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a b s t r a c t

The LYS49-PLA2s myotoxins have attracted attention as models for the induction of myonecrosis by
a catalytically independent mechanism of action. Structural studies and biological activities have
demonstrated that the myotoxic activity of LYS49-PLA2 is independent of the catalytic activity site. The
myotoxic effect is conventionally thought to be to due to the C-terminal region 111e121, which plays an
effective role in membrane damage. In the present study, Bn IV LYS49-PLA2 was isolated from Bothrops
neuwiedi snake venom in complex with myristic acid (CH3(CH2)12COOH) and its overall structure was
refined at 2.2 Å resolution. The Bn IV crystals belong to monoclinic space group P21 and contain a dimer
in the asymmetric unit. The unit cell parameters are a ¼ 38.8, b ¼ 70.4, c ¼ 44.0 Å. The biological
assembly is a “conventional dimer” and the results confirm that dimer formation is not relevant to the
myotoxic activity. Electron density map analysis of the Bn IV structure shows clearly the presence of
myristic acid in catalytic site. The relevant structural features for myotoxic activity are located in the C-
terminal region and the Bn IV C-terminal residues NKKYRYare a probable heparin binding domain. These
findings indicate that the mechanism of interaction between Bn IV and muscle cell membranes is
through some kind of cell signal transduction mediated by heparin complexes.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Phospholipases A2 (PLA2eEC 3.1.1.4, phosphatide sn-2 acylhy-
drolase) are stable calcium-dependent enzymes. They are
membrane-associated proteins and their importance is related to
catalysis of membrane phospholipids. PLA2 hydrolyzes the second
ester bond of 1,2-diacyl-3-phosphoglycerides to liberate free fatty
acids and lysophospholipids [1]. Certain biological activities
attributed to PLA2s have been previously reported, including
neurotoxic, myotoxic, anticoagulant, hypotensive, cardiotoxic,
edema-inducing and bactericidal. [2,3,4,5,6].

Myotoxins are defined as proteins/peptides components of
venom secretions that induce irreversible damage to skeletal
muscle fibers (myonecrosis) upon injection into animals. Some
myotoxins act locally, damaging muscle fibers at the site of
.
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injection and its surroundings, whereas others act systemically,
causing muscle damage at distant sites [7].

The phospholipase A2 myotoxins can be divided into two
groups: neurotoxic and non-neurotoxic. Non-neurotoxic myotoxins
can be classified in two different types based on the amino acid
residue 49: ASP49-PLA2, which catalyzes the hydrolysis of ester
bond at sn-2 position of glycerophospholipids, and LYS49-PLA2 (or
PLA2-like proteins), which are characterized by the absence of
enzymatic activity. Irrespective of their ability to catalyze phos-
pholipid hydrolysis (ASP49-type) or not (LYS49-type), all of the
non-neurotoxic PLA2s myotoxins, as implied by their name, induce
skeletal muscle damage. Thus, the LYS49-PLA2 myotoxins have
attracted attention as models for the induction of myonecrosis by
a catalytically independent mechanism of action.

Structural studies and biological activities have demonstrated
that the myotoxic activity of LYS49-PLA2 is independent of the
catalytic activity site, but related to the C-terminal domain, KKYR-
YYLKPLCKK. Peptides made from this short segment showed
myonecrotic and cytolytic activities and bactericidal effects [7].

The LYS49-PLA2s have been described as inactive enzymes against
most substrates commonly tested for PLA2s, such as lecithin fromegg
yolk phospholipids and other isolates. A possible explanation for the
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low catalytic activity of LYS49-PLA2s has been suggested by Lee and
co-workers [8], who noted fatty acid bound in the catalytic sites of
certain enzymes. These authors proposed a mechanism by which
LYS49-PLA2 would promote the hydrolysis of certain phospholipids,
especially those negatively charged. Thus the free fatty acid produced
in the reactionwould not move from the active center, inhibiting the
enzymes for subsequent reactions. An alternative mechanismwhich
refutes the previous hypothesis is that catalytic activity is absent
because calcium is not bound to the calcium binding site due to steric
interference from the lysine side chain [9].

