PHYSICAL REVIEW A

VOLUME 45, NUMBER 6

15 MARCH 1992

Numerical study of transport in a dissipative medium
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A numerical study of propagation of a particle through a one-dimensional dissipative medium is
presented. The medium is composed of several dissipative sections, which are characterized by their
friction coefficients 7. In particular, we have considered two types of friction coefficients distributed or-
derly or disorderly along the chain. For the same relative proportion of the coefficients, we have found
that transport can be enhanced in the disordered distribution in comparison with the ordered one. We also
show how this can be considered an approximated way to treat the propagation in a dissipative medium

with a position-dependent friction coefficient.

PACS number(s): 05.40.+], 05.60.+w

I. INTRODUCTION

The dynamics of a dissipative particle has been exhaus-
tively studied for several years. The most successful
model was introduced by Caldeira and Leggett (CL) [1] in
order to treat quantum Brownian motion. Their ap-
proach consists in coupling the Brownian particle to a
bath of harmonic oscillators and then applying canonical
quantization to the composite system. After this, the
Feynman-Vernon procedure [2] is employed in order to
find the reduced dynamics of the particle.

Some essential features of the CL approach are the
spectral density of the bath, the initial condition, and the
form of the coupling between particle and reservoir. The
specific choice made by CL for these issues was motivat-
ed by the physics of the system studied by them, namely,
the magnetic flux in superconducting quantum interfer-
ence devices (SQUID’s) [1].

Later on, new applications to other systems have re-
quired generalizations on these points. Thus, the so-
called Ohmic dissipation employed by CL has been
modified to treat both sub-Ohmic and super-Ohmic cases
[3-5]. Also, the factorable initial condition of CL was
extended by other authors [6,7]. More recently, the form
of the coupling was modified from coordinate-coordinate
coupling to momentum coupling [8].

All these approaches have been applied in a series of
problems involving systems coupled to some kind of envi-
ronment, such as electron transfer in chemical and bio-
logical processes [9], diffusion of muons in metals [10], ra-
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diation damping [4], and polarons [11].

Here we are interested in another kind of problem. We
study the propagation of a particle through a one-
dimensional dissipative medium divided in sections, each
one with different properties. This means that each sec-
tion has a distinct bath of harmonic oscillators and the
coupling differs from section to section. We treat only
two types of dissipative sections, allowing several relative
concentrations and imposing ordered and disordered dis-
tributions. The question we want to answer is, given an
input energy for an incoming particle in one extremity of
the dissipative chain, what will be the output energy in
the other end?

The full quantum-mechanical treatment of this prob-
lem involves investigating in detail the transition from
one section to another. At the interface between two sec-
tions there may arise a reflected wave which must be tak-
en into account. However, we have only considered a
*““classical limit” of the problem where these effects were
neglected.

Furthermore, it is clear that this model of a dissipative
chain is conceptually distinct from the other one-
dimensional models currently studied in the literature
[12]. While the dissipative chain involves nonelastic pro-
cesses, the tight-binding model or a sequence of potential
barriers involves only elastic interactions with the travel-
ing particle. Thus our results have no direct relation
with the results previously obtained with the later models
[12].

In Sec. II we present the model and briefly discuss
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some of its features. The results obtained for ordered and
disordered dissipative chains are shown and discussed in
Sec. III. Finally, in Sec. IV we present a summary and
the final remarks.

II. MODEL

We consider a one-dimensional system described by the
following Hamiltonian:
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where ¢, p, and m are the coordinate, the momentum,
and the mass of the particle and gqy;, py;, my;, and o, are
the coordinate, the momentum, the mass, and the fre-
quency of the kth oscillator of the ith section. ¥(q) is an
external potential, a,; is a coupling constant, and s;
switches on the bath corresponding to each section when
the particle is in it. Its value is 1 when the particle is in-
side the ith section, and zero otherwise. Thus the in-
teraction is suddenly switched when the particle goes into
the section, in such a way that the initial condition is fac-
torable.

