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We prove that the static, spherically symmetric Einstein-Yang-Mills equations do
not have periodic solutions when r > 0. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4770046]

I. INTRODUCTION

The static, spherically symmetric Einstein-Yang-Mills equations with a cosmological constant
a ∈ R are

ṙ = r N ,

Ẇ = rU,

Ṅ = (k − N )N − 2U 2,

k̇ = s(1 − 2ar2) + 2U 2 − k2,

U̇ = sW T + (N − k)U,

Ṫ = 2U W − N T,

(1)

where (r, W, N , k, U, T ) ∈ R6, s ∈ {− 1, 1} refers to regions where t is a time-like, respectively,
space-like, and the dot denotes a derivative with respect to t. See, for instance, Ref. 2 and the
references quoted therein for additional details on these equations.

Let f = 2kN − N2 − 2U2 − s(1 − T2 − ar2). Then it holds that

d f (t)

dt
= −2N (t) f (t).

Hence f = 0 is an invariant hypersurface under the flow of system (1), i.e., if a solution of system
(1) has a point in f = 0, then the whole solution is contained in f = 0.

The differential system (1) that we study only corresponds to the original symmetric reduced
Einstein–Yang–Mills equations if it is restricted to the hypersurface f = 0 and rT − W 2 = −1. We
recall that rT − W 2 is a first integral of system (1). Moreover, the physicists are mainly interested
in the solutions of the differential system (1) with r > 0, see the middle of the page 573 of Ref. 2.
Therefore, we only consider the system (1) with r > 0, and our objective is to prove that system (1)
on the hypersurface f = 0 has no periodic solutions when r > 0.

A general result of the qualitative theory of differential systems states that any orbit or trajectory
of a differential system is homeomorphic either to a point, or to a circle, or to a straight line. The
orbits homeomorphic to a point are the equilibrium points, and the ones homeomorphic to circles are
the periodic orbits. It is well known that these two types of orbits play a relevant role in the dynamics
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of a differential system, and in general they are easier to study than the orbits homeomorphic to
straight lines which sometimes can exhibit a very complicate dynamics. In short, the first analysis
for understanding the dynamics of a differential system is to start studying its equilibrium points and
its periodic solutions. In this work, we study the periodic orbits of system (1) on the hypersurface
f = 0 when r > 0.

Due to its the physical origin we must study the orbits of system (1) on the hypersurface f = 0.
Defining the variables x1 = r, x2 = W , x3 = N, x4 = k, x5 = U, x6 = T, we obtain that system (1)
on f = 0 is equivalent to the homogeneous polynomial differential system

ẋ1 = x1x3,

ẋ2 = x1x5,

ẋ3 = (x4 − x3)x3 − 2x2
5 ,

ẋ4 = −(x4 − x3)2 + s(−ax2
1 + x2

6 ),

ẋ5 = sx2x6 + (x3 − x4)x5,

ẋ6 = 2x2x5 − x3x6,

(2)

of degree 2 in R6. We remark that homogeneous differential systems as system (2) are in general
easier to study than non-homogeneous ones. Here, the homogeneity of the system (2) simplifies
strongly the proof of Lemmas 3 and 5.

There are several papers studying the dynamics of the static, spherically symmetric EYM
system, see, for instance, Refs. 1–8. In the paper,6 the authors prove that there are no periodic orbits
for system (2) in some invariant set of codimension one. Here in this work we prove the following
result.

Theorem 1: If the differential system (2) has a periodic solution then the following statements
hold.

(a) This solution must be contained in x1 = 0 and x2 = c �= 0.
(b) The parameter s = 1.
(c) The first integral H = 2x3x4 − x2

3 + x2
6 − 2x2

5 of system (2) restricted to x1 = 0, x2 = c, and
s = 1 is positive on the periodic orbit taking the value h.

(d) Due to the symmetries of the problem, it must be a periodic solution (x1(t) = 0, x2(t)
= c, x3(t), x4(t), x5(t), x6(t)) satisfying c > 0, x3(t) < 0, x4(t) − x3(t) < 0, x5(t)x6(t) < 0,
x4(t) = (h − x2

3 (t) + 2x2
5 (t) − x2

6 (t))/4 and being (x3(t), x5(t), x6(t)) a periodic solution of

ẋ3 = 1

2
(h − x2

3 − 2x2
5 − x2

6 ),

ẋ5 = 1

2x3
(−hx5 + 2cx3x6 + x2

3 x5 − 2x3
5 + x5x2

6 ),

ẋ6 = 2cx5 − x3x6.

