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a b s t r a c t

The dibenzylbutyrolactolic lignan (�)-cubebin was isolated from dry seeds of Piper cubeba L. (Piperaceae).
(�)-Cubebin possesses anti-inflammatory, analgesic and antimicrobial activities. Doxorubicin (DXR) is a
topoisomerase-interactive agent that may induce single- and double-strand breaks, intercalate into the
DNA and generate oxygen free radicals. Here, we examine the mutagenicity and recombinogenicity of dif-
ferent concentrations of (�)-cubebin alone or in combination with DXR using standard (ST) and high bio-
activation (HB) crosses of the wing Somatic Mutation And Recombination Test in Drosophila melanogaster.
The results from both crosses were rather similar. (�)-Cubebin alone did not induce mutation or recom-
bination. At lower concentrations, (�)-cubebin statistically reduced the frequencies of DXR-induced
mutant spots. At higher concentrations, however, (�)-cubebin was found to potentiate the effects of
DXR, leading to either an increase in the production of mutant spots or a reduction, due to toxicity. These
results suggest that depending on the concentration, (�)-cubebin may interact with the enzymatic sys-
tem that catalyzes the metabolic detoxification of DXR, inhibiting the activity of mitochondrial complex I
and thereby scavenging free radicals. Recombination was found to be the major effect of the treatments
with DXR alone. The combined treatments reduced DXR mutagenicity but did not affect DXR
recombinogenicity.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Piper cubeba Linn. (Piperaceae) is a pepper plant that is widely
distributed in tropical and subtropical regions and is popularly
known as pimenta de Java (in Brazil), kemukus (in Indonesia) or cu-
beb pepper. It is known that extracts from P. cubeba have anti-
inflammatory (Bastos et al., 2001; Choi and Hwang, 2003; Yam
et al., 2008a), anti-type IV allergic (Choi and Hwang, 2003), antile-
ishmanial (Bodiwala et al., 2007), genotoxic (Junqueira et al., 2007),
antineoplasic (Yam et al., 2008b), and molluscicidal activities
(Pandey and Singh, 2009).

Lignans are a class of secondary plant metabolites that are pro-
duced by the oxidative dimerization of two phenylpropanoid units.
ll rights reserved.

: +55 34 32182203.
Interest in lignans and their synthetic derivatives has grown due to
their applications for cancer chemotherapy and their various other
pharmacological effects (Saleem et al., 2005). Here, (�)-cubebin, a
dibenzylbutyrolactolic lignan, was isolated from the dry seeds of
P. cubeba L. This lignan is known to possess anti-inflammatory
(Bastos et al., 2001; da Silva et al., 2005), analgesic (da Silva
et al., 2005), and antimicrobial activities (Silva et al., 2007, 2009).
Although some (�)-cubebin derivative compounds ((�)-hinokinin;
(�)-O-benzyl cubebin; (�)-O-(N,N-dimethylamino-ethyl)-cubebin)
inhibit the free amastigote forms of Trypanosoma cruzi, the natural
(�)-cubebin molecule itself, which is used as the starting com-
pound to obtain the evaluated dibenzylbutyrolactolic derivatives,
does not affect the growth of trypomastigote forms of T. cruzi (de
Souza et al., 2005). (�)-Cubebin and derivatives isolated from P.
cubeba were found to significantly inhibit cytochrome P450
(CYP3A4) (Usia et al., 2005, 2006) and the NADH oxidase activity
of mitochondrial complex I (Saraiva et al., 2009).

http://dx.doi.org/10.1016/j.fct.2011.03.001
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The anthracycline antibiotic Doxorubicin (DXR), a drug that tar-
gets topoisomerase II (Top2) (Islaih et al., 2005), is one of the most
effective anticancer drugs used in the clinic (Lyu et al., 2007). This
drug may induce mutations by intercalating formaldehyde adducts
in the DNA (Spencer et al., 2008) or by inducing the formation of
oxygen free radicals (Navarro et al., 2006), single- and double-
strand DNA breaks (Lyu et al., 2007) and somatic recombination
(Lehmann et al., 2003; Valadares et al., 2008; de Rezende et al.,
2009; Sousa et al., 2009).