The parameters in Eq. (1) need be known only in a par-
ticular combination, by means of a spectral density func-
tion J(w), defined as
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The specific form of this function depends on the par-
ticular system under consideration either through its mi-
croscopic features or through its equation of motion in
the classical limit [3]. We restrict ourselves to the case of
Ohmic dissipation, where the equation of motion in the
classical limit is Langevin’s equation [1]. In this case, the
spectral density behaves as J(w)=7100(w—), where 7
is the dissipation constant in Langevin’s equation, () is a
cutoff frequency, much higher than the characteristic fre-
quencies involved in the problem under study, and © is
the Heaviside function. Thus, the coupling between the
particle and the bath in the ith section, which is con-
trolled by the parameters a;;, could equivalently be
represented by the dissipation constant 7;.

We study here the case of zero external potential
V(g)=0 giving an input energy to the free Brownian par-
ticle when it impinges on one end of the chain and com-
paring the output energy in the opposite side, both in an
ordered and in a disordered chain. The disorder is intro-
duced by building a random sequence of dissipation con-
stants.

The particle will be represented by a Gaussian wave
packet centered around g and with a mean momentum p.
These variables have a time evolution given by [1]
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where ¥y =7/2m.

In the following we restrict our study to the behavior
of these mean values. This “classical limit” neglects
quantum effects on the interfaces of the sections. This
point will be discussed in detail later. We further impose
the continuity of the dynamical variables on the boun-
daries of the sections. Thus, for each section, with a
given input energy, we obtain the output energy from
Egs. (3) and (4) and the additional condition
g(t)—g(0)=1I, where [ is the length of the sections.

III. RESULTS AND DISCUSSIONS

The presence of dissipation makes the evolution of the
particle in a particular section of the chain strongly
dependent on its entire previous history. Because of this
memory effect, an analytical study based on the simple
equations (3) and (4) becomes very hard. In fact, iterating
Eq. (4) over the extreme points of the sections,
i=1,2,...,N, gives
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where t; is the time spent in the ith section, p, is the
mean momentum of the incoming wave packet, and py is
the mean value after N sections. It is easy to see that ¢; is
strongly dependent on all the previous ¢;_,, t;_,, etc.,
and thus the same happens with py.

On the other hand, Eq. (5) allows us to define an
effective dissipation constant for the chain

N
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which suggests examining the problem from a different
point of view. We can think about a particle diffusing
through an inhomogeneous dissipative medium, in the
present case with a piecewise-constant friction coefficient.
That is, we can look at the medium from a global point of
view and consider the variation of the friction coefficient
as a position dependence of 7. We will return to this
point below.

We now proceed to the numerical calculations. In or-
der to determine specific values for the dissipation con-
stants, we have separately studied homogeneous chains
composed uniquely by one kind of section. The value for
the corresponding 7 is obtained from the conditions: (i)
weak dissipation or, equivalently, nearly free transport
(a-type section) and (ii) strong dissipation or large energy
loss, about 85% of the input energy (b-type section). We
allow the concentration of b-type sections to vary from
5% up to 50%. In all calculations we have used chains
with a fixed number of 1000 sections.

Many distinct chain configurations with random distri-
butions of b-type sections were carried out for each con-
centration. We have observed a sensitivity of the output
energy with the fluctuations of the concentration along
the chain portions around the overall value. In particu-
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lar, the largest output energies were obtained when the
concentration of b-type sections was smaller in the initial
portions of the chain than the overall value. This can be
checked by observing the momentum evolution section to
section of the chain. Table I shows the output energy of
some random distributions of b-type sections and of the
ordered sequence abab . . . for a 50% concentration.

It is interesting to see that transport along the chain is
favored in some configurations with random distributions
in comparison with the ordered one. The physical mean-
ing of disorder here is quite different from the case of in-
terference of wave functions. There are no coherence
effects in the present classical calculations. While the
particle is diffusing from sectiozn to section, the rate of en-
ergy loss is proportional to 7§ , which is clearly higher in
the beginning of the propagation. Thus, these results can
be viewed as a consequence of the irreversibility of the
dissipation process and the local fluctuations of the con-
centration.

We also compare particular random distributions (all
produced by the same random-number generator) of b-
type sections with ordered distributions for several con-
centrations. The results are shown in Fig. 1. For all con-
centrations in the range 5-50 %, transport is enhanced in
the disordered chains. For instance, in the case of 10%
concentration of b-type sections, if they are randomly dis-
tributed, the output energy is higher than it is for the or-
dered distribution. Although this cannot be generalized
to all the possible random distributions, due to the strong
influence of memory effects, it is remarkable that it can
happen in some of them. So for different concentrations
and configurations, we can conclude that the diffusion
through a disordered chain could be easier than through
an ordered one.

We have mentioned above the possibility of changing
the point of view to use the model to treat classical
diffusion through one-dimensional inhomogeneous dissi-
pative media. We can see the dissipative chain as a medi-
um with a position-dependent dissipation coefficient with
values

M. 4 Ea-type section

n(g)= 7y, g Eb-type section .

TABLE I. The output energy of some random distributions
and the ordered abab . . . distribution in the case of a 50% con-
centration. The units are arbitrary and the input values are the
same as in Fig. 1.

Distribution Output energy
random 1 2693.5
random 2 2726.1
random 3 2775.4
random 4 2865.6
random 5 2880.0
random 6 2911.0
ordered 2815.6
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FIG. 1. Output energy vs concentration of b-type sections.
The values in the graph were calculated for E;, =8000, m =0.1,
#i=1, and /=20 (arbitrary units), using the same random-
number generator.

This piecewise-constant function can be extended to
many possible values 7,,7,,...,7,, at the same time
that the length of the sections is reduced, to furnish a
discrete sample of an ordinary function. With this pro-
cess we can approximate the case of position-dependent
7(q) and define the effective dissipation constant as

'=lim =L [t29)
r'=lmr=-— [ ;Y (8)

where L is the total length of the medium. Then the evo-
lution of the mean value of the momentum will be given
by an expression similar to (5) (with an integral replacing
the summation) regarding the medium from a global
point of view.

This approximation to the real problem of position-
dependent dissipation involves the assumption of a dis-
tinct bath of oscillators for each small length / and the
possibility of artificial effects due to the sudden switch of
the correspondent interactions. However, as far as we
are concerned with the mean values, these effects do not
make any difference, once the mean values are the same
for both the uncoupled and the coupled initial conditions
[6,71.

On the other hand, the full quantum-mechanical prob-
lem will be affected not only by the artificial initial condi-
tion but also by the possible reflection on the interfaces of
the sections. Also, the matching of § and p values at each
interface is by itself a classical ingredient which cannot
be retained in order to treat the problem quantum
mechanically.

The energy range we have employed in our numerical
study is such that the width of the wave packet, o, is al-
ways much less than the length of the sections, say,
o /1 <1073, Thus we can justify the use of only a classi-
cal limit, but quantum effects must be taken into account
in order to provide complete information about transport
properties of the dissipative chain.
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IV. SUMMARY AND FINAL REMARKS

We have presented a study of transport through a dis-
sipative medium composed of an array of sections with
different friction coefficients. We have treated dissipation
by means of the Caldeira-Leggett approach. Numerical
calculations of a classical limit of the problem allow us to
conclude that propagation through the dissipative chain
is strongly affected by the past history, as a consequence
of the irreversibility of dissipation.

In the special case of two types of dissipative sections,
we found that their disordered distribution can favor the
propagation when compared to an ordered distribution.
This is not a question of coherence but a classical
phenomenon. Thus this model has a classical contribu-
tion for transport beside its possible quantum contribu-
tions, which were not considered here. Furthermore, the

classical version of a position-dependent dissipative medi-
um can be described by means of our approach, although
new questions have to be addressed.

Finally, we pointed out some features that remain to be
answered if we want to solve the problem quantum
mechanically, which include the calculation of reflection
coefficients for a wave packet in the interfaces of two dis-
sipative sections or even when the particle goes from a
nondissipative to a dissipative medium.
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