This work describes the crystal structure of a LYS49-PLA2, iso-
lated from the venom of Bothrops neuwiedi (Bn IV), in complex with
myristic acid (CH3(CH2)12COOH), and indicates the possible exis-
tence of a heparin binding site in the Bn IV C-terminal region.

2. Materials and methods

2.1. Crystallization and X-ray data collection

The myotoxins from Bothrops neuwiedi snake venoms were
characterized biochemically by Rodrigues and co-workers [10]. The
Bn IV was purified using a two-step chromatographic procedure
according to the methods described by Toyama and co-workers [11].
Firstly, 10 mg of the crude venom was dissolved in 250 mL loading
buffer (0.05 M TriseHCl, pH 8.0) and centrifuged at 4500 � g for
5min. The supernatant was loaded onto a BioSuite Q anion exchange
column (Waters.Co). Proteins were eluted from the column gradient
with a buffer containing 0.05 M TriseHCl, pH 8.0, with increasing
concentrations of 1.0MNaCl at a constant flow rate of 1mL/min. The
Bn IV myotoxic fractions obtained in the first chromatographic step
were dissolved in 250 mL of an aqueous solution containing 0.15%
trifluoroacetic acid and loaded onto an X-Terra C18 analytical reverse
phase column. Proteins were eluted using a mobile phase of 0.15%
aqueous trifluoroacetic acid (TFA) with increasing quantities of 66%
acetonitrile at a constant flow rate of 1 mL/min [12].

The purified Bn IV was lyophilized and dissolved at a concen-
tration of 10 mg mL�1 in 1 mM TriseHCl pH 7.4 for use in crystal-
lization trials. Small crystals grew in 0.1 M TriseHCl pH 8.5, 0.2 M
lithium sulfate containing 30% (w/v) PEG 4000, using the hanging-
drop vapor-diffusion method in Linbro plates at 293 K. The drops
were composed of equal volumes (2 mL) of protein solution and
reservoir solution and were equilibrated against 300 mL reservoir
solution. The initial conditionwas optimized and best crystals were
obtained in 0.1 M TriseHCl pH 8.5 containing 20% (w/v) PEG 4000
(SigmaeAldrich, St.Louis, MO, USA). The X-ray diffraction datawere
collected at 1.42 Å wavelength at beamline MX1 station (Labo-
ratório Nacional de Luz SíncrotroneLNLS, Campinas, Brazil) using
a CCD (MAR research) imaging plate at 105 mm crystal to detector
distance. A set of 180 images (1� oscillation) was recorded.
Diffraction datawere indexed, integrated and scaled usingMOSFLM
[13] and SCALA [14].

2.2. Protein structure determination

The Bn IV structure was solved by molecular replacement with
the program MOLREP [15], using the monomer structure of the
native LYS49-PLA2 from Bothrops neuwiedi pauloensis [PDB code
1PC9] as search model [16]. Crystallographic refinement was
carried out by cycles of maximum likelihood refinement with the
program Refmac 5 [17].

Initially, a simple rigid body refinement was run to verify the
relative position of Bn IV rigid groups. Next, a restrained refinement
was performed with correction and substitution of amino acid side
chains, using the Fo-Fc electron density map generated and visu-
alized by WinCoot [18]. Water molecules were added by WinCoot
and inspection was carried by Fourier difference maps and
stereochemical criteria. An anisotropic restrained refinement was
also performed and the quality of the BN IV model was checked
using the Procheck program [19]. Visualization was carried out by
WinCoot and Pymol [20]. An omit map contoured at 3s to fatty acid
was generated using the CCP4 Omit program [18].

2.3. Ligand binding site prediction

Two strategies were followed to predict ligand sites. Q-SiteFinder
[21], a ligand binding site prediction program, based on determining
energetically favorable binding sites on the surface of a protein, can
determine if sites have volumes roughlyequivalent to ligand volumes
irrespective of the overall size of the protein. Molegro Virtual Docker
[22], is an integrated platform for predicting proteineligand inter-
actions, The built-in cavity detector identifies promising binding
locations.