(3)

Theorem 1 is proved in Sec. II.
Since x1 = r, a direct consequence of Theorem 1 is the following result.

Corollary 2: The static, spherically symmetric Einstein-Yang-Mills equations (1) has no periodic
solutions in the region r > 0.

Analogously, (1) has no periodic solutions in the region r < 0. But it still is an open problem to
know if the differential system (2) has periodic solutions. Note that due to statement (d) of Theorem
1 the study of the existence of periodic solutions for system (2) has been reduced to study the
existence of periodic solutions for system (3) with c > 0, in the region x3 < 0 and x5x6 < 0.
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II. PROOF OF THEOREM 1

We shall prove some auxiliary results.

Lemma 3: If � is a periodic orbit of system (2), then � does not intersect the hyperplane
{x ∈ R6 : x3 = 0}.

Proof: Let �(t) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) be a periodic solution of system (2).
Assume that there exists t = t1 such that x3(t1) = 0. We claim that there are only two possibilities:
either (i) ẋ3(t1) < 0 or (ii) ẋ3(t1) = 0, ẍ3(t1) = 0 and

...
x 3(t1) < 0. Now we shall prove the claim.

By the third equation of (2), we have that ẋ3(t1) = −2(x5(t1))2 ≤ 0. Consider the case x5(t1)
= 0. Computing the second derivative of x3 with respect to t we get

ẍ3 = (ẋ4 − ẋ3)x3 + (x4 − x3)ẋ3 − 4x5 ẋ5.

Evaluating in t = t1, and using that x3(t1) = x5(t1) = ẋ3(t1) = 0 we get ẍ3(t1) = 0. Now, computing
the third derivative of x3 with respect to t we get

...
x 3 = (ẍ4 − ẍ3)x3 + (ẋ4 − ẋ3)ẋ3 + (ẋ4 − ẋ3)ẋ3 + (x4 − x3)ẍ3 − 4ẋ5 ẋ5 − 4x5 ẍ5.

Evaluating in t = t1, and using that x3(t1) = x5(t1) = ẋ3(t1) = ẍ3(t1) = 0 we get
...
x 3(t1)

= −4s2(x2(t1))2(x6(t1))2. Now we shall prove that x2(t1) �= 0 and x6(t1) �= 0.
Observe that the set {x ∈ R6 : x2 = x3 = x5 = 0} is an invariant manifold to system (2), i.e., if

a solution of (2) has a point in {x ∈ R6 : x2 = x3 = x5 = 0}, then the whole solution is contained
in {x ∈ R6 : x2 = x3 = x5 = 0}. So, if x2(t1) = 0, then x2(t) = x3(t) = x5(t) = 0 for all t ∈ R. From
the first and sixth equations of (2), and using that x3(t) = x5(t) = 0, we get that there exist constants
b, c ∈ R such that x1(t) = b and x6(t) = c for all t ∈ R. The real function x4(t) is a periodic function
that is solution of the equation ẋ4 = −x2

4 + s(−ab2 + c2). It is known that any periodic solution
of a differential equation in dimension one must be constant. So, there exists d ∈ R such that x4(t)
= d for all t ∈ R. In this case, � is constant and not a periodic solution. So we have proved that
x2(t1) �= 0.

Consider the case x6(t1) = 0. By using the fact that the set {x ∈ R6 : x3 = x5 = x6 = 0} is an
invariant manifold to system (2) we get that x3(t) = x5(t) = x6(t) = 0 for all t ∈ R. From the first
and second equations of (2) we get that x1(t) and x2(t) are constant. So, x4(t) also is constant and �

is constant. Hence we have proved that x6(t1) �= 0.
In short, the claim that either (i) ẋ3(t1) < 0 or (ii) ẋ3(t1) = 0, ẍ3(t1) = 0 and

...
x 3(t1) < 0 is

proved. This implies that in all zeroes of x3(t), this function is decreasing. But this is a contradiction
because x3(t) is a real periodic function. �

Lemma 4: If there exists � a periodic orbit for system (2), then there exists c ∈ R \ {0}, such
that the periodic orbit is contained in the set {x ∈ R6 : x1 = 0 and x2 = c}.