The wing Somatic Mutation And Recombination Test (SMART)
using Drosophila melanogaster was developed to detect the loss of
heterozygosity of suitable gene markers that have detectable phe-
notypes that are expressed on the wings. This assay is an efficient
and quick method for quantitating the recombinogenic and muta-
genic potential of chemical and physical agents (Graf et al., 1996;
Vogel et al., 1999; Spanó et al., 2001). For this purpose, two crosses
are typically used: the standard (ST) cross (Graf et al., 1989) and a
high bioactivation (HB) cross (Graf and van Schaik, 1992). The ST
cross uses strains carrying basal levels of the metabolizing cyto-
chrome P450 enzyme (Cyp6A2) and is used to detect direct-acting
genotoxins. The HB cross uses strains with high levels of Cyp6A2
and is used to detect indirect-acting genotoxins that exert their
genotoxic activity only when metabolized (Frölich and Würgler,
1989; Graf and van Schaik, 1992; Saner et al., 1996).

Several reports have demonstrated the probability of pharma-
cokinetic interaction between natural compounds and herbal prod-
ucts with conventional drugs when they are administered
simultaneously (Usia et al., 2006). Here, we examine the mutage-
nicity and recombinogenicity of the dibenzylbutyrolactolic lignan
(�)-cubebin when administered alone or simultaneously with
DXR.

2. Materials and methods

2.1. Chemical compounds and media

(�)-Cubebin was isolated and purified from the seeds of P. cubeba L. as previ-
ously described (Silva et al., 2007). Doxorubicin (DXR) (Rubidox� – Laboratório
Químico Farmacêutico Bergamo Ltda., Taboão da Serra, SP, Brazil) (CAS 23214–
92-8) was obtained from the Hospital de Clínicas da Universidade Federal de Uber-
lândia, MG, Brazil. Ultrapure water (18.2 XX) was obtained from a MilliQ system
(Millipore, Vimodrone, Milan, Italy). (�)-Cubebin was dissolved in a mixture of
1% Tween 80 (Fluka, Buchs, Switzerland) and 3% ethanol (Neon, São Paulo, Brazil)
in ultrapure water. DXR was dissolved in ultrapure water. The solutions were al-
ways prepared immediately before use. As an alternative medium, instant mashed
potato flakes (Yoki� Alimentos S. A., São Bernardo do Campo, SP, Brazil) were used.
The structural formula of (�)-cubebin is shown in Fig. 1.

2.2. The Somatic Mutation And Recombination Test (SMART)

Two crosses were carried out to produce the experimental larval progeny. The
first was the standard (ST) cross, in which virgin females of strain flr3/In(3LR)TM3,
ri pp sep l(3)89Aa bx34e e BdS were crossed with mwh/mwh males (Graf et al.,
1984, 1989). The second was the high bioactivation (HB) cross, in which virgin fe-
males of strain ORR/ORR; flr3/In(3LR)TM3, ri pp sep l(3)89Aa bx34e e BdS were crossed
with mwh/mwh males (Graf and van Schaik, 1992). Each cross produced marker-
heterozygous (MH) flies (mwh flr+/mwh+ flr3) with normal wings and balancer-
heterozygous (BH) flies (mwh flr+/mwh+ TM3, BdS) with serrated wings. From both
crosses, eggs were collected for 8 h in culture glass bottles with an agar-agar base
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Fig. 1. Structural formula of (�)-cubebin.
(4% w/v) topped with a thick layer of live baker’s yeast supplemented with sucrose.
After 72 h (± 4 h), third instar larvae were washed out of the bottles with ultrapure
water (MilliQ system) and collected in a stainless steel strainer. For chronic feeding,
four sets of vials for each cross were prepared with 1.5 g of mashed potato flakes
(Yoki� Alimentos S.A., Brazil) and 5 ml of a solution containing (�)-cubebin alone
(at a final concentration of 0.25, 0.5, 1.0, 2.0 or 4.0 mM) or with DXR (0.2 mM). Neg-
ative (1% Tween-80 and 3% ethanol in distilled water) and positive (DXR 0.2 mM)
controls were included in both experiments. The experiments were conducted at
25 ± 1 �C and approximately 60% humidity. The larvae were counted before the dis-
tribution in two series of these vials. The number of hatched flies was used to cal-
culate the survival rates upon exposure. From the other two sets of vials, the
hatched flies were stored in 70% (v/v) ethanol. The wings were removed and
mounted on slides with Faure’s solution (gum arabic 30 g, glycerol 20 ml, chloral
hydrate 50 g and distilled water 50 ml) and analyzed for spots under a compound
microscope at 40x magnification. Frequency and size of single and twin spots were
recorded. Single spots (mwh or flr3) can result from mutational events, chromosome
aberrations or mitotic recombination (crossing over between the two marker
genes). Twin spots (mwh and flr3) are produced exclusively by mitotic recombina-
tion (crossing over between the marker flr3 and the centromere of chromosome
3). The wings of BH flies were mounted and analyzed after verifying that positive
responses were obtained in the MH progeny. In the wings of BH flies, only mwh sin-
gle spots can be recovered. These spots are due to only mutational events because
recombination is suppressed in inversion-heterozygous cells with the multiply in-
verted TM3 balancer chromosome (Graf et al., 1984; Guzmán-Rincón and Graf,
1995).

