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Abstract: This work studies both theoretically and experimentally the 

formation of the contour interference patterns generated by a two-

wavelength real-time holographic interferometer. The resulting contour 

interference fringes are due to the intersection of the measured surface with 

parallel, equally spaced planes of constant elevation. The theoretical 

analysis describes how the spatial frequency of the elevation planes, their 

angular position, and the localization of the fringes depend on parameters 

of the optical setup. A theoretical model for fringe localization is 

developed and confirmed by the experiments, showing a strong 

dependence of the interferogram position on the slope of the studied 

surface. Due to the thick Bi12TiO20 crystal employed as the storage medium 

the Bragg selectivity of the holographic readout is also considered. 
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1. Introduction 

Due to the employ of fringe pattern evaluation procedures [1–3] such as phase shifting and 

phase unwrapping, whole-field interferometric methods, like holography [4–6] and DSPI 

[7,8] (digital speckle pattern interferometry), enable fast and precise reconstruction of 

wavefronts as a whole with a precision up to λ/100 in cases of low optical noise [9]. The 

rotation-source [10,11] and the heterodyne (two-color or multi-wavelength) methods [12–14] 

are among the most promising interferometric whole-field techniques for surface contouring. 

In both cases the interference fringes result from the intersection of the studied surface with 

uniformly distant and parallel planes of constant elevation. The accuracy of the measurement 

mainly depends on the knowledge of the distance between the planes – the contour interval - 

and their direction in respect to a reference plane. 

Recently a combination of those techniques was proposed and demonstrated through 

holographic recording in Bi12TiO20 (BTO) crystals [15–17]. In the optical setup two tunable 

diode lasers emitted at slightly different wavelengths thus generating a synthetic wavelength 

λS. In addition, both beams propagated in slightly different directions, such that the small 

beam misalignment δα acted as a fine adjustment of the interferogram spatial frequency. 

During the holographic recording in the thick BTO crystal the Bragg condition for generating 

high-visibility fringe patterns was achieved by properly selecting the values of δα, providing 

contour intervals down to ~95 µm. Despite the good results of these works, their analyses are 

valid only for certain experimental conditions and are limited to particular surface 

geometries, since they do not consider important phenomena like the wavelength-dependent 

rotation of the constant elevation planes, or the loci of the fringe pattern formation. 

A correct and complete determination of the constant elevation planes geometry is crucial 

for the measurement accuracy. As the measurements become finer, the accuracy 

requirements become more stringent, otherwise errors which are usually negligible for 

synthetic wavelengths of the order of few millimeters can lead to very inaccurate results 

when tenfold smaller synthetic wavelengths are used. In addition, an erroneous estimate of 

the direction of the constant elevation planes can lead to the false conclusion that an actually 

symmetrical surface with respect to a given direction is asymmetrical, or vice-versa. The 

theoretical development and the experiments with hybrid two-laser and beam misalignment 

setups performed in this work have revealed that the planes of constant elevation are no 

longer perpendicular to the bisector of the angle formed by the illuminating beam and the 

beam scattered by the object, a widely accepted concept in heterodyne holographic or speckle 

interferometry. In this work the direction and the spacing of the planes were calculated from 

the propagation vectors of the illuminating beams and the beam scattered by the object as a 

function of the illuminating beam angle α, the beam misalignment δα and the wavelengths of 

the interacting beams. The results of this vectorial analysis provided the information for 

designing and adjusting the illumination of the object in order to achieve a desired direction 

of the planes of constant elevation, which was successfully accomplished and confirmed by 

the experiments. 
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Another important issue of two-wavelength whole-field interferometry lies on the fact 

that smaller contour intervals enable the measurement of lower derivative surfaces. In this 

work it was experimentally observed that in these cases the fringe pattern was not formed on 

the object surface. Moreover, it was also observed that the interferogram generated by 

surfaces with slopes of different signals cannot be entirely visualized; instead, if the fringe 

pattern of a region, say, of a positive slope has a high visibility, the fringes of the remaining 

part with negative slope are not discernible, or vice-versa, suggesting that the fringe focusing 

was related to the direction of the propagation vectors of the illuminating beams relatively to 

the surface. Based on the theoretical development for fringe localization in two-exposure 

holography for deformation measurements [18,19], an expression describing the position of 

the fringe pattern with respect to the studied surface was derived as a function of the 

experimental parameters. The theoretical results provided very useful information on how to 

localize the interferogram by properly adjusting the optical system and how to manage the 

discrepancies between the surface and the fringe pattern positions. 

