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Quenching of para-H2 with an ultracold antihydrogen atom H1s
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In this work we report the results of calculation for quantum-mechanical rotational transitions in molecular
hydrogen, H2, induced by an ultracold ground-state antihydrogen atom H1s . The calculations are accomplished
using a nonreactive close-coupling quantum-mechanical approach. The H2 molecule is treated as a rigid rotor. The
total elastic-scattering cross section σel(ε) at energy ε, state-resolved rotational transition cross sections σjj ′ (ε)
between states j and j ′, and corresponding thermal rate coefficients kjj ′ (T ) are computed in the temperature
range 0.004 K � T � 4 K. Satisfactory agreement with other calculations (variational) has been obtained for
σel(ε).
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I. INTRODUCTION

Interaction and collisional properties between matter and
antimatter is of fundamental importance in physics [1,2]. The
antihydrogen atom (H), which is a bound state of an antiproton
p− and a positron e+, is the simplest representative of an
antimatter atom. This is a two-particle system, which, how-
ever, may possess very different interactional and dynamical
properties compared to its matter counterpart: the H atom [3,4].

By now much effort has been exerted in various experiments
to build and store H at cold and ultracold temperatures
[5–9]. New experiments are planned or are in progress to
test the fundamental laws and theories of physics involving
antiparticles and antimatter in general [2]. For example, it
follows from the charge conjugation, parity, and time reversal
(CPT) symmetry of quantum electrodynamics that a charged
particle and its antiparticle should have equal and opposite
charges and equal masses, lifetimes, and gyromagnetic ratios.
The CPT symmetry predicts that hydrogen and antihydrogen
atoms should have identical spectra. Future experimentalists
plan to test whether in fact H and H have such properties.
Specifically, a starting point would be to compare the fre-
quency of the 1s-2s two-photon transition in H and H. Also,
one of the important practical applications of antihydrogen
has been mentioned in Ref. [10], where the authors considered
controlled H propulsion for NASA’s future plans in very deep
space. Researchers at CERN [1] and from other groups [8]
are interested to trap and study H at low temperatures, e.g.,
T � 1 K, when the H atom will be almost in its rest frame.
The study of Lamb shift and response of antihydrogen to
gravity at ultralow energies should allow them to test more pre-
cisely the predictions of two fundamental theories of modern
physics: quantum field theory and Einstein’s general theory of
relativity [11].

It has been pointed out [12,13] that the main cause of loss
of the H atoms confined in a magnetic gradient trap is due to
H + H2 and H + He collisions. Therefore, the H + H2 scat-
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tering cross sections and corresponding rotational-vibrational
thermal rate coefficients, in the case of H2, would be very
helpful to gain a practical understanding of the slowing down
and trapping of H. Hence the investigation of the possibility
of cooling of H atoms by colliding them with colder H2 is of
significant practical interest [14]. (Similar collision between
trapped fermionic atoms with cold bosonic atoms has been
fundamental in cooling the fermionic atoms and thus leading
them to quantum degeneracy [15].) Such investigation of H
interaction with H and H2 can reveal the survival conditions
of H in collisions with H and, even more importantly, with
H2 [16].

Further, cooling occurs by energy transfer in elastic
collisions of H with H2. However, during the collision,
the rearrangement process may lead to the formation of
protonium (pp−) and positronium (e+e−) exotic atoms and the
destruction of H atoms. They are formed as matter-antimatter
bound states, which then annihilate. (There have also been
many studies of scattering of positronium atoms [17], the
lightest matter-antimatter atom). Thus one can conclude that
the effectiveness of the cooling of H is determined from a
comparison of the cross sections for direct scattering and
rearrangement.

By now a series of theoretical works have been published,
in which the properties of interaction between H and H, He,
and H2 have been investigated [12,18–20]. Some theoretical
studies have been carried out for the H + H system at thermal
energies using quantum-mechanical methods [21–26]. Also,
discussions on the importance and applications for this system,
especially in connection with Bose-Einstein condensation
[27], ultracold collisions [16,22], and its static and dynamic
properties [28], can be found in the literature.