2.3. Statistical analysis

For each treated series, 50 flies of both sexes were scored. The multiple-decision
procedure (Frei and Wurgler, 1988) was used to analyze the data, resulting in three
different diagnoses: negative, positive or inconclusive. The frequency of each type
of spot (small single, large single or twin) and the total frequency of spots per fly
for each treatment were compared pair-wise (i.e., negative control versus (�)-
cubebin; positive control (DXR) alone versus DXR plus (�)-cubebin) according to
Kastenbaum and Bowman (1970) with p = 0.05 (Frei and Wurgler, 1988, 1995).
All inconclusive and weak results were analyzed with the non-parametric U-test
of Mann, Whitney and Wilcoxon (a = b = 0.05, one sided) (Frei and Wurgler,
1995). Based on the clone induction frequency per 105 cells, the recombinogenic
activity was calculated as follows. Frequency of mutation (FM) = frequency of
clones in BH flies/frequency of clones in MH flies. Frequency of recombination
(FR) = 1 – frequency of mutation (FM). Frequencies of total spots (FT) = total spots
observed in MH flies (considering mwh and flr3 spots)/number of flies (Santos
et al., 1999; Sinigaglia et al., 2004, 2006). Based on the control-corrected spot fre-
quencies per 105 cells, the percentage of (�)-cubebin inhibition was calculated
as: (DXR alone – (�)-cubebin plus DXR/DXR alone) – 100 (Abraham, 1994). Statis-
tical comparisons of survival rates were made with the Chi-squared test for ratios of
independent samples.

3. Results

Third instar larvae of D. melanogaster obtained from both (ST
and HB) crosses were fed chronically (approximately 48 h) with
(�)-cubebin (0.25, 0.5, 1.0, 2.0 or 4.0 mM) alone or in combination
with DXR (0.2 mM). Each treatment was done in duplicate. The
data were pooled after verifying that there were no significant dif-
ferences between repetitions. The concentrations were chosen
based on a dose response test, for which the survival rates of flies
are given in Table 1. Although 4.0 mM (�)-cubebin alone signifi-
cantly decreases the survival rates, this concentration was also
tested in association with DXR.

At concentrations below 2.0 mM, (�)-cubebin was not found to
be toxic. Thus, we found it particularly important to evaluate the
modulatory effects of low concentrations on DNA damage induced
by DXR in somatic cells of D. melanogaster. The highest concentra-
tion (4.0 mM) of (�)-cubebin was found to be toxic in the ST cross,
when administered alone or combination with DXR. A significant
decrease in survival rates relative to the negative control group
(ultrapure water) was observed. This concentration was also found
to be toxic in the HB cross when administered with DXR.

The results of the ST cross of the SMART assays using D.
melanogaster are depicted in Table 2. In the MH individuals,
(�)-cubebin alone did not show any genotoxicity at the doses
used. The DXR treatment, as expected, induced positive results
for all categories of spots when compared to the negative



Table 1
Survival rates upon exposure to different concentrations of (�)-cubebin alone or in
combination with doxorubicin relative to control groups (ultrapure water and
doxorubicin) in the wing Somatic Mutation And Recombination Test in D. melanogaster.