3. Results and discussion

3.1. Protein sequencing analysis

The Bn IV sequence is a polypeptide chain composed of 121
amino acid residues with a molecular mass of 14 kDa. The Bn IV
sequence is highly similar to other myotoxic PLA2s. The best
alignment scores using Blast were with PLA2s from Bothrops neu-
wiedi, fraction-6 and 7, and PRTX-I, representing 99, 98% and 97.5%,
respectively. The best result for ASP49-PLA2 was for Bothrops jar-
aracussu PLA2 with 52% similarity, confirming the myotoxic prop-
erties. The sequence alignment of the Bn IV with other PLA2s shows
that the third alpha helix is highly conserved, with the exception of
only one residue compared to other species (Fig. 1). The first alpha
helix is conserved only in LYS49-PLA2 and the N-terminus, which
runs to residue 15, is strongly implicated in the role of toxicity in
LYS49-PLA2 [23], although, only LYS7 residue is responsible for that
function [24]. In the Bn IV sequence, only the residue ILE54 is
different when compared with other PLA2s.

3.2. Overall structure

The Bn IV crystal belongs to space group P21 with unit cell
dimensions of a¼ 38.8, b ¼ 70.4, c¼ 44.0 Å and contains a dimer in
the asymmetric unit. The structure refinement converges to Rfactor
value 0.202 and Rfree 0.236. The final model present high stereo-
chemical quality and Ramachandran plot analysis does not show
residues in disallowed regions (Table 1).

The Bn IV crystal structure has a conventional dimer oligomer-
ization (Fig. 2). The secondary structure of Bn IV presents mainly
alpha-helices with an up-down bundle architecture and phospho-
lipase A2 topology, being composed of an N-terminal alpha helix,
a calcium binding loop, two anti-parallel alpha helices, two short
anti-parallel beta sheet (b-wings), and a C-terminal loop.

The calcium binding site is conserved in PLA2s structures.
However, De Azevedo and co-workers [25] observed that the
nitrogen (NZ) of the residue LYS49 occupies the calcium site inter-
acting through hydrogen bonding, which blocks Caþ2 binding and
catalytic action (Fig. 3). This action does not inhibit the myotoxic
effect, and evidences that myotoxicity occurs evenwithout catalytic
activity [8]. The atomic coordinates for Bn IV complexed crystal
structure have been deposited in the Protein Data Bank, code 3MLM.

3.3. Fatty acid binding site

Our first step was to determine if PEG 4000 was occupying the
fatty acid binding site. The electron density map (Fo-Fc) in the



Table 1
Statistical data collection and molecular refinement.

Data Collection Bn IV

Total reflections 127,445
Number of unique reflections 11,127
Rmerge
a (%) 9.0 (30.6)

Resolution limits (Å) 41.52e2.20
(2.32e2.20)

Completeness (%) 96.0 (88.6)
Multiplicity 3.4
I/s(I) 6.5 (2.3)
Beamline wavelength (Å) 1.421
Space group P21
Unit cell parameters (Å) a ¼ 38.8

b ¼ 70.4
c ¼ 44.0

Refinement
Resolution range (Å) 41.3e2.2
Rfactor
b (%) 21.62

Rfree (%) 22.91
Biological assembly dimer
Number of water molecules 71

RMS deviations from ideal values
Bond lengths (Å) 0.023
Bond angles (degress) 1.961

Temperature factors
Average B value for whole protein chain (Å2) 22.8
Average B Values for water molecules (Å2) 24.1

Ramachandran plot
Residues in most favoured regions (%) 85.9
Residues in additional allowed regions (%) 13.6
Residues in generously allowed regions (%) 0.5

*Values in parentheses represent the high resolution shell.

aRmerge ¼
P

hkl
P

i jIðhklÞ � hIðhklÞiij
P

hkl
P

ihIðhklÞii
where I(hkl)i is the intensity of ith measurement

of the reflection h and I(hkl) is the mean value of the I(hkl)i for all I measurements.