In this work we present results for the collision of an
ultracold H atom with H2, where H2 is treated as a rigid
rotor with a fixed distance between hydrogen atoms. The
elastic, rotational state-resolved scattering cross sections for
the H − H2 scattering and their corresponding thermal rate
coefficients are calculated using a nonreactive quantum-
mechanical close-coupling approach. The potential interaction
between H and the hydrogen atoms is taken from Ref. [18].

In Sec. II we present the basic quantum-mechanical
scattering equations used in this work, present their partial-
wave projection and scattering boundary conditions. The
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expressions for transfer and elastic cross sections and transition
rate coefficients are also given. The detail of the potential
energy surface (PES) employed in the calculation is also
provided. The numerical results and discussion are presented
in Sec. III. We present a detailed account of the convergence of
the numerical calculation with respect to different scattering
and computational parameters. After assuring convergence in
our calculations, we present the results of our numerical cal-
culation involving elastic/inelastic scattering and transfer rates
at ultralow energies on the H + para-H2 system. Conclusions
and a summary are provided in Sec. IV.

II. H − H2 SCATTERING FORMULATION

A. Basic equations

In this section we describe the close-coupling quantum-
mechanical approach we used to calculate the cross sections
and collision rates of a hydrogen molecule H2 with an
antihydrogen atom H. Atomic units (e = me = h̄ = 1) are
used in this section, where e and me are the charge and
mass of an electron. Three-body Jacobi coordinates {�r, �R}
for the H + H2(j ) system used in this work are shown
in Fig. 1. The two H atoms are labeled 2 and 3 and
the H atom is labeled 1, O is the center of mass of the
H2 molecule, � is the polar angle between vector �r connecting
the two H atoms in H2 (labeled 2 and 3) and vector �R
connecting the center of mass of the H2 molecule to the H atom
(labeled 1). Next, �j and �L are angular momenta corresponding
to the vectors �r and �R, respectively. The quantities x21 and x31

are the distances between the H atom labeled 1 and the H
atoms labeled 2 and 3, respectively.

The Schrödinger equation for an a + bc collision in the
center-of-mass frame, where a (H) is an atom and bc (H2) is a
linear rigid rotor, is [29,30][

P �R
2

2MR

+ Lr̂
2

2µr2
+ V (�r, �R) − E

]
�(r̂ , �R) = 0, (1)

where P �R is the relative momentum between a and bc; MR

is the reduced mass of the atom-molecule (rigid rotor in
this model) system a + bc: MR = ma(mb + mc)/(ma + mb +
mc); µ is the reduced mass of the target: µ = mbmc/(mb +
mc); r̂ is the angle of orientation of the rotor ab; V (�r, �R)
is the PES for the three-atom system abc; and E is the total
energy of the system. The eigenfunctions of the operator Lr̂

2 in
Eq. (1) are the spherical harmonics Yjm(r̂).

(3)
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FIG. 1. Three-body Jacobi coordinates {�r, �R} for the H + H2(j )
system used in this work.

To solve Eq. (1), the following expansion is used [31]:

�(r̂ , �R) =
∑

JMjL

UJM
jL (R)

R
φJM

jL (r̂ , �R), (2)

where channel expansion functions are

φJM
jL (r̂ , �R) =

∑
m1m2

CJM
jm1Lm2

Yjm1 (r̂)YLm2 (R̂), (3)

where �J = �j + �L is the total angular momentum of the system
abc; M is its projection onto the space fixed z axis; m1 and
m2 are projections of j and L, respectively; CJM

jm1Lm2
are

the Clebsch-Gordan coefficients; and U ’s are the appropriate
radial functions.

Substitution of Eq. (2) into Eq. (1) provides a set of coupled
second-order differential equations for the unknown radial
functions UJM

jL (R)(
d2

dR2
− L(L + 1)

R2
+ k2

jL

)
UJM

jL (R)

= 2MR

∑
j ′L′

∫ 〈
φJM

jL (r̂ , �R)|V (�r, �R)|φJM
j ′L′(r̂ , �R)

〉
×UJM

j ′L′ (R)dr̂dR̂. (4)

To solve the coupled radial Eq. (4), we apply the hybrid
modified log-derivative-Airy propagator in the general purpose
scattering program MOLSCAT [32]. Additionally, we tested
other propagator schemes included in MOLSCAT. Our calcu-
lations reveal that other propagators can also produce quite
stable results.