Compounds Standard cross High bioactivation
cross

DXR (mM) Cubebin (mM) Survival (%) p-
value

Survival (%) p-
value

0 0 95 95
0 0.25 90 >0.05 90 >0.05
0 0.5 100 >0.05 90 >0.05
0 1.0 95 >0.05 90 >0.05
0 2.0 85 >0.05 90 >0.05
0 4.0 60 <0.05 90 >0.05

0.2 0 95 >0.05 95 >0.05
0.2 0.25 85 >0.05 80 >0.05
0.2 0.5 85 >0.05 80 >0.05
0.2 1.0 85 >0.05 80 >0.05
0.2 2.0 75 >0.05 70 >0.05
0.2 4.0 50 <0.05 65 <0.05

Statistical comparisons of survival rates were made with the Chi-squared test for
ratios of independent samples.

A.A.A. de Rezende et al. / Food and Chemical Toxicology 49 (2011) 1235–1241 1237
control. Lower concentrations of (�)-cubebin (0.25, 0.5 or
1.0 mM) when administered with DXR (0.2 mM) were found to
inhibit DXR-induced DNA damage (54.66, 26.21 and 26.84%,
respectively). The simultaneous administration of DXR with
(�)-cubebin (2.0 mM), however, was found to significantly
increase the number of DXR-induced wing spots (by 94.30%).

The wings of the BH flies resulting from the simultaneous appli-
cation of both drugs were also mounted and scored. This procedure
Table 2
Summary of results obtained with the Drosophila wing spot test (SMART) in the marker-he
after chronic treatment of larvae with (�)-cubebin and Doxorubicin (DXR).

Genotypes and
treatments

Number
of flies

Spots per fly (number of spots) statistical diagnosisa

Small single
spots (1–2
cells)b

Large single
spots (>2 cells)
b

Twin spots Tot
DXR
(mM)

(�)-
Cubebin
(mM)

mwh/flr3
0 0 50 0.32 (16) 0.06 (03) 0.02 (01) 0.
0 0.25 50 0.16 (08)� 0.00 (00)� 0.00 (00)� 0.
0 0.50 50 0.16 (08)� 0.00 (00)� 0.00 (00)� 0.
0 1.00 50 0.14 (07)� 0.04 (02)� 0.00 (00)� 0.
0 2.00 50 0.16 (08)� 0.08 (04)� 0.02 (01)� 0.
0 4.00 50 0.22 (11)� 0.02 (01)� 0.00 (00)� 0.
0.20 0 50 2.78 (139)+ 2.38 (119)+ 2.66 (133)+ 7.
0.20 0.25 50 1.20 (60)* 0.92 (46)* 1.56 (78)* 3.
0.20 0.50 50 1.52 (76)* 1.58 (79)* 2.56 (128) 5.
0.20 1.00 50 1.40 (70)* 1.46 (73)* 2.80 (140) 5.
0.20 2.00 50 3.42 (171)* 4.08 (204)* 6.92 (346)* 14.
0.20 4.00 50 2.62 (131) 2.04 (102) 2.72 (136) 7.

mwh/TM3
0 0 50 0.26 (13) 0.00 (00) f 0.
0.20 0 50 0.50 (25)+ 0.10 (05)+ 0.
0.20 0.25 50 0.40 (20) 0.10 (05) 0.
0.20 0.50 50 0.08 (04)* 0.24 (12) 0.
0.20 1.00 50 0.40 (20) 0.26 (13)* 0.
0.20 2.00 50 0.66 (33) 0.10 (05) 0.
0.20 4.00 50 0.42 (21) 0.00 (00)* 0.

Marker-trans-heterozygous flies (mwh/flr3) and balancer-heterozygous flies (mwh/TM3)
* P 6 0.05 vs. DXR only.
a Statistical diagnoses according to Frei and Wurgler (1988, 1995). U-test, two sided

control;
b Including rare flr3 single spots.
c Considering mwh clones from mwh single and twin spots.
d Frequency of clone formation: clones/flies/48,800 cells (without size correction).
e Calculated as{[DXR alone – DXR + (�)-cubebin] /DXR} � 100, according to Abraham
f Balancer chromosome TM3 does not carry the flr3 mutation and recombination is su
enabled us to quantify the contribution of mutagenic and recombi-
nogenic events to the final genotoxicity observed (Frei et al., 1992;
Graf et al., 1992).