b Rfactor ¼ jFobsj � jFcalcj
jFobsj

:

Fig. 1. Bn IV multiple alignment with other PLA2s. The red boxes show conserved amino acids and colorless boxes show semi-conservative substitutions. Disulfide bridges are
numbered in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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neighborhood of the Bn IV catalytic site displays a strong (3s), clear,
continuous and elongated electron density which begins within the
site and extends away from it. The structural features of the region
and length of the electron density show that it is not possible for
PEG 4000 to fit in the binding site. Taking into account the length of
the electron density map and the potential components of the
plasma membrane of eukaryotic cells, we modeled the ligand as
myristic acid 14:0 (tetradecanoic acid). This molecule was then
placed and refined in this position that led to a nearly perfect
fitting. It was positioned on the hydrophobic site, which would
normally be catalytic in ASP49-PLA2s, and the omit map was
Fig. 2. Overall crystal structure of Bn IV. The dimeric oligomerization forming the
conventional dimer with myristic acid (biological interaction) and sulfate ion (crys-
tallization artifact) as ligands.



Fig. 3. Calcium binding site occupied by lysine side chain. The nitrogen (NZ) of residue
LYS49 of LYS49-PLA2 occupies the calcium binding site, blocking Caþ2 coordination and
stopping catalytic action.
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generated and confirmed the presence of the ligand (Fig. 4a). The
myristic acid is stabilized by hydrogen bonding with ASN27/O2
(2.8 Å), CYS/O (3.0 Å) and HIS47/ND1 (2.4 Å), and also by hydro-
phobic interactions between the myristic acid and its neighboring
Fig. 4. BN IV fatty acid binding site. (a) Omit map for myristic acid at 2s and (b)
hydrophobic residues interacting with the fatty acid which is placed along the
hydrophobic extension which begins within the site and extends away from it.
amino acid residues, LEU2, LEU5, CYS2, TYR21, PRO17, GLY6, LYS7,
ALA18, ILE9, LEU111 and PRO113 (Fig. 4b).

The myristic acid interaction with the hydrophobic site in Bn IV
and the structural characteristics of this site show that there can be
no similarity in function between it and the catalytic site in LYS49-
PLA2s, because local interactions are eminently hydrophobic. This
can be confirmed by the existence of many PLA2s structures inter-
acting with non polar ligands [26,27]. In contrast to this, ASP49-
PLA2s are able to bind Ca2þ because they have free calcium binding
sites, and this is the determinant to catalysis. Simple mutation of
the aspartic acid 49 to lysine makes the side chain of lysine occupy
these sites and prevents calcium binding and catalysis. Hydro-
phobic residues in the region on the inner surface of the N-terminal
helix are able to maintain the fatty acid bound to the hydrophobic
site without calcium, in contrast to hypothesis proposed by Lee [8]
which proposes that the inhibition of LYS49-PLA2s occurs because
the substrate binds tightly resulting in low turnover. So, these
myotoxins are incapable of performing catalysis.
3.4. Conventional dimer/alternative dimer

The Bn IV crystal structure, as with all PLA2s, presents the
conventional arrangement stabilized by interactions between the
tips of b-wings and the residues of the N-terminal helices [28].
Some authors have proposed the existence of an alternative
dimeric conformation that is weakly scientifically supported. The
possible alternative arrangement is stabilized by contacts between
the putative calcium binding loops and the C-terminus, forming
a connection between the active sites of both monomers [29,30].
The former is called the “conventional dimer” since the most of
LYS49-PLA2s structures were solved in this configuration [16]. The
latter, “alternative dimer”, is characterized as the configuration
with the highest probability of occurring in solution based on the
interface area and free energy values calculated by the PISA
program [31]. Additionally, recent studies using small angle X-ray
scattering experiments [29] and functional aspects were consid-
ered to validate alternative dimers.