The log-derivative matrix is propagated to large intermolec-
ular distances R, since all experimentally observable quantum
information about the collision is contained in the asymptotic
behavior of functions UJM

jL (R → ∞). The numerical results
are matched to the known asymptotic behavior of UJM

jL (R)
relating to the the physical scattering S matrix [33]

UJM
jL ∼

R→+∞
δjj ′δLL′e−i[kαR−(Lπ/2)]

−
(

kα

kα′

)1/2

SJ (j ′L′; jL; E)ei[kα′ R−(L′π/2)], (5)

where kα = [2MR(E − Eα)]1/2 is the channel wave number of
channel α = (jL), Eα is rotational channel energy, and E is
the total energy in the abc system. This method was used for
each partial wave until a converged cross section was obtained.
It was verified that the results have converged with respect to
the number of partial waves as well as the matching radius,
Rmax, for all channels included in our calculations.

Cross sections for rotational excitation and relaxation
phenomena can be obtained directly from the S matrix.
In particular, the cross sections for excitation from j → j ′
summed over the final m′ and averaged over the initial m are
given by [31]

σ (j ′, j, ε)

= π

(2j + 1)k2
α

∑
JLL′

(2J + 1)|δjj ′δLL′ − SJ (j ′L′; jL; E)|2.

(6)

022705-2



QUENCHING OF PARA-H2 WITH AN ULTRACOLD . . . PHYSICAL REVIEW A 81, 022705 (2010)

The kinetic energy is ε = E − Bej (j + 1), where Be is the
rotation constant of the rigid rotor bc, i.e., the hydrogen
molecule.

The relationship between the rate coefficient kj→j ′(T ) and
the corresponding cross section σj→j ′ (Ekin) can be obtained
through the following weighted average [34]

kj→j ′ (T ) =
√

8kBT

πMR

1

(kBT )2

∫ ∞

εs

σj→j ′ (ε)e−ε/kBT εdε, (7)

where ε = E − Ej is precollisional translational energy at
temperature T , kB is Boltzman constant, and εs is the
minimum value of the kinetic energy needed to make Ej levels
accessible.

B. H − H2 interaction potential

In the following section, we will present our results for
rotational quantum transitions in collisions between H2 and an
antihydrogen atom H, that is

H2(j ) + H → H + H2(j ′). (8)

Here H2 is treated as a vibrationally averaged rigid monomer
rotor. The bond length was fixed at 1.449 a.u. or 0.7668 Å.
The rotation constant of the H2 molecule has been taken as
Be = 60.8 cm−1. The H2 rigid rotor model has been already ap-
plied in different publications [31,35–41]. For the considered
range of kinetic energies, the model can be quite justified in
this special case when only pure rotational quantum transitions
at low collisional energies are of interest as in H2(j ) + H,
and when the energy gap between rotational and vibrational
energies is much larger than kinetic energy of the collision.
In such a model, the quantum mechanical approach is rather
simplified.

Next we consider an important physical parameter in atomic
and molecular collisions, e.g., the PES between the atoms.
There is no global potential energy surface available for the
three-atom H − H2 system. However in Ref. [18], the author
calculated the values of interaction energy between H and
H, i.e., the H − H energy curve using the Rayleigh-Ritz
variational method. Further, the microhartree accuracy of
Born-Oppenheimer energies of the system has been achieved
in that work.