Since an important part of the experiments consists of adjusting the propagations of the 

beams and the synthetic wavelengths in order to achieve high measurements sensitivities and 

good interferogram visibilities, in the whole theoretical analysis the Bragg condition for 

holographic recording and readout was taken into account. 

2. Two-wavelength holographic recording 

Preceding the theoretical analysis of Sections 2.1 and 2.2 a brief revision of the two-

wavelength holographic process is presented below. Consider the interference of the 

reference and the object waves onto a Bi12TiO20 crystal in a two-wave mixing-like scheme. 

The waves originate from two diode lasers emitting at different wavelengths λ1 and λ2 such 

that 
1 2 1

λ λ λ− << . The beams coming from the lasers have the same intensity and are 

coupled by a beam splitter in order to propagate nearly in the same direction. The following 

analysis takes into account the influence of the lasers detune and the misalignment of the 

beams on the generation of interference contour fringes on the object image. The waves 

impinging the BTO crystal can then be written as 

 ( ) ( ){ }0 1 1 1 2 2 2exp[ exp[R RR R i k i kϕ ϕ= Γ + + Γ +  (1a) 

 ( ) ( ){ }0 1 1 1 2 2 2exp[ exp[S SS S i k i kϕ ϕ= Γ + + Γ +  (1b) 

where 
1,2 1,2

2k π λ= and φ1 and φ2 are the phases at each laser output. ΓS1,2 and ΓR1,2 are 

respectively the optical paths of the object and the reference beams with wavelength λ1,2 from 

the coupling beam splitter to the crystal. The distinction of 
( )1S R

Γ  from 
( )2S R

Γ  arises from the 

beam misalignment at the beam splitter output. From Eq. (1) the intensity of the holographic 

object image is given by [15] 

 
( )

( ) ( )

2 2 2 2

1 2 0 0 1 1 1 1 2 2 2 2

2 2

0 0 1 1 1 1 2 2 2 2

1 2 cos

1 1 cos

D D D S R S R

S R S R

I E E R k k k k

                                R V k k k k

η χ χ

η χ

 ∝ + ∝ + + Γ − Γ − Γ + Γ 

= + + Γ − Γ − Γ + Γ  
 (2) 

where ( )2
2 1V χ χ≡ +  is the interferogram visibility. The factor χ takes into account the 

eventual off-Bragg readout, such that 0 1χ< < , being 1χ =  for perfect Bragg regime and 

0χ =  for completely off-Bragg processes [15,20]. Since the output power is the same for 

both lasers, V refers only to the Bragg regime degree. From the phase in the sinusoidal term 

of Eq. (2), one retrieves information about the object surface, the position of the constant 

elevation planes and their relative distances as well as the interferogram localization. 
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2.1 Interferogram positioning and distance between planes 

The incidence of the collimated illuminating beam onto the analyzed surface impinging 

points A and B is shown in Fig. 1. Since the illuminating beams propagate in plane xz only, 

the analysis of Sections 2.1 and 2.2 will be restricted to this plane. The angle between the 

incident beam and y-axis is α δα+  for beam 1 and α for beam 2. The phase difference φ 

between A and B on the object surface is obtained from Eq. (2): 

 
1 1 2 2 1 1 2 2

,
S B S B S A S A

k k k k  ϕ = Γ − Γ − Γ + Γ  (3) 

where ΓS1(2)A and ΓS1(2)B are the optical paths of the object beam at wavelength λ1(2) through A 

and B, respectively. In the equation above, the influence of the beams misalignment in the 

reference-beam arm on the fringe generation can be considered negligible. According to  

Fig. 1, the phases of Eq. (3) can be explicitly written as a function of the unit propagation 

vectors of the illuminating and the scattered beams 
1

k̂ , 
2

k̂  and k̂ : 

 1 2

1 2

ˆ ˆ ˆ
2 .

S

k k k
Lϕ π

λ λ λ

 
= − −  

 

�

 (4) 

where ( )1 2 2 1S
λ λ λ λ λ≡ −  is the synthetic wavelength, which can be whether positive or 

negative. Vector L
�

 shown in this figure is the position vector of point B in respect to A. In 

the coordinate system of Fig. 1 the y-axis is the optical axis of the lens which forms the 

object image on the holographic medium, or the direction of the beams scattered by the 

object and captured by the lens, since its aperture is much smaller than the object-to-lens 

distance. The phase obtained in Eq. (4) describes the generation of contour fringes due to 

two-laser holography. 

 

Fig. 1. Incidence of the collimated beam onto the surface. 

