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Magnetic field of an in-plane vortex inside and outside a layered superconducting film
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In the present work we study an anisotropic layered superconducting film of finite thickness. The film
surfaces are considered parallel to Beface of the crystal. The vortex lines are oriented perpendicular to the
film surfaces and parallel to the superconducting planes. We calculate the local field and the London free
energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a
semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super-
conducting surface.

Scanning superconducting quantum interference device Although we will consider the case of a single vortex, the
(SQUID) microscopy has been used to image interlayer Jogeneralization to the case Wfvortices is straightforward. To
sephson vortices trapped between the planes of layered sproceed is more convenient to Fourier transform Etjsand
perconductors. This technique has been used to measure #®. For |z|<d/2, using the Maxwell equatioi¥V-h=0, we
out-plane London penetration depth that gives the distancebtain a set of three coupled differential equations for the
over which the interlayer curreit changes as a function of two dimensional Fourier transform of the local magnetic
in-plane coordinatel® These measurements have been imield h(k,z)=fd?r e '*'"h(r,z),
portant to test the interlayer tunneling model as a candidate
to explain the mechanism of superconductivity for the high-
T, superconductors?

Recently, Kirtley, Kogan, Clem, and Mofehave found
expressions for the local magnetic field emerging from a su-
perconductor with the vortex lines parallel to the planes, and
normal to a crystal face. Their geometry consists of a semi-
infinite anisotropic superconductor. Furthermore, they have
used these expressions to fit the experimental data at th
surface in order to obtain an estimate of the value of the 1+ N2 K2+ \2K2— N2~

: ab™x cly ab . o
out-plane penetration deptty.. They have shown that, ne- 9z
glecting the vortex spreading at the surface may overestimate (5)
\¢ as much as 30%.

In the present paper we extend the work of Ref. 5 to an For|z|>d/2 one has
anisotropic layered superconducting film of finite thickness
and of infinite extent in théc face of the crystal. We will ( 92 )h 0

32
1T+ N3pk2 = N2, —5| =0, 3
Jz

2

J
1+>\§bk2—>\§a—

hy+ (A 2=\2)ik a—hz=0 (4)
22 y [ ab y 9z ’

92 oh
: y
h,+(\2— )\gb)lky—ﬁz =d,.

show that, if the thickness of the film is of order or smaller ﬁ—kz (6)

than)., the magnetic field distribution is even more affected z

by flux spreading. .
Let us first formulate the problem to be solved. The ge- At the vacuum-superconductor interfaces £d/2 the

ometry we consider is illustrated in Fig. 1. We suppose tha{Ield components are continuous and the component of the
the vortex line is perpendicular to the film. We will calculate current perpendicular to both film surfaces vanishes. One has

the local field inside the film using the London equation. For

this geometry this equation is given by h_(k,—d/2)=h,(k,—d/2), (7)
. hin(k,d/2)=h-(k,d/2), (8)

VX[VXh]+h=zdy5(r), (1)
Z-[DK) X ] = +42=0, 9

whereV is the London(tensoy penetration depth. This ten-
sor is diagonal and its components are givenAgy=A,, D,(k)-h=0, (10
=\2, A,,=\2,; here\,, and\ are the in- and out-plane
penetration depth respectivel§;, is the quantum flux. The
film is anisotropic along the direction.

Outside the sample, the local field satisfies the equation

where the operatoD,(k)=ik+2(d/dz). The subscripts
(<,>) stand for below the surface= —d/2 and above the
surface z=d/2, respectively, whereas the subscript is
meant for the field inside the sample.
We start by solving first Eq6). The solution which sat-
=0. isfies the boundary condition o takes the form
V2h=0 (2)  isfies the bound diti f EGLO) takes the f
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) hm 2(k,2) "2, + iky(We,e W,e™ %)
iky .
a7 z - T(WSeVZ_WGe ’)/Z). (18)