To construct the H2 − H interaction potential we take the
H − H energy data from Ref. [18] and make a cubic spline
interpolation through all 46 points taken from Table I of that
article. These data have been tabulated from Rmin = 0.744 a.u.
to Rmax = 20.0 a.u. interatomic distances. Because in the
current work, we use the rigid rotor model for H2, we do
not need the interaction energy between hydrogen atoms in
H2. The three-body interaction potential between a hydrogen
molecule and H is taken as a sum of two two-body H − H
potential energy curves:

V (�r, �R) = V (r, R,�) = V 21
H−H

(x21) + V 31
H−H

(x31), (9)

where distances between atoms are written as follow
(cf. Fig. 1):

x21 =
√

r2/4 + R2 + rR cos �

and x31 =
√

r2/4 + R2 + rR cos(π − �). (10)

TABLE I. Para-H2 rotational spectrum.

Level Rotational Internal quantum
energy (cm−1) momentum in para-H2(j)

1 0.00 0
2 364.80 2
3 1216.00 4
4 2553.60 6
5 4377.60 8
6 6688.00 10
7 9484.80 12
8 12768.00 14
9 16537.60 16

10 20793.60 18
11 25536.00 20
12 30764.80 22
13 36480.00 24
14 42681.60 26
15 49369.60 28
16 56544.00 30
17 64204.80 32
18 72352.00 34
19 80985.60 36
20 90105.60 38
21 99712.00 40
22 109804.80 42
23 120384.00 44
24 131449.60 46
25 143001.60 48
26 155040.00 50
27 167564.80 52
28 180576.00 54
29 194073.60 56

The functions V k1
H−H

(y) with k = 2(3) are represented as
cubic spline interpolation functions for any value of y = x21

or y = x31 as follows:

V k1
H−H

(y) = V k1
H−H

(Xi) + Bi(y − Xi)

+Ci(y − Xi)
2 + Di(y − Xi)

3, (11)

where Bi(y − Xi), Ci(y − Xi), Di(y − Xi) perform the spline
interpolation and where Xi � y � Xi+1, in each subinterval
[Xi,Xi+1], i = 1, 2, 3, . . . , (n − 1), n = 46. The coordinates
Xi and corresponding values of the H − H potential energy
data have been taken from Table I of Ref. [18]. The calculated
potential energy curve is shown in Fig. 2. It is clear that the
potential has a singular value when the distance between H
and H is equal to zero.

The H − H2 PES which we obtained from Eq. (9) is
shown in Fig. 3. Specifically, this potential was used in our
calculations of H + H2 collisions. Again, as seen in Fig. 2
the potential energy curve between H − H has a Coulomb
type singularity at small distances. In our calculations we
needed to make additional test runs to achieve convergence
in our results. In the next section we will briefly demonstrate
the numerical convergence of the results when calculating
total elastic-scattering cross sections. These results depend
on various numerical and quantum-mechanical scattering
parameters.
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FIG. 2. H − H potential energy curve from Ref. [18].

III. RESULT AND DISCUSSION

A. Convergence test

Numerous test calculations have been undertaken to ensure
the convergence of the results with respect to all parameters
that enter in the propagation of the Schrödinger equation.
These include the atomic-molecular distance R, the total
angular momentum J , the number of total rotational levels
to be included in the close-coupling expansion and others, see
Fig. 1. Particular attention has been given to the total number
of numerical steps in the propagation over the distance R of the
Schrödinger equation (4). Specifically, the parameter R ranges
from 0.75 a.u. to 20.0 a.u.. We used up to 50,000 propagation
points. We also applied and tested different mathematical
propagation schemes included in MOLSCAT.

The rotational energy levels of para-H2(j ) and the cor-
responding angular momenta j are shown in Table I. The
goal of this work is to get new results for H + para-H2

thermal rate coefficients kj→j ′(T ) at ultralow temperatures:
specifically 0.004 K < T < 4 K. The corresponding cross
sections have been calculated for collision energies varying
from ∼0.0001 cm−1 to ∼100 cm−1. These energy values are
very small. However, despite this fact, to reach convergence of
the results we needed to include in expansion (2) a significant
number of rotational levels for the H2 molecule, specifically
up to jmax ≈ 60.

In Table II we present results for the total elastic cross
sections for two collisional energies: 0.1 cm−1 and 0.01 cm−1.
The cross sections are shown for a number of different
maximum values of the rotational angular momentum j =
jmax in the H2 molecule included in expansion (2). This
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FIG. 3. Interaction potential VH−H2
(r, R, �) between H and H2

in a.u. The distance between hydrogen atoms in H2 is fixed at r =
r(H2) = 1.449 a.u.

is the parameter JMAX in MOLSCAT [32]. One can see that
JMAX should be at least 56 to achieve convergence. The other
scattering parameter in Table II is MXSYM [32]. When we did
our test calculations to determine the correct value for the
JMAX parameter, the value of the parameter MXSYM was fixed
at 24. The parameter MXSYM reflects the number of terms in the
potential expansion over angular functions [30,31]. One can
see from Table II that in this calculation we need to keep at least
24 terms in the expansion. When we did our test calculations to
determine the correct value of the parameter MXSYM the value
of JMAX was fixed at 56.

In Table III we present results for total elastic-scattering
cross section for a few more selected energies. However, in
this table the convergence has been reached by increasing the
total angular momentum J . In this table a sufficiently large
value of the parameter STEPS (about 10,000) in MOLSCAT was
employed so convergence was achieved with respect to the
parameter STEPS. As expected, for lower energy collision we
needed smaller values for the maximum J . For example, for
collision energy Ecoll = 0.01 a.u. it is enough to have J = 0;
however, J = 10 should be taken for Ecoll = 100 a.u.. In
Table IV we show the convergence of the elastic-scattering
cross section with respect to the number of propagation space
steps used in the numerical calculation. One can see from

TABLE II. Total elastic-scattering cross section σel(10−16 cm2) at different collision energies E in (cm−1) in H + H2 → H2 + H with
respect to the maximum value of the rotational angular momentum j = jmax in H2(j ) included in the expansion (2) (parameter JMAX in
MOLSCAT). Convergence with the number of terms in the potential expansion (parameter MXSYM in MOLSCAT) is also shown. Numbers in
parenthesis are powers of 10.

E (cm−1) JMAX MXSYM

30 40 50 56 60 12 20 24 26

0.01 55.4 1.06(3) 6.59(3) 6.56(3) 6.56(3) 1.12(4) 6.75(3) 6.56(3) 6.54(3)
0.1 61.0 5.25(2) 1.59(3) 1.59(3) 1.59(3) 1.97(3) 1.61(3) 1.59(3) 1.59(3)
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TABLE III. Total elastic-scattering cross section σel(10−16 cm2) at different collision energies E in
(cm−1) in H + H2 → H2 + H with respect to the maximum value of the total angular momentum J of the
three-atomic system: parameter JTOT in MOLSCAT. Numbers in parenthesis are powers of 10.

E (cm−1) JTOT

0 2 4 6 8 10 12

0.01 6.56(3) 6.56(3)
0.1 1.59(3) 1.59(3)
1 1.69(2) 1.69(2)
10 5.85(1) 5.96(1) 5.96(1)
100 1.65(2) 1.72(2) 1.72(2)

Table IV that we need to include many more propagation
points for lower-energy calculations. Specifically, at higher
energies we need 500 propagation points, but for lower
energies more than 10,000 points are needed to achieve
comparable precision. This can be associated with the fact that
there is a pronounced resonance in the H + para − H2 elastic-
scattering cross section at collision energies ε ∼ 3.5 × 10−5

Hartree; see Fig. 4. For this reason, in our calculations we need
a substantial number of propagation points at lower energies
to construct the very large cross sections numerically near
the ultralow energy resonance. All the test calculations in
Tables III and IV have been done with the appropriate values of
the following parameters to achieve convergence: JMAX = 56
and MXSYM = 24. These appropriate values of parameters have
been used in our subsequent calculations for the total elastic
σel(E) and rotational quantum state transfer σj→j ′(E) cross
sections and corresponding thermal rate coefficients kj→j ′(T ).

B. H+ para-H2 results

Now we present computational results for process (8),
namely for elastic scattering (j = 0 → j ′ = 0) and for low
quantum number rotational transitions between levels with
j = 0, 2 and 4: 2 → 0, 0 → 2, 4 → 0, and 4 → 2. From the
results of Table III we see that to reach numerical convergence,
for the elastic scattering cross section, we need to include a
large number of H2 rotational levels, specifically up to 60.