If points A and B lay on the same plane of constant elevation (i.e., on the same 

bright/dark fringe), thus φ = 0. According to Fig. 1, the vectors in Eq. (4) are written 

as ( )1
ˆ  sin , cos  k α α= − , ( ) ( )( )2

ˆ  sin , cos  k α δα α δα= + − + , ( )ˆ 0, 1k =  and 

( ) sin , cos  L L θ θ=
�

. Hence, from those vector and from Eq. (4) one obtains the direction of 

the elevation planes given by angle θ shown in Fig. 1: 
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2

2

 
sin cos

 ,
 

2cos sin
2

S

S

tg

λ δα
α α

λ
θ

λ δαα
α

λ

−

=
  + 
 

 (5) 

The terms containing the synthetic wavelength show that θ depends not only on the 

illumination beam angle α, but also on the lasers detune
2 1

λ λ− , due to the misalignment 

angle δα. Notice that when 0δα = , thus 2θ α= , as in usual two-colour holography. 

It should be emphasized that the values of the wavelengths and the angle δα cannot be set 

arbitrarily. Since the holographic images are obtained through volume holograms, the limits 

imposed by the Bragg regime must be necessarily observed and thus there must be a trade-off 

between all the parameters in order to obtain acceptable interferogram visibilities. Due to the 

beam misalignment, two phase holograms with grating vectors slightly tilted of δα with 

respect to each other are recorded in the BTO crystal. According to Kogelnik’s coupled wave 

theory [20], due to this tilt and to the lasers detune the term χ in Eq. (3) is given by 

sinχ ξ ξ=  for small diffraction efficiencies, where ( ) 1

0 0
2 sin tan

S
l nξ π γ δα λ γ λ − = +  , 

l0 being the interaction length of the interfering beams in the medium, 2γ the angle between 

them, n0 the crystal refractive index and ( )1 2

1 2
λ λ λ= . As mentioned in the previous section, 

the interferogram maximal visibility 
max

1V =  obtained in perfect Bragg processes is achieved 

for 1χ =  and 0ξ = . However, the properties of the phase stepping methods for fringe 

evaluation allow a range of values of V smaller than 1 without introducing significant errors 

in the wavefront reconstruction. This tolerance for slight off-Bragg regimes can be beneficial 

for the wavefront analysis, since it results, if the experimental parameters are properly 

selected, in higher spatial frequency interferograms which in turn allow for less noisy, more 

sensitive and more accurate measurements [6]. As it will be seen in the following sections, 

the product 
2S

λ δα λ  of Eq. (5) appears recurrently throughout the paper and is closely 

related to the Bragg condition. Through the definition of ξ  above and the 

expansion 2sin 1 6χ ξ ξ ξ= ≅ − , the term
2S

λ δα λ  can be written as 

 
2 0 0

6(1 ) tan

2  sin

S

S
l n

χλ δα γ
λ

λ π γ
−

≡ ℑ ≅ −  (6) 

The term ℑ is a key-parameter since it determines how the lasers detune and the 

misalignment angle must be experimentally set in order to provide desired values of contour 

intervals with a suitable interferogram visibility (i.e., a degree of Bragg regime). 
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Fig. 2. Angle θ of the planes of constant elevation as a function of λ1 for different values of χ 

and λ2 = 661.75 nm. 

Although θ in Eq. (5) is conveniently expressed in terms of ℑ, a more illustrative way of 

displaying the dependence of θ on the lasers detune is shown in Fig. 2. In this case the 

wavelength of laser 2 is kept constant at 661.75 nm while the other laser is tuned. The angle 

θ is plotted as a function of λ1 according to Eqs. (5) and (6) for 1χ =  (black curve), 0.85χ =  

(red curve) and 0.5χ =  (blue curve). Each curve simulates the experimental procedure 

through which δα is readjusted as λ1 is changed in order to keep the same value of χ. The 

curves were obtained based on the parameters adopted in the experiments: the illumination 

angle was set to 0.05α =  rad, the angle between the object and the reference beams inside 

the crystal was 2γ ≈ 25°, the BTO refractive index is 
0

2.6n =  for red light and the 

interaction length l0 was estimated to be ~ 2 mm due to the tight focusing of the object image 

in the BTO crystal and the small area of the illuminated surfaces (not exceeding 20 cm
2
). The 

curves show that for χ < 1 the planes of constant elevation tilt rapidly so that 2θ α π→ ±  

rad as 
1 2

λ λ→  (
S

λ → ±∞ ). The black curve shows that when the laser beams are aligned in 

order to keep maximum fringe visibility throughout the process of laser detuning, the 

direction of the elevation planes remains constant at 

( ) ( ) 1
2

0 0 0arc tan sin tan 2cos 2 tann nθ α γ α γ
− = + −  

. From the plot, it may be also 

observed that if δα > 0, then 0θ =  only when 
1 2

λ λ< . 