The determination of the constant¥ is very cumber-
some and we omit it here. We just present the main steps of
the complete solution. First of all, we use the Maxwell equa-
tion (10). This allows us to writeN; andW, in terms ofW,
andW,. Secondly, we use the boundary condition of E9j.
in both faces of the film. This leads us to the solution\f
andWg in terms ofW; andW,. Then, we are left only with
three constants to determine, nameW,, W,, and ¢.
Thirdly, we use the continuity of the local field at the film
surfaceqeither Eq.(7) or (8); both of them yields the same
solution to these constantOne obtains
FIG. 1. Geometry of the film used in this work. The vortex lines

| = d >

are oriented perpendicular to the face of the crystal.
perp v Wy = = ik, —— (19
h-(k,2)=(—ik+2zk)p(k)e 92, (11 25”‘*(7)
h(k,2)=(ik+2k) @ (k) 42, (12) ¢
W2: |kx_ 3 (20)
where¢(k) is a scalar function which will be determined by 2 sin!‘( “_d)
using the boundary condition either of E@) or (8). 2
Equation(3) can also be easily solved. We have
A 2pkyk
hmx(K,2) = W, €24+ Whe ™7, (13 =Wy, (21)
where L Mk
A 2pkyk
122K Wy=—"—"Lw,, (22
a= —)\2 , (14) 1+)\abkx
ab
and theW'’s are two constants to be determined by using the W Ky
boundary conditions. 5= 2 1L 2\ai
+
The other two components of the local field can be deter- k(L Agpkio sinh yd)
mined by decoupling Eq$4) and(5). This can be done by . d . d
calculating the determinant of the matrix formed by the co- X Wisinh) (y+a) 5|+ Wosinh (y—a)7| 1,
efficients of Eqs(4) and Eq.(5). This yields the following
equation forhy, , : (23
1+A2 K2—\2 ” 1+ A2 K2+ \2K2 )\2&2 hmy=0 W, y [W 'r{( )
+ —\p— || 1+ + —\:— =0. = sin —a)z
ab ab&22 abfx T ARy €572 m,y s 6 kx(1+)\§bkf)sinﬂyd) 1 Y 2
15
_ d
The solution for this equation is given by +W23|m‘{(a+ 7)5“’ 249
hy m(K,z) =W3e**+W,e™ “*+ Wse"+Wge™ 7, (16) P
Do
where theW's are constants to be determined by using the e(k)= )\572A(k)' (25
boundary conditions and
where
[14 N2 K2+ N2K2
Y= %- 17 5 2 ad k§ yd\ 171
Ag N spKs o cot > +—cot >
| o A(K)=| k+ — .
The solution forh,, , can be found by inserting E416) T+N5 K

back into Eq.(4) or (5). One has (26)
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FIG. 2. Streamline mapping of the integrated fiel for an
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yir
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yin,

anisotropic superconducting film. The spacing of the streamlines is

proportional to ¢H,/dy) * at z=—(d+0.5\,). (@ shows the
streamlines for a film of thicknesb=\ ., (b) for d=2.5\., and(c)
for d=5\.

Finally, upon substituting Eqg19)—(25) into Egs.(13),
(16) and(18), we find for the local magnetic field inside the
film

hmx(k,z)= —ikmmM

=]

(27)
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FIG. 3. Thez component of the integrated field as a function of
y at z=0 for three different values of the film thickness) d
=5\, (dashed ling (b) d=1.5\, (dot-dashed ling (c) d=\.
(continuous ling

) o(k) » o SiN(az)  sinh(yz)
ho(k,2)=—iky,———=| N\ + ,
T ENER M sl ] e)

2 2
(28)

(ON o(k) cosi{az)

by (K D)= 5=~ ——5— 2 iaid

A2y2 142 K2 . k(cr )

sin
2
k2 coshyz

Ry Hyz) 29

N r(yd)
sinh

We would like to point out that these results could not be
obtained from those of Ref. 5 without solving the problem.
In fact, the solution of the London equation for a supercon-
ducting film is different and more difficult than for a semi-
infinite superconductor.