The results for the elastic-scattering cross sections σel(ε)
for H + H2 → H2 + H are shown in Fig. 4 together with the
corresponding results of variational calculations of Gregory

and Armour [16]. It can be seen, that basically the two sets
of cross sections are close to each other, although in our
calculations we use a larger number of collision energy points,
specifically up to 200. In our calculations a shape resonance
is found at energy ε ∼ 3.5 × 10−5 hartree. As in Ref. [16] our
σel(ε) tends to reach a constant value at lower energies with
σel(ε � 10−8 a.u.) = 9.47 × 103a2

0 . This result allows us to
calculate the H + H2 scattering length, which is

a =
√

σel/(4π ) = 27.5a0. (12)

The Gregory-Armour scattering length [16] obtained with
a variational method is ã = 19.5a0. The two results are in
reasonable agreement with each other. It is pertinent to note
here, that such a large elastic-scattering cross section at low
energies and a large scattering length is the consequence
of the strong Coulomb attraction between hydrogen and
antihydrogen atoms at small distances leading to a pronounced
ultralow energy resonance.

In Figs. 5(a) and 5(b) we show the total state-resolved
cross sections σj=2→j ′=0(v) vs. relative velocity v and the
corresponding thermal rate coefficients k2→0(T ) vs. tem-
perature T for the hydrogen molecule rotational relaxation
process. It is seen, that when the collision energy increases
the deexcitation cross section decreases. It can be explained
in the following way: at low relative velocities (kinetic
energies) between H2(j = 2) and H, the rotationally excited
H2 molecule has more time for interaction and, consequently,
it has higher quantum-mechanical probability to release its
internal rotational energy to H. The resulting corresponding

TABLE IV. Total elastic-scattering cross section σel(10−16 cm2) at different collision energies E in
(cm−1) in H + H2 → H2 + H with respect to the number of numerical space steps in propagation over
distance R of the Schrödinger equation (parameter STEPS in MOLSCAT). Numbers in parentheses are
powers of 10.

E (cm−1) STEPS

500 750 1000 5000 7000 10,000 50,000

0.01 3.62(2) 1.75(−1) 6.53(3) 6.54(3)
0.1 3.64(2) 2.67 1.60(3) 1.59(3)
1 1.77(2) 1.70(2) 1.70(2) 1.70(2)
10 6.23(1) 6.00(1) 5.96(1) 5.96(1)
100 1.72(2) 1.72(2)
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FIG. 4. Total elastic-scattering cross section for H + H2 at differ-
ent energies: results from Gregory and Armour [16] and this work.

rate coefficients have been calculated for a temperature range
from 0.004 K < T < 4 K and are also presented in Fig. 5
below the cross-section results.

Next, in Figs. 6(a) and 6(b) we present results for the total
state-resolved cross sections σj=0→j ′=2(v) vs. relative velocity
v and the corresponding thermal rate coefficients k0→2(T ) vs.
temperature T for the hydrogen molecule rotational excitation
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FIG. 5. (a) Total state-resolved cross section σ2→0(v) vs. relative
velocity v. (b) Corresponding thermal rate coefficients k2→0(T )
vs. temperature T for the hydrogen molecule rotational relaxation
process H2(j = 2 → j = 0) in H − H2 collision.
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FIG. 6. (a) Total state-resolved cross section σ0→2(v) vs. relative
velocity v. (b) Corresponding thermal rate coefficients k0→2(T ) vs.
temperature T for the hydrogen molecule rotational excitation process
H2(j = 0 → j = 2) in H − H2 collision.

process. It is quite understandable, as we find from Fig. 6(a),
that when the collision energy (relative velocity v) increases
the quantum-mechanical probability and corresponding cross
section of the rotational excitation of H2(j ) also increases.
Figure 6(b) depicts the corresponding results for the thermal
rate coefficient.