Proof: Since the hyperplane {x ∈ R6 : x1 = 0} is invariant for the system (2), if �(t) = (x1(t),
x2(t), x3(t), x4(t), x5(t), x6(t)) is a periodic solution of system (2), then x1(t) does not change sign.
From Lemma 3, we have that x3(t) also does not change sign. By the first equation of (2), using that
x1(t) is a real periodic function and x1(t)x3(t) does not change sign we get that x1(t) = 0 for all t ∈ R.
Substituting x1(t) = 0 in the second equation of (2) we get that there exists c ∈ R such that x2(t)
= c for all t ∈ R.

It remains to show that c �= 0. Suppose that c = 0. From the sixth equation of (2), we get
ẋ6(t) = −x3(t)x6(t). From Lemma 3, we have either x3(t) > 0 for all t, or x3(t) < 0 for all t. In the
first case, we have that the real function x6(t) is an increasing function in the set {t ∈ R : x6(t) < 0},
and a decreasing function in the set {t ∈ R : x6(t) > 0}. Therefore, this is impossible that c = 0,
because x6(t) is a periodic function except if x6(t) ≡ 0. In the second case, x6(t) is an increasing
function in the set {t ∈ R : x6(t) > 0} and a decreasing function in the set {t ∈ R : x6(t) < 0}. Again
it is impossible that c = 0 except if x6(t) ≡ 0. Consequently, if c = 0, then x6(t) = 0 for all t ∈ R.
Substituting x6(t) = 0 in the fourth equation of (2), and using that x4(t) is periodic, we have that
there exists d ∈ R such that x3(t) = x4(t) = d for all t. Now from the third equation of (2) we get that
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x5(t) = 0 for all t. This is a contradiction because �(t) is a constant solution instead of a periodic
solution. �

Lemma 5: For s = − 1 system (2) has no periodic orbits.

Proof: In Ref. 6, the authors prove that for s = − 1 system (2) restricted to the hyperplane
{x ∈ R6 : x1 = 0} has no periodic orbits. The proof that for s = − 1 system (2) has no periodic
orbits follows from this fact and from Lemma 4. �

Lemma 6: If there exists a periodic orbit for system (2), with s = 1, restricted to the hyperplane
{x ∈ R6 : x1 = 0}, then it is contained in the set {x ∈ R6 : x3(x4 − x3) > 0}.

Proof: Assume that �(t) = (0, x2(t), x3(t), x4(t), x5(t), x6(t)) is a periodic solution of (2), with
s = 1, restricted to the hyperplane {x ∈ R6 : x1 = 0}. From Lemma 3, we know that x3(t) does not
change sign. So either x3(t) > 0 for all t ∈ R, or x3(t) < 0 for all t ∈ R. Now we will prove that
either x3(t) − x4(t) > 0 for all t ∈ R, or x3(t) − x4(t) < 0 for all t ∈ R.

Note that if x3(t0) − x4(t0) = 0, then from the third and fourth equations of (2) we get
ẋ3(t0) − ẋ4(t0) = −2(x5(t0))2 − (x6(t0))2 ≤ 0. Using that ẋ3 − ẋ4 is periodic we get that there exists
at least t = t1 such that x5(t1) = x6(t1) = 0. By using the fact that {x ∈ R6 : x5 = x6 = 0} is an
invariant manifold for system (2), we get that x5(t) = x6(t) = 0 for all t ∈ R. Substituting x1(t)
= x6(t) = 0 in the fourth equation of (2) and using the fact that x4(t) is periodic we get that there
exists b ∈ R such that x3(t) = x4(t) = b for all t ∈ R. Substituting x5(t) = 0 in the second equation
of (2), we have that x2(t) is constant. So, � is constant and this is a contradiction with the fact that �

is a periodic solution. Hence, it is proved that either x3(t) − x4(t) > 0 for all t ∈ R, or x3(t) − x4(t)
< 0 for all t ∈ R.