The distance between two consecutive planes of constant elevation can be obtained with 

the help of Eq. (4). Let R
�

 be the vector representing the distance between two consecutive 

planes, called as sensitivity vector. Since the phase difference between them is φ = 2π, one 

obtains the relation 

 1 2

1 2

ˆ ˆ ˆ
. 1

S

k k k
R

λ λ λ

 
− − =  

 

�

 (7) 

Since R L⊥
� �

, from Eq. (7) the modulus of R
�

 can be given by 

 

( )sin 2cos cos
2 2

SR
λ

α α
θ α θ

=
   ℑ − − −   
   

 (8) 

The interference fringes generated on a flat surface tilted by an angle β with respect to the 

x-axis are obtained by determining the intersection of this surface with the planes of constant 
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elevation. The spatial frequency of the interferogram generated on this surface is then written 

as ( )sinSv Rθ β= − . The plot of vS in Fig. 3 shows that even though 1/R is a minimum for 

1 2
λ λ= , the interferogram spatial frequency increases monotonically in this region due to the 

factor ( )sin θ β− , showing that not only the distance between the planes of constant 

elevation but also the wavelength-dependent rotation of these planes are responsible for the 

spatial frequency of the contour interferogram. In the figure, β = 0, λ2 = 661.75 nm and 

0.98χ = . The spatial frequency is zero if λ1 assumes the value ( ) 1

1min 2
tan 1λ λ δα α −

= + , 

which corresponds to 0θ =  in Eq. (5). 

 

Fig. 3. Dependence of vS as a function of λ1, for β = 0, λ2 = 661.75 nm and χ = 0.98. 

2.2 Interferogram localization 

For convenience a new coordinate system was chosen with axes x´ and y´ perpendicular and 

parallel to the sensitivity vector R
�

, respectively. This choice lies on the fact that the 

interferogram intensity at a point P on the object can be attributed to its phase with respect to 

a point O on a reference elevation plane. Both points define the vector H
�

, parallel to the 

sensitivity vector. As usual in fringe pattern localization, it is assumed that the interferogram 

is not formed on the object surface, but in other region of the space. Consider points P and O 

as having coordinates ( ,́ )x H  and ( ,́ 0)x , respectively, and a point Q of coordinates ( ,́ ´)X Y  

belonging to the region where the fringe pattern is formed. The total optical wave at Q is the 

contribution from the waves scattered by the points at the vicinity of P, as shown in the insert 

of Fig. 4. This region surrounding P is the base of a cone with the apex at Q. The area of the 

base is directly proportional to the optical aperture of the image acquisition system. The 

condition for fringe formation at point Q requires that the fringe visibility is a maximum, 

which implies that the phase variation at this point is a minimum, leading to ´ 0xδ∂ ∂ =  [18]. 
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Fig. 4. Scheme of incident collimated beams and beams scattered by the surface at point P. 

The phase at Q is determined analogously as in the previous section according to the 

scheme of Fig. 4: 

 ( )
´´ ´

´ ´32 1

3 4

2 1

ˆˆ ˆ 2 ˆ ˆ2 . .
P

S S

kk k
H k k r

π
δ π

λ λ λ λ

 
= − − + −  

 

�

�

 (9) 

where H
�

 (// R
�

) is the position vector of P relatively to O, ´

1
k̂  and ´

2
k̂  are the propagation 

vectors of the illuminating beams, ´

3
k̂  and ´

4
k̂  are the propagation vectors of the scattered 

beams (see Fig. 4), and 
p

r
�

 the position vector of Q relatively to P. Considering a small 

incidence angle α of the illuminating beam onto the object surface (as in the experimental 

setup), and since ´ ´

3 4
ˆ ˆk k−  and 

p
r
�

 are nearly orthogonal, the second term in the right-hand side 

of Eq. (9) can be neglected, so that δ can be simplified as 

 
´´ ´

32 1

2 1

ˆˆ ˆ
2 .