In Figs. 7(a) and 7(b) we present results for cross sections
and rates for the rotational relaxation process, as in Figs. 5(a)
and 5(b), but now connecting the states j = 4 and j ′ = 2.
Finally, in Figs. 8(a) and 8(b) we present results for cross
sections and rates for the rotational relaxation process but now
connecting the states j = 4 and j ′ = 0. An unexpected result
has been found in Fig. 7(a) in the rotational transition cross
section σ4→2(v), i.e., when the H2 quantum angular momentum
has been changed from j = 4 to j ′ = 2. One can see that the
values of these cross sections at very low collision energies
are almost from 5 to 10 times larger then other cross sections
considered in this work as compared with the results from
Figs. 5, 6, and 8. Further investigation is needed to understand
this phenomenon.

IV. SUMMARY

A quantum-mechanical study of the state-resolved rota-
tional relaxation and excitation cross sections and thermal
rate coefficients in ultracold collisions between hydrogen
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FIG. 7. (a) Total state-resolved cross section σ4→2(v) vs. relative
velocity v. (b) Corresponding thermal rate coefficients k4→2(T )
vs. temperature T for the hydrogen molecule rotational relaxation
process H2(j = 4 → j = 2) in H − H2 collision.

molecules H2 and antihydrogen atoms H has been the subject
of this work. A model three-body PES for H2 − H has been
constructed as a sum of two two-body H − H interaction
potentials for two different hydrogen atoms. The H − H results
are taken from Ref. [18]. This H − H interaction potential is
shown in Fig. 2. The H2 − H PES is presented in Fig. 3.
Calculation for total elastic-scattering cross section and for
low quantum rotational transition states have been performed.
We considered only the following quantum transitions: j =
2 → j = 0, j = 0 → j = 2, j = 4 → j = 2, and j = 4 →
j = 0.

A test of the numerical convergence was undertaken. These
results are presented in Tables II, III and IV. The calculation
was performed using the MOLSCAT program [32]. Different
propagation schemes included in the MOLSCAT program have
been used and tested. Our results for the H2(j ) + H total
elastic-scattering cross section are in reasonable agreement
with the corresponding results from Gregory and Armour [16].
The authors of this paper used a different PES, which is
still unpublished, and applied a quantum-mechanical varia-
tional approach. Unfortunately, the rotational transitions in
the H2(j ) + H collisions have not been calculated in that
work [16].

It is appropriate to compare the H + H2 system with the
H + H2 system. The strong Coulomb attraction between H
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FIG. 8. (a) Total state-resolved cross section σ4→0(v) vs. relative
velocity v. (b) Corresponding thermal rate coefficients k4→0(T )
vs. temperature T for the hydrogen molecule rotational relaxation
process H2(j = 4 → j = 0) in H − H2 collision.

and H in the latter system leads to a low-energy resonance
(see, Fig. 4), absent in the former system, which is responsible
for the large cross sections at low energies in the present
calculation. Also, there will be a large H − H annihilation
cross section in H + H2, not considered in the present
investigation and absent in H + H2. One of the interesting
results of the present work is that the cross section of the
rotational transition H2(j = 4 → j = 2) at ultralow energies
are approximately 5–10 times larger than other transition
state cross sections. Further investigation will reveal if this
fact is related to some property of the specific PES used in
our work.

To the best of our knowledge we do not know of any
other calculation of the rotational transitions in the H2(j ) + H
collision. These results can help to model energy transfer
processes in the hydrogen-antihydrogen plasma and perhaps
to design new experiments in the field of the antihydrogen
physics. Finally, we believe that in future work it would
be useful to include vibrational degrees of freedom of the
H2 molecules, i.e., to carry out quantum-mechanical calcula-
tions for different rotational-vibrational relaxation processes:
H2(v, j ) + H → H + H2(v′, j ′), where v and v′ are the vibra-
tional quantum numbers of H2 before and after the collision,
respectively. Such new calculations could, perhaps, reveal
certain tunneling effects on the interplay between rotational
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and vibrational degrees of freedom in the H2 molecule. Last
but not least, a precise full dimensional three-body PES
between antihydrogen atom and hydrogen molecule is urgently
needed.
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