Now we prove that �(t) cannot be in {x ∈ R6 : x3(x4 − x3) < 0}. If the orbit associated with
�(t) is contained in {x ∈ R6 : x3(x4 − x3) ≤ 0}, then from the third equation of system (2) we have
that ẋ3(t) ≤ 0 for all t. It is impossible because x3(t) is a real periodic function. �

Lemma 7: Let �(t) be a periodic solution of system (2). The function H = 2x3x4 − x2
3 + x2

6
− 2x2

5 is a first integral of system (2) restricted to x1 = 0, x2 = c, and s = 1, and there exists h ∈ R,
h > 0, such that H(�(t)) = h for all t.

Proof: System (2) restricted to x1 = 0, x2 = c, and s = 1 is given by

ẋ3 = (x4 − x3)x3 − 2x2
5 ,

ẋ4 = −(x4 − x3)2 + x2
6 ,

ẋ5 = cx6 + (x3 − x4)x5,

ẋ6 = 2cx5 − x3x6.

(4)

Clearly H is a first integral of (4), because it satisfies

Ḣ =
6∑

i=3

∂ H

∂xi
ẋi = 0.

This means that H is constant along the solutions of (4). So, there exists h ∈ R such that H(�(t))
= h for all t. It remains to show that h > 0. From 2x3x4 − x2

3 + x2
6 − 2x2

5 = h, we get

x4 = 1

2x3
(h − x2

3 + 2x2
5 − x2

6 ). (5)

Substituting this expression in the first equation of (4), we obtain ẋ3 = (h − x2
3 − 2x2

5 − x2
6 )/2. The

fact that function x3(t) is periodic implies that ẋ3 must be zero at some point. So h > 0 because
x3(t) �= 0 for all t. �
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Lemma 8: Let �(t) = (0, c, x3(t), x4(t), x5(t), x6(t)) be a periodic solution of system (2), and
h = H(�(t)), where H is given in Lemma 7. The coordinates of �(t) satisfy c > 0, x3(t) < 0, x4(t)
− x3(t) < 0, x5(t)x6(t) < 0, x4(t) is given by (5), and (x3(t), x5(t), x6(t)) is a periodic solution of

ẋ3 = 1

2
(h − x2

3 − 2x2
5 − x2

6 ),

ẋ5 = 1

2x3
(−hx5 + 2cx3x6 + x2

3 x5 − 2x3
5 + x5x2

6 ),

ẋ6 = 2cx5 − x3x6.

(6)

Proof: Since x2 = c, due to the fact that the symmetry

(x1, x2, x3, x4, x5, x6, t) �→ (−x1,−x2,−x3,−x4,−x5,−x6,−t)

leaves the differential system (2) invariant, we can assume that c > 0.
From the proof of Lemma 7 it is clear that x4(t) is given by (5). Substituting (5) in system (4)

and eliminating the second equation we get system (6). So, it is clear that (x3(t), x5(t), x6(t)) is a
periodic solution of system (6).

We observe that system (6) is symmetric with respect to (x3, x5, x6, t) �→ ( − x3, x5, − x6, − t),
and from Lemma 3 we have that x3(t) does not change sign. So, we can assume that the periodic
orbit lives in x3 < 0. By Lemma 6, we get x4(t) − x3(t) < 0 for all t. So, x4(t) < 0 for all t.

From system (2), we get

d

dt
(x5x6) = c(x2

6 + 2x2
5 ) − x4x5x6. (7)

It means that in all points t = t0, where x5(t0)x6(t0) = 0 we have that
d

dt
(x5x6)|t=t0 has the same

sign of c, i.e., positive sign. But it is impossible because x5(t)x6(t) is a periodic real function. This
implies that x5(t) and x6(t) never change sign. From (7), and since the function x5(t)x6(t) is periodic
and x4(t) < 0 for all t, we get x5(t)x6(t) < 0 for all t. �

Proof of Theorem 1: Statements (a), (b), (c), and (d) follow from Lemmas 4, 5, 7, and 8,
respectively. �
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Barcelona for the hospitality, where this work was done.

1 J. Bjoraker and Y. Hosotani, “Stable monopole and Dyon solutions in the Einstein-Yang-Mills theory asymptotically anti-de
Sitter space,” Phys. Rev. Lett. 84, 1853–1856 (2000).
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