One face of the monomeric structure of LYS49-PLA2 has
a predominance of hydrophobic amino acid residues (Fig. 5a). The
exposure of hydrophobic residues in aqueous solution leads to the
formation of closed dimers, which explains the formation of dimers
called “alternative” and high free energy values calculated by the
PISA program. However, BN IV can also be constructed in alterna-
tive dimer form by symmetry operations (eX, Yþ1/2, eZ) (Fig. 5b).
“Alternative” dimers can be constructed by crystallographic
symmetry in all LYS49-PLA2s represented as conventional dimers,
and in small angle X-ray scattering experiments this is equally
probable.

The dimer formation is not relevant to the myotoxic activity,
since monomers have equal myotoxic activity [32]. Oliveira and co-
workers [33] have shown that the dimeric state of the Lys49
myotoxins may contribute to their toxic mechanism in liposomes,
since the biological effects were higher at pH 7.2 than at pH 5.0.
Ângulo and co-workers [32] showed using cultured myoblasts that
the toxic action of LYS49-PLA2s is not abolished at pH 5.0. Contrasts
between liposome and myoblast activities demonstrate that
a dimeric state is not an absolute requirement in the muscle-
damaging mechanism of LYS49-PLA2 myotoxins, in monomeric
form still being able to exert cell damage.
3.5. Mechanism of action LYS49-PLA2

The LYS49-PLA2 mechanism of action is based on the hypothesis
that interactions of the molecularly distinct region of the fatty acid



Fig. 5. Alternative dimer assemble of BN IV. (a) View of the interaction between the hydrophobic sides forming the alternative dimer (green). (b) The “alternative” dimer (black
circle) can be constructing by crystallographic symmetry of the conventional dimer. Symmetry operator:eX, Yþ1/2, eZ. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).

Fig. 6. Prediction of the possible heparin biding site for Bn IV by two different programs: (a) Q-SiteFinder and (b) Molegro Virtual Docker.
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binding site with biological membranes are able to destabilize the
bilayer.

The myotoxic effect of LYS-PLA2 has no relationship to its
enzymatic activity, since the stereochemical hindrance of the lysine
side group blocks the binding of calcium and hence, catalytic
activity.

The relevant structural aspects for myotoxic activity are not
affected by this change, since apparently the myotoxic activity is
related to the C-terminal region of this protein. The myotoxic effect
is probably due to the presence of hydrophobic amino acid residues
near the C-terminus and the number of basic amino acids present
in this region. This allows an electrostatic binding interaction and
penetration of the lipid bilayer.

The Bn IV C-terminal residues 104e109 (NKKYRY) are a prob-
able heparin binding domain that facilitates their interaction with
heparan sulfate proteoglycans. Heparin binding domains usually
follow the consensus sequence for heparin binding proposed by
Cardin and Weintraub [34] as follows: XBBBXXBX or XBBXBX,
where B is a basic amino acid and X represent non basic amino
acids. Moreover, a potential binding pocket (Fig. 6a, b) in the
structure of Bn IV was found in the C-terminal region using
Molegro Virtual Docker [22] as well as Q-SiteFinder prediction
programs [21].
In accordance with this, myotoxic activity of monomeric PLA2 in
experiments conducted at pH 5.0 [28], interactions of PLA2 with M
and N-type membrane receptors [35,36], and with kinase domain
receptors [37], inhibition by heparin hexasacharide [7], neutrali-
zation with polyclonal and monoclonal antibodies [38], interaction
with cell surfaces via C-terminal heparin binding lysine residues
[39] indicate that the mechanisms of myotoxic action must be
related to cell signaling, probably by interaction with specific
proteoglycans.

4. Conclusion

The strength of interaction between Bn IV and membranes of
skeletal muscle cells is not solely related to the existence of posi-
tively charged amino acid residues in the C-terminus. These resi-
dues interact with negatively charged membrane phospholipids
and with hydrophobic/aromatic amino acid residues that are in the
monomer positive face and can partially penetrate the membrane.
Structurally, low numbers of amino acid residues are probably not
able to disrupt membranes. We hypothesize that the high myotoxic
activity of Lys49-PLA2 occurs through some kind of cell signal
transduction mediated by heparin complexes. However, this must
be confirmed by co-crystalization with heparin.
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