In the BH individuals of the ST cross, DXR (0.2 mM) induced a
significant increase in the mutant spot frequency relative to the
negative control. In the combined treatments, only 0.5 mM (�)-
cubebin significantly reduced the total number of spots induced
by DXR. The other concentrations of (�)-cubebin (0.25, 1.0, 2.0
and 4.0 mM) did not affect DXR mutagenicity.

Based on the clone induction frequency per 105 cells, we com-
pared the number of observed spots in the MH and BH flies and
quantified the contribution (%) of mutation and recombination to
the total number of observed spots (Frei et al., 1992; Graf et al.,
1992; Abraham, 1994). We found that the induced spots were
mainly due to recombination. We also found that (�)-cubebin does
not affect the recombinogenic activity of DXR (Fig. 2).

The results of the HB cross of the SMART assays with D. melano-
gaster are summarized in Table 3. The results obtained with the
MH individuals of the HB cross treated with (�)-cubebin alone
were negative at all tested concentrations. DXR statistically
increased all categories of spots when compared to the negative
control. When administered with DXR, all concentrations of (�)-
cubebin were found to statistically inhibit DXR-induced DNA
damage, although the inhibition have not been dose-related.

In the BH individuals, DXR induced a significant increase in mu-
tant spots, relative to the negative control. Compared to DXR alone,
the treatments of 0.25, 1.0 or 4.0 mM (�)-cubebin administered
with DXR produced significantly fewer mutant spots, while 0.5
and 2.0 mM (�)-cubebin had no effect on the production of mutant
spots.
terozygous (MH) and balancer-heterozygous (BH) progeny of the standard cross (ST)

Spots with
mwh clonec

Frequency of clone
formation/105 cells
per cell divisiond

Recombination
(%)

Inhibitione

(;) or
inductione

(")(%)

al spots

Observed Control
Corrected

40 (20) 20 0.82
16 (08)� 08 0.33 �0.49
16 (08)� 08 0.33 �0.49
18 (09)� 09 0.37 �0.45
26 (13)� 13 0.53 �0.29
24 (12)� 12 0.49 �0.33
72 (386)+ 371 15.20 14.38 91.90
68 (184)* 179 7.34 6.52 86.02 54.66 ;
66 (283)* 279 11.43 10.61 94.27 26.21 ;
66 (283)* 277 11.34 10.52 88.10 26.84 ;
42 (721)* 702 28.76 27.94 94.59 94.30 "
38 (369) 354 14.20 13.38 94.10 06.94

26 (13) 13 0.53
60 (30)+ 30 1.23 0.70
50 (25) 25 1.01 0.48
32 (16)* 16 0.64 0.11
66 (33) 33 1.34 0.81
76 (38) 38 1.56 1.03
42 (21) 21 0.85 0.32

were evaluated.

; probability levels: �, negative; +, positive; i, inconclusive; P 6 0.05 vs. untreated

(1994).
ppressed, due to the multiple inverted regions in these chromosomes.



Table 3
Summary of results obtained with the Drosophila wing spot test (SMART) in the marker-heterozygous (MH) and balancer-heterozygous (BH) progeny of the high bioactivation
cross (HB) after chronic treatment of larvae with (�)-cubebin and Doxorubicin (DXR).

