one can verify that the new
actionL5L 1

21L 1
122A2 is indeed invariant. The last term

is a contact term that compensates for the noninvariance
each chirality. Now, we can integrate out the gauge fieldA,
as exp(i *d2xW)5*@dA#exp(i *d2xL) to obtain W
5 1

2 ]mF]mF, which is the action for the scalar fieldF
5f12f2 defined as a combination of a right and a le
chiral boson.

In this section we consider another approach to the ch
gauge problem based on the dual projection@11,12# of scalar
fields. The basic idea in this scheme is to gauge the sc
theory, using the obvious covariance that it possesses,
then ‘‘break’’ the basic fields, in phase space, into its chi
components. For definiteness, let us consider a well-kno
generalized chiral SM~GCSM!

L5C̄gmS i ]m1eRAm

11g5

2
1eLAm

12g5

2 DC,

whereC is a two-component spinor

C5S cR

cL
D ,

and cL and cR are the Weyl components. Its quantum d
namics is easily computed using the bosonized version a
a convenient redefinition of the fields,Lboson51/2]mf]mf
2e2Am]mf1e1Amemn]nf1g2a/2AmAm where eR

51/2(e11e2), eL51/2(e12e2), g25(e2
2 1e1

2 )/2, anda
is an arbitrary regularization parameter. The interesting po
in working with the GCSM is that one can easily obtain t
four versions of the SM considered in the literature: vec
SM (e250⇒eL5eR5e), axial SM (e150⇒eL52eR
5e), right chiral SM (eL50⇒e15e25e), and left chiral
SM (eR50⇒e152e25e). The dual projection schem
permits one to realize that the second-order differential E
for the matter field coming from the actionLboson contains
both right and left moving solutions. Let us reduce this a
tion to its first-order form as

L5pḟ2 1
2 p22 1

2 ~f8!22~e2A01e1A1!p

1~e2A11e1A0!f81 1
2 AmMmnAn , ~5!

whereAmMmnAn5ag2AmAm2(e2A01e1A1)2 andp is the
second field mentioned above obtained through Legen
transformation fromLboson. We observe that the fieldsf
andp cannot be our chiral fields describing, independen
the right and left dynamics since they appeared coupled
the symplectic sector of Eq.~5!. We must therefore look for
a linear combination of them that diagonalizes the action
we introduce the new fieldsw andr as an SO~2! rotation of
the p andf fields as
1-3
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S p

f8
D 5S cosu sinu

2sinu cosu D S w8

r8
D ,

then we quickly realize that, in order to diagonalize the
tion ~5!, we must haveu5p/4, and consequently the follow
ing canonical transformations~CTs! @15# f85w81r8 and
p5w82r8, which we take as our definition of the chira
fieldsw andr. In terms of these new fields the action for th
GCSM, Lboson, now readsLboson5Lw1Lr1LA whereLw

5ẇw82w8212eLw8A2 , Lr52 ṙr82r8212eRr8A1 , and
LA51/2AmMmnAn with A65A06A1.

There are many interesting points to observe in this no
diagonalized action. Notice that in the free case the ch
fields satisfy]2f50 and]1r50 so that they are, respec
tively, left and right chiral modes. The actions for the fr
components are those proposed by FJ. Also, no matter w
model is in discussion, the interaction piece shows that th
fields only couple to a proper chiral combination of the ele
tromagnetic field,A2 andA1 , respectively, but the coupling
constant is, obviously, model dependent. For the vector
axial-vector SMs both chiral components are coupled to
photon field but the chiral SM will leave one chirality fre
eitherw wheneL50 or r wheneR50. In all these cases th
mass term will change appropriately. What should be
garded as the most important point is that this dual projec
shows the chiral bosons correctly coupled to the photon fi
as proposed by Refs.@6,7#. However, in our case we got th
coupling of both chiralities at once. In the name of comple
ness, analyzing the case of the chiral bosons models
infinite auxiliary terms coupled to gravity, using the du
projection, it was shown@4# that this model has nonmove
fields, the notons~introduced by Hull@16# to cancel the Sie-
gel anomaly!, which couple naturally with the gravitationa
field. For the PST version of the Siegel chiral boson, it w
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proved that its spectrum is composed by a FJ particle an
PST version of the noton@12#.

We are now in position to compare this result with t
chiral projection technique adopted in Ref.@7#. From the CTs
defined above we getp2f8522r8 and p1f852w, so
that the chiral constraintsp6f850 lead to w50 and r
50 as constraints, respectively. It should be observed
the chiral component eliminated through this process n
not be a free component, so that one does not need to
with a chiral SM in order to get the gauged chiral boson.
except for some very awkward possibilities, any model w
do. Finally, we must observe that the CTs above lead t
very sensible interpretation of the chiral bosonsw andr as
being the bosonized components of the Weyl fermions in
GCSM since they are coupled to the gauge field with
same strength as their fermionic counterparts.

In conclusion, in this work we have studied the proble
of coupling self-dual scalar fields in 2D to an external ele
tromagnetic field described by a vector potentialAm . We
have recognized the basic difficulty as an incompatibil
between the gauge invariant chiral constraint and the fi
equation for the matter field. Using consistency as a guid
rule, we have worked out the coupling of gauge fields w
different matter currents and observed that the only con
tent coupling for a left chiral matter is with a left chira
current. This explain the results obtained with the use of
chiral projector on the SM. As an application we verified th
in order to solder together a left and a right chiral boson i
a scalar field, we must~chirally! couple them to a gauge fiel
that will mod out the degree of freedom that obstructs ga
invariance.
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