Let us turn our discussion to the calculation of the London
free energy. The energy of the vortex system is giveri-by
=Fy+Fg, whereFy, is the field energy in the vacuum and
Fs is the energy inside the superconductor. One has

1 d2k o ,
—di2
+f dzh_(k,z) 2], (30)
1 [ d’k (d2 ,
FS_QJ (277)2fd/zdz{|h'“(k’z)| +[D,(k)
XN (k,2)]- V- [D —k) X h(—k,2)T}. (3D)
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By substituting the appropriate expressions of the locaivhereEy=(®o/4m\ )2, A=2\2,/d, and'=\%/\2 is the
magnetic field inside Eq¢30) and(31), after a length alge- anisotropy parameter. This is precisely the energy of a
bra, we obtain single vortex in very thin film first obtained by Peafl.

Now we will turn our attention to the streamlines of the
integrated field ovex. The distribution of magnetic field
emerging on the surface can be probed with a SQUID pickup
loop. If the SQUID probe is oriented in they plane, the

The free energy can be generalized to an ensembhié of total magnetic flux will be nearly equal to the pickup loop
interacting vortex lines upon multiplying the integrand of Eq. Size times
(32) by |S(k)|? where the structure factor is given by

A(k)
Ny

o5 d%k 1

. 32
8m) (2m)2 \2y? (32

Hz(y,2)=f7mhz(x,y,z)dx= f,w_zw h,(0k,,z)e*,
(39

HereR; is the position of thé-vortex line. Note that this Whereas, if the SQUID probe is oriented along #zplane,
extended result should be valid for an ensemble of distortef® total magnetic flux is measured through the pickup loop
vortices, that is, the positions of the vortices do not necesS!Z€ times
sarily correspond to the equilibrium configuration. The first . - dk
term |n§|de Eq(.32) represents the interaction energy of the Hy(y,Z)=f hy(x,y,z)dx=f _yhy(oykyyz)eikyy.
vortex lines as if the surfaces were absent. The second term —o — 2
represents the surface energy associated to the magnetic en- (36)
ergy of the stray field at the superconductor-vacuum inter-

face. Notice that fok small (arger), y°~~1Ac, andA(k) we will replace the vacuum-superconductor surfaceg at
~ 2 ) -
Lk. Thus, the surface energy goes dg/8’r. Conse =0 andz= —d. This can be done through the translation

guently, the interaction on the surface depends neither on the .
film thickness nor on the anisotropy. This is the Pearl result_’z+d/2' From Egs(11), (12), and(27)—(29) we obtain

for vortices emerging from a semi-infinite isotropic

S(k)=2, ekRi, (33

In order to compare our results with the results of Ref. 5,

supercondutof. Another interesting particular case of Eq. ho(k,2)=(=ik+zK)p(k)e ", (37
(32) is the limit of a very thin filmd— 0, andk small. In this .
limit, from Eq. (26) it is straightforward to show thak (k) ho(k,2)=(ik+2zk) p(k)ek ), (38)
= 1[k+2(N5pki+\2K2)/d]. Therefore, from Eq(32) we
obtain _ r{ d
sinh | 2+ 5
dk? 27d hinx(K,2)= =Ky (K) ———— o+, (39)
(2m)2 KA1+ (Ki+TkD) 3'”*( 2)

. L9 L d
sinh a| z+ = sinh y| z+ =
. e (k) . 2 2
hmy(K,2)=—ik,———=—=9 A5.K + 40
R RS e N . sind 22 “
2 2
+ d + d
cosha|z+ = 2 coshy| z+ =
D, o(k) 5 o 2 K 2
hm,z(kyz)_ )\(2;’)’2_ 1+)\§bk§ N apKier _ ad +7 _ vd (41)
sinh — sinh —-
2 2
The substitution of the appropriate expressions into E2fs. and (36) yields for thez component of the{ field,
Dy (= cogy’sinhu)e=Z sinhu
H2(y.2= = “au e , (42
c’0 coshu+sinhu cot%(xcoshu)
C
d
I - cogy'sinhu) cosh| 2"+ 5| coshu
Ho (Y,2) = — —e"y/‘—j dutanhu c (43
' TN 2 0