Genotypes and
treatments

Number
of flies

Spots per fly (number of spots) statistical diagnosisa Spots with
mwh clonec

Frequency of clone
formation/105 cells
per cell divisiond

Recombination
(%)

Inhibitione

(%)
Small single
spots (1–2
cells)b

Large single
spots (>2
cells)b

Twin spots Total spots
DXR
(mM)

(�)-
Cubebin
(mM)

Observed Control
Corrected

mwh/flr3
0 0 50 0.38 (19) 0.08 (04) 0.08 (04) 0.54 (27) 27 1.11
0 0.25 50 0.28 (14)� 0.08 (04)� 0.02 (01)� 0.38 (19)� 19 0.78 �0.33
0 0.50 50 0.26 (13)� 0.02 (01)� 0.04 (02)� 0.32 (16)� 16 0.66 �0.45
0 1.00 50 0.40 (20)� 0.08 (04)� 0.00 (00)� 0.48 (24)� 24 0.98 �0.13
0 2.00 50 0.40 (20)� 0.04 (02)� 0.00 (00)� 0.44 (22)� 22 0.90 �0.21
0 4.00 50 0.44 (22)� 0.16 (08)� 0.02 (01)� 0.62 (31)� 30 1.22 0.10
0.20 0 50 2.80 (140)+ 2.78 (139)+ 3.20 (160)+ 8.78 (439)+ 420 17.21 16.10 90.89
0.20 0.25 50 1.74 (87)* 1.50 (75)* 1.66 (83)* 4.90 (245)* 245 10.04 8.93 92.62 44.54
0.20 0.50 50 2.32 (116) 1.46 (73)* 2.30 (115)* 6.08 (304)* 304 12.46 11.35 87.38 29.50
0.20 1.00 50 2.54 (127) 2.18 (109)* 2.64 (132) 7.36 (368)* 363 14.88 13.77 93.11 14.47
0.20 2.00 50 2.28 (114) 1.64 (82)* 2.16 (108)* 6.08 (304)* 301 12.34 11.23 88.48 30.25
0.20 4.00 50 2.20 (110)* 1.20 (60)* 2.34 (117)* 5.74 (287)* 285 11.67 10.56 89.79 34.41

mwh/TM3
0 0 50 0.26 (13) 0.00 (00) f 0.26 (13) 13 0.53
0.20 0 50 0.50 (25)+ 0.30 (15)+ 0.80 (40)+ 40 1.64 1.11
0.20 0.25 50 0.50 (25) 0.00 (05) 0.50 (25)* 25 1.02 0.49
0.20 0.50 50 0.70 (35) 0.00 (00) 0.70 (35) 35 1.42 0.89
0.20 1.00 50 0.50 (25) 0.00 (00)* 0.66 (25)* 25 1.02 0.49
0.20 2.00 50 0.66 (33) 0.10 (05)* 0.76 (38) 38 1.56 1.03
0.20 4.00 50 0.42 (21) 0.00 (00)* 0.42 (21)* 21 0.85 0.32

Marker-trans-heterozygous flies (mwh/flr3) and balancer-heterozygous flies (mwh/TM3) were evaluated.
* P 6 0.05 vs. DXR only.
a Statistical diagnoses according to Frei and Wurgler (1988, 1995). U-test, two sided; probability levels: �, negative; +, positive; i, inconclusive; P 6 0.05 vs. untreated

control;
b Including rare flr3 single spots.
c Considering mwh clones from mwh single and twin spots.
d Frequency of clone formation: clones/flies/48,800 cells (without size correction).
e Calculated as{[DXR alone – DXR + (�)-cubebin] /DXR} � 100, according to Abraham (1994).
f Balancer chromosome TM3 does not carry the flr3 mutation and recombination is suppressed, due to the multiple inverted regions in these chromosomes.
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By comparing the number of observed spots in the MH flies and
BH flies, we once again found that the induced spots were mainly
due to recombination. We found that (�)-cubebin displays only
anti-mutagenic activity and does not interfere with DXR recombi-
nogenicity (Fig. 2).

4. Discussion

The mutagenic and/or recombinogenic potential of (�)-cubebin,
alone and in combination with the chemotherapeutic agent DXR,
was assayed using two crosses (ST and HB) of the wing Somatic
Mutation And Recombination Test (SMART) in D. melanogaster.
We obtained similar data in both crosses and found that (�)-cube-
bin alone does not modify the frequency of spontaneous mutant
spots in this test system.