S

kk k
Hδ π

λ λ λ

 
≅ − −  

 

�

 (10) 

In the new coordinate system, the position vector H
�

 and the normalized propagation 

vectors are written as (0, )H H=
�

, ( )´

1
ˆ  sin , cos  k φ φ= − , ( ) ( )( )´

2
ˆ  sin , cos  k  φ δα φ δα= + − +  

and ( )´

3

( ´ ,́ ´ )ˆ  sin ,cos
X x Y H

k θ θ
κ

− −
= = , where ( ) ( )2 2

´ ´ ´X x Y Hκ ≡ − + − , φ α θ= −  and 

( ´)H H x= . By using the vectors above and after some algebraic manipulation the position 

Y´ where the fringe pattern is formed can be obtained from Eq. (10) as 

 

( )

sin 2
sin cos

2 ´
´ 1 ( ´)

sin 2cos cos
2 2 ´

H

x
Y H x

H

x

θ
θ θ

α α
α θ θ

 ∂ −  ∂  = + 
  ∂    ℑ − + −     ∂     

 (11) 

Equation (11) enables a semi-quantitative description of the fringe focusing phenomenon, 

since it does not provide the absolute interferogram position, but its relative position with 

respect to the surface. When the expression in the brackets equals 1, the fringe pattern occurs 

right on the object surface described by function H(x´). As the expression in the brackets 

assumes values smaller than 1, the fringe pattern is formed behind the object; otherwise, the 

interferogram is formed between the object surface and the imaging lens. The relation 

#121987 - $15.00 USD Received 23 Dec 2009; revised 19 Feb 2010; accepted 22 Feb 2010; published 12 Apr 2010
(C) 2010 OSA 26 April 2010 / Vol. 18,  No. 9 / OPTICS EXPRESS  8750



between the slope ´H x∂ ∂  of the studied surface and the illumination angle α strongly 

influences the signal of the right-hand term in the bracket and thus it determines whether the 

fringes are formed behind or in front of the surface. Since the propagation vectors of all the 

beams in the optical setup belong to the x´y´-plane, the dependence of the Y-coordinates on 

the z-direction was not taken into account. 

In typical experimental conditions, the illumination angle α is small and positive, so that 

( )sin 1α θℑ − << ; if ´ 0H x∂ ∂ > , then ´ ( ´)Y H x< , and the fringe pattern is formed behind 

the surface; if ´ 0H x∂ ∂ < , one gets ´ ( )́Y H x> , and the interferogram is localized between 

the object and the imaging lens. From Eq. (11) one also concludes that a decrease of the 

surface derivative corresponds to an increase of the distance between the object and the 

interferogram surfaces, to the limit for which the distance between the interferogram and the 

object surface tends to infinity as ´ 0H x∂ ∂ → . 

The influence of the illumination angles on the distance between the fringe pattern and 

the object surface was considered by studying the formation of the interferogram on a simple 

surface constituted by two concurrent planes. The intersection of this surface with x’y´-plane 

is “V”-shaped, so that H(x´) in this plane is given by 

for 0

for 0

H(x )= mx +b, x <

H(x )= -mx +b, x <

′ ′ ′
 ′ ′ ′

 where ( ´)m H x= ∂ ∂  and b are real and positive. 

Figure 5 shows the surface (black curve, m = 0.35 and b = 20 mm) and the region Y´ 

where the interferogram can be focused for 0.01α =  rad (blue curve), 0.05α =  rad (red 

curve). This figure evidences how the position of fringe focusing depends on the illumination 

angle and that the fringes are formed behind or in front of the surface according to its slope. 

 

Fig. 5. Position Y´ of the interference pattern for 0.01α =  rad (blue), 0.05α =  rad (red) 

with respect to the edged surface (black). 

For some combinations of beam misalignment and lasers detune it is possible in principle 

to observe subtle changes in the fringe pattern position relatively to the object surface. This 

change can be noticed through a small decrease of the interferogram visibility as ℑ is 

changed. According to Eq. (11), as |ℑ| increases, the distance between the fringe pattern and 

the object surface also increases. This difference becomes more pronounced as the surface 

derivatives ´H x∂ ∂  become smaller. Figure 6(a) illustrates the behavior of ´Y H by varying 

the wavelength λ1, taking λ2 = 661.75 nm and for different values of χ. All the curves were 

obtained for ´ 0.04H x∂ ∂ = − . The curves evidence clearly that the influence of λ1 on the 

fringe position becomes more pronounced as 
1 2

λ λ→ , i.e., for larger values of λS and ℑ. 

Analogously as performed in Fig. 2, the black ( 1χ = ), the blue ( 0.9χ = ) and the red 
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( 0.5χ = ) curves describe the situation in which the beams are aligned as 
1 2

λ λ−  varies in 

order to keep the same fringe visibility. As 
1 2

λ λ−  increases the values of ´Y H for all the 

visibilities converge to same value obtained through Eq. (11) for 
0

tan nγℑ = − . For lower 

derivatives the curves present essentially the same behavior, but the relative distances 

increase, as shown in Fig. 6(b) for ´ 0.012H x∂ ∂ = − . In any case, by examining the curves it 

can be noticed that the lasers detune and the beam misalignment do not produce easily 

observable and/or relevant changes in the fringe pattern position; both plots show that the 

variation of the interferogram position is larger for wavelength changes in the region of 

larger synthetic wavelengths (i.e., smaller spatial frequencies), and that this variation is more 

pronounced for lower surface derivatives. However, the interferogram generated by low-

derivative surfaces cannot be easily visualized in the limit of very large synthetic 

wavelengths, since the intensity distribution of the resulting holographic image tends to be 

spatially uniform in these cases. 

 

Fig. 6. ´Y H as a function of the wavelength λ1, with λ2=661.75 nm and χ = 1, 0.9 and 0.5, 

for a - ´ 0.04M H x= ∂ ∂ = −  and b - ´ 0.012H x∂ ∂ = − . 

3. Experiments and results 

3.1 Experimental setup 

Two 30-mW diode lasers with emission centered at ~ 662 nm were employed in the 

holographic setup. The holographic recording occurred in the pure diffusion regime and the 

photorefractive BTO crystal was cut in the [110] transverse electrooptic configuration in 

order to take advantage from its anisotropic diffraction properties [21] for low-noise imaging 

with a CCD camera. The other BTO output was used for spectrum measurement by a 

spectrum analyser with a 600-lines/mm diffraction grating. The piezoelectrically driven 

mirror M1 allowed adjusting the misalignment angle with ± 10
−5

 rad of uncertainty. The 

object was mounted on a goniometer and could be rotated by angles with uncertainty 
39 10−± ×  rad. The experimental setup is shown in Fig. 7. 
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Fig. 7. Experimental setup: M1 to M5, mirrors, L1 and L2, lenses, BE, beam expander, P1 and 

P2, polarizers, BS, beam splitter, BTO, Bi12TiO20 crystal, CCD, camera, PC, computer. 

Both lasers were tuned upon varying the current injected by the power supply. The values 

of λ1 ranged from 661.80 to 663.70 nm, while λ2 ranged from 660.55 to 662.75 nm, all values 

with uncertainties of ± 0.05 nm. During the laser tuning the currents of the power supply 

were selected in order to achieve a laser emission without mode hoping. This assured a 

negligible variation of the synthetic wavelength throughout the experiments. The fact that 

1 2
λ λ>  in the whole voltage range is an experimental limitation which influences the 

analysis of the constant elevation planes direction. 

3.2 Direction of constant elevation planes 

Since λS is always negative due to the behavior of λ1 and λ2 mentioned above, one comes to 

the conclusion that δα must be whether null or positive in order to fulfil Eq. (6) and provide 

visible interferograms. This limits the flexibility in the beam alignment. In order to illustrate 

the consequences of this limitation, the requirements through which the constant elevation 

planes are parallel to the xz-plane in Fig. 1 are analysed. This is a very desirable 

configuration, remarkably in the study of surface geometries which present symmetry 

relatively to the y-axis, e.g. spherical or cylindrical surfaces. In this case, since L
�

 must be 

parallel to the x-axis, and since ˆ
S

k λ  is perpendicular to it, the planes will have the desired 

direction if the vector 
1 1 2 2

ˆ ˆ ˆk k kλ λ∆ ≡ −  is parallel to the y-axis. By using the unit vectors 

1
k̂  and 

2
k̂  from Eq. (10), this condition is fulfilled when tanαℑ = . 
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Fig. 8. a - Illumination scheme for α > 0 showing the vector k∆
�

; b - contour interferogram 

of the surface obtained with positive α, showing excentrical contour fringes; c - illumination 

scheme for α < 0; d – resulting contour interferogram of the surface with circular concentric 

fringes. 

The illumination scheme of Fig. 8(a) (for which 0ℑ <  and α > 0) does not provide the 

desired plane direction unless 
2 1

λ λ>  - which cannot be achieved through laser tuning – or 

0δα <  - which would spoil the fringe visibility according to Eq. (6). Figure 8(b) shows the 

contour interferogram of this surface obtained with an illumination angle α = 0.037 rad and a 

synthetic wavelength λS = –520 µm. The excentrical contour fringes clearly evidence that the 

interferogram was a result of the intersection of the surface with elevation planes tilted with 

respect to x-axis ( 0θ ≠ ). This interferogram asymmetry cannot be removed by laser tuning 

or further beam alignment without the expense of a strong decrease of the fringe visibility. 

In the arrangement of Fig. 8(a) the signal of illumination angle was inverted with respect 

to the y-axis, while the relative angular positions of vectors 
1

k̂  and 
2

k̂  remained unchanged. 

Notice that the illumination schemes of Figs. 8(a) and 8(c) are not symmetrical. In this 

second case it becomes clear that for certain values of λ1 and λ2 the vector 
1 1 2 2
ˆ ˆk kλ λ− can 

be made parallel to the y-axis, as evidenced by the circular and concentric contour fringes of 

the same spherical surface as seen in Fig. 8(d). 

A flat plate tilted by β = 0.191 rad (10.9°) in respect to the x-axis of Fig. 1 was used to 

investigate the dependence of the interferogram spatial frequency νS on the wavelengths λ1 

and λ2. In this study λ2 was kept constant at 661.40 nm and the spatial frequency of the 

resulting straight and parallel contour fringes was measured as λ1 was varied from 661.80 nm 

to 663.50 nm. For each selected value of λ1 the beam misalignment δα was adjusted in order 

to provide the maximal interferogram visibility. The measured values of νS are shown in  

Fig. 9, where the solid curve is the fitting of the experimental data with the expected values 

obtained from the expression for νS by taking 1χ = . Due to the small values of θ0 and α, νS 

can be simplified as ( )( ) ( )0 1 2 1 2
2sin

S
ν θ β λ λ λ λ≅ − −  in a very good degree of 

approximation. From the fitting curve the experimental angle θο between the planes of 

constant elevation and the x-axis for maximal fringe visibility was determined to be θoEXP = 

0.096 rad (or 5.5°). By taking 0.081α =  rad, γ = 0.22 rad and n0 = 2.6, the expected value of 

this angle was calculated to be θoTEO = 0.083 rad (= 4.8°) through the expression for θο in 

Section 2.1, showing a fairly good agreement with the value obtained experimentally. Notice 
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that under the influence of the misalignment angle and the laser detune the results for θο 

became significantly different from α/2 = 4x10
−2

 rad, which is the expected value for θ in 

two-colour holographic interferometry . 

 

Fig. 9. Measured values of the interferogram spatial frequency νS with maximal visibility as a 

function of λ1, for λ2 = 661.4 nm. The solid curve is the fitting of the experimental data with 

the theoretical expression of νS. 

3.3 Fringe pattern localization 

The two-laser holographic imaging of the surface constituted of two concurrent planes 

described in Section 2.2 was performed in order to verify the predictions of that section 

based on Eq. (11). The images of the object shown in Fig. 10 confirm those predictions. In 

Fig. 10(a), when the left half (x´ > 0 and ´ 0H x∂ ∂ < , according to the coordinate system of 

Fig. 4) of the interferogram was focused, the fringe pattern in the right side of the object (for 

which ´ 0H x∂ ∂ > ) appears completely blurred. Figure 11(b) focuses the right half of the 

interferogram of the same object; as expected, in this case the contour fringes of the left half 

cannot be discerned. Figures 10(c) and 10(d) illustrate the same phenomenon by imaging a 

37-mm radius-of-curvature spherical surface. For both figures, λS = – 420 µm, δα = 2.1 × 

10
−4

 rad and 25 10α −= × rad. 
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Fig. 10. Two-wavelength holographic imaging of the edge-shaped surface by focusing the 

fringe pattern of a –the left half (x´ > 0 and ´ 0H x∂ ∂ < ) of the surface, and b - the right 

half of the surface (x´ < 0 and ´ 0H x∂ ∂ > ); two-wavelength holographic imaging of the 

spherical surface by focusing the fringe pattern of c – the left and d – the right sides of the 

surface. 

As predicted by Eq. (11), for 0θ =  one gets ´Y H= , and thus the fringe pattern is formed 

on the surface and can be integrally visualized in a single exposure regardless the surface 

slope and the laser detune. In order to verify this prediction the contour interferogram of the 

same object was studied under the same value of ℑ and with the illumination angle α set at 

negative values in order to obtain null values of θ, as described in the previous section. 

Figure 11 shows the resulting contour fringe pattern with the arrow indicating the edge 

position which separates the negative slope from the positive slope of the surface. As 

expected from Eq. (11), by using this illumination angle, good-visibility fringes can be 

clearly visualized along both sides of the surface. The aperture of the optical system was the 

same as that used in Fig. 10. Notice that in Fig. 8(d) for which 0θ =  the interferogram 

resulted from a surface with positive and negative slopes was also integrally obtained. 

 

Fig. 11. Contour fringe pattern of the whole edge-shaped surface achieved for 0θ = . The 

arrow separates the negative from the positive slope of the surface. 

The dependence of the fringe position on the surface derivative was also investigated in 

deeper detail. For this purpose the loci of various contour fringe patterns of a flat plate were 

measured as its inclination (i.e., surface derivative ´H x∂ ∂ ) around the z-axis in Fig. 4 was 
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progressively varied. For each plate inclination, the CCD camera was positioned in order to 

achieve the best possible visibility of the fringe pattern. Then a reticule pattern serving as a 

focusing reference was positioned between the object and lens L1 and was displaced along 

the y-axis. The position of the reticule pattern with respect to the object for which both the 

reticule and the interferogram were sharply imaged by the optical system was considered as 

the interferogram position Y´. By setting the experimental parameters on 
1

662.60λ =  nm, 

2
661.70λ = nm, 25 10α −= × rad and 45.5 10δα −= × rad, the fringe positions were measured 

for different surface inclinations and fitted to the Y-values (solid curve) given by Eq. (11), as 

shown in Fig. 12. Through the error bars a certain degree of subjectivity in the determination 

of the interferogram visibility was taken into account. A H-independent term was 

phenomenologically added to the fitting function since the measurement obtained absolut 

values of Y´. This term was determined to be 21.9 mm. The plot of Fig. 12 shows the good 

agreement of the experimental results with the theoretically predicted ones. The discrepancy 

between the theoretical curve and the measured data for higher surface inclinations can be 

mainly attributed to the approximation of Eq. (10), which requires the unit vectors ´

3
k̂  and ´

4
k̂  

to be nearly parallel. As the modulus of the surface derivative increases, the fringe pattern is 

formed closer to the object surface and the difference ´ ´

3 4
ˆ ˆk k−  becomes not negligible, so that 

Eqs. (10) and (11) tend to be no longer valid. Moreover, the determination of the focused 

interferogram by visual means may induce to errors, remarkably in a derivative region in 

which the changes in the fringe position become more subtle. 

 

Fig. 12. Measured loci of the contour interferogram generated by a flat plate as a function of 

its inclination. 

4. Conclusions 

It has been evidenced the remarkable influence of the beams misalignment and the 

wavelength detune in surface contouring by whole-filed interferometry with thick 

holographic media. The proper knowledge of these parameters strongly contributes to the 

accuracy and precision of wavefront reconstruction. Derived from the coupled wave theory 

for thick gratings an expression relating the misalignment, the synthetic wavelength and the 

beam illumination angle was obtained, providing information on how to adjust those 

parameters in order to obtain desired combinations of interferograms visibility and spatial 

frequency. 

The spatial frequency of the fringe pattern with visibility smaller than unit depends on the 

interacting wavelengths and the beams misalignment in two ways, through the rotation of the 

constant elevation planes with respect to the studied surface and through the variation of the 

distance between the planes. For a given synthetic wavelength, the beam misalignment can 
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be adjusted in order to provide perfect Bragg regimes, resulting in maximal fringe visibilities. 

In this case, it was both theoretically and experimentally demonstrated that the direction of 

the constant elevation planes depends exclusively on parameters related to the holographic 

medium and the geometry of the optical setup. For this reason the direction of the planes can 

significantly differ from the results expected for two-wavelength processes with no beams 

misalignment. 

According to the theoretical and the experimental results the fringe pattern position can 

be mainly determined as a function of the slope of the studied surface and its position 

relatively to the illuminating beam. Contour fringe patterns can be significantly formed apart 

from the studied surface, depending on its slope in respect to the x´-axis, so that the lower the 

surface derivative, the more distant the interferogram from the surface. The signal of the 

illuminating beam angle in respect to the surface (or to the coordinate system) determines 

whether the fringe pattern is formed in front of or behind the surface. All this information can 

be useful for fringe obtaining during the process of laser tuning and beam alignment. The 

theoretical developments have shown that the laser tuning does not appreciably change the 

position of the interferogram. Indeed, in the experiments only very small and barely 

measurable changes in the fringe pattern visibility were observed as a function of the 

wavelength detune. 

The configuration for which the planes of constant elevation are parallel to the xz-plane 

( 0θ = ) was found to be particularly interesting and was achieved by properly arranging the 

illuminating beams and selecting the interacting wavelengths. It was demonstrated that the 

limitation of focusing the whole contour interferogram of a surface with slopes of different 

signals can be overcome by getting θ = 0, since in this case the fringe pattern is formed on 

the surface, regardless its geometry. This configuration is also useful remarkably for visual 

inspection and for the investigation of rather complex, multiple slopes, free-form objects. 

When the studied object is symmetric relatively to the y-axis, the resulting interferogram is 

also symmetric, thus enabling a more intuitive qualitative evaluation of the surface shape. 
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