) d [ d
coshu+sinhu cot}{ Z_MCOShu) smk( Z—Mcoshu
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® . cog Vv’ sinhu) el +d/e)sinhu
Hi(y )= [T O , (4
7T)\C 0 . d
coshu+sinhu cot){ —coshu)
2\¢
wherey’=y/\. andz'=z/\..
They component takes the form
by (= sin(y’sinhu)e~Z'sinhu
1y 2)= 2 oy , (45)
7T)\C 0 X d
coshu+sinhu cot){ —coshu)
2N\¢
O, (= sin(y’ sinhu) sm}{(z +2—}\C)coshu
(.20~ =2 [ “au : - , (46
Thelo coshu+sinhu cotI-(—coshu sinh =—coshu
2N\¢ 2\¢
1) s Sln( /Sinhu)e(z'+d/}\c)sinhu
HLy.2)= - [ du— (@7
TAcJO

d
coshu+ sinhu cot%( —coshu)
2\

Note that in the limit ofd— o, our results are exactly the ues ofd atz=0. As can be seen from Fig. 3, the full width
same as those of Ref. 5. at half maximum of the flux contour is 1.8¢ for the case
The results for theH{ field presented above should be d=5\., while it is 1.65.. for d=\.. Thus, if the flux
useful to interpret the experimental data obtained by usingpreading inside the film is not taken into account, the value
scanning SQUID microscopy. Unfortunately, the experi-of A, could be underestimated by 10%. This error grows as
ments have been performed in samples of large thickhtess. the film thickness decreases.
This renders the test of the theory impracticable. In fact, Finally, we would like to point out that the present
vortices have been magnetically imaged in films, but for aesults agree with their isotropic counterpart. If we set
different geometry, that is, the superconducing planes,_,=)\.=\ in Eq. (25) and(26), we obtain the same result
are taken parallel to the surfaces of the film and the vortelys in Ref. 9. Apparently, our results are different of

ques are considered perpendi_cular to the film .surfﬁcles. those found in Ref. 10, but they show very similar stream-
this case, we can extract the in-plane penetration depth  |ies.

rather tham.., from the fitting of the experimental data. So, |, symmary, we have calculated the field distribution of a
we will restrict our analysis only to the theoretical eXpr‘f’s"single vortex inside and outside a layered superconducting
sions. . . . film of arbitrary thickness. We also calculated the London
_ Figure 2 shows the streamlines of thy,2) field for a  free energy of an ensemble of vortices. From the expression
single interlayer vortex centered at-0, y=0. The stream-  for the energy one can recover the interaction potential be-
lines were generated as sketched in Ref. 5. We used varioygeen yortices for a very thin filfif and the vortices emerg-
values of the film thickness. Note that as the thickness of thf"ng from a semi-infinite superconduct%?.ln addition, we

f'lmf growsﬁ the ﬂléx Spreaﬂ'n?h'st;]mportaf‘?t c:r?ly rt1ear tlhehave shown that flux spreading inside a superconducting film
suriace, whereas deep Inside the thinner im the streamings o qer or smaller thai . affects substantially the full width
are still very distorted, except those close to the center of the .
vortex at half maximum of the flux contour.

To see how important the flux spreading inside a super- The author thanks the Brazilian Agencies FAPESP and
conducting film is, we calculated numerically CNPq for financial support. The author would like to thank
T H,(y,2)/ Py as function ofy/\. for three different val-  Professor V. G. Kogan for very useful discussions.
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