The reference mutagen DXR significantly increased all catego-
ries of spots. Previous studies using the SMART assay have shown
that the major mutational contribution of DXR is its ability to in-
duce recombination (Lehmann et al., 2003; Valadares et al., 2008;
de Rezende et al., 2009; Sousa et al., 2009). DXR is a chemothera-
peutic agent that induces single- and double-stranded DNA breaks,
which are processed by recombinational DNA repair pathways.
DNA double-strand breaks (DSBs) are a serious threat to the cell
and can lead to chromosomal aberration, mutation and cancer.
DSBs in human cells are repaired via non-homologous DNA end
joining and homologous recombination repair pathways (Poplaw-
ski et al., 2010). Homologous recombination can result in a loss
of heterozygosity or genetic rearrangements. Some of these genetic
alterations can be correlated with the manifestation of recessive
heritable diseases and may play a primary role in carcinogenesis.
More likely, however, they are probably involved in secondary
and subsequent steps of carcinogenesis that reveal recessive onco-
genic mutations (Bishop and Schiestl, 2002, 2003).

There is an increasing amount of evidence to suggest that can-
cer and other mutation-related diseases can be prevented not only
by limiting exposure to recognized risk factors but also with the in-
take of protective factors and by modulating the defense mecha-
nisms of the host organism. This strategy, referred to as
chemoprevention, can be pursued either with suitable pharmaco-
logical agents and/or by dietary factors (Ferguson et al., 2005).
Here, we examined the mutagenicity and recombinogenicity of
the dibenzylbutyrolactolic lignan (�)-cubebin extracted from
seeds of P. cubeba L. when administered alone or simultaneously
with the pharmacological agent DXR.

The association of (�)-cubebin with DXR in the ST cross was
found to produce different results depending on the concentration
used. At lower concentrations (0.25, 0.5 or 1.0 mM) (�)-cubebin
significantly reduces the frequency of DXR-induced mutant spots.
At 2.0 mM, (�)-cubebin strongly increases DXR-induced mutage-
nicity and recombinogenicity, affecting all types of spots (small
single, large single and twin spots). The magnitude of the comu-
tagenicity was found to be considerable, leading to an enhance-
ment of 94.30%. At 4.0 mM, (�)-cubebin slightly reduces the
frequency of DXR-induced DNA damage. Given the significant de-
crease in survival rates that was observed in flies treated with
4.0 mM (�)-cubebin (Table 1), we think that the tendency of
reduction in DXR-induced DNA damage can be attributed to cyto-
toxicity, rather than a protective effect of (�)-cubebin.

In the HB cross, all concentrations of (�)-cubebin were found to
significantly reduce the frequency of DXR-induced mutant spots.



Fig. 2. Contribution of recombination and mutation (in percentage) to total mwh wing spot induction observed in MH individuals from the ST and HB crosses treated with
DXR alone and in combination with different concentrations of (�)-cubebin.
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However, given the significant decrease in survival rates observed
in the ST cross (Table 1), we conclude that the reduction in DXR-
induced mutant spots that can be observed upon treatment with
0.2 or 0.4 mM (�)-cubebin in the HB cross could be due to
cytotoxicity.

Similar data have been generated for (�)-hinokinin (HK), a dib-
enzylbutyrolactolic lignan that is obtained by from (�)-cubebin,
using the micronucleus (MN) test in V79 Chinese hamster lung
fibroblasts to assay the effect on DXR clastogenicity. At lower con-
centrations, HK significantly protects against DXR-induced MN for-
mation. This effect is thought to be due to of the ability of HK to
quench reactive oxygen species. At higher concentrations, HK
potentiates DXR-induced clastogenicity, suggesting that higher
doses of HK may increase the oxidative stress generated by DXR
(Resende et al., 2010).

The cytochrome P450 (CYP) superfamily is the most important
drug-metabolizing enzyme group that activates promutagens
(Takiguchi et al., 2010). Previous studies have shown that an ab-
sence of mutagenicity may result from the metabolic deactivation
of a compound. For example, nor-nitrogen mustard (NNM) was
found to be non-mutagenic when fed to adult flies in a sex-linked
recessive lethal test. In combination with 1-phenylimidazole (PhI),
an inhibitor of cytochrome P-450, sufficient quantities of the muta-
gen was able to reach the gonads and produce significant genetic
damage. These data suggest that NNM is deactivated by this family
of cytochrome P-450 (Zijlstra and Vogel, 1988). It has been pro-
posed that a similar mechanism can explain the significant poten-
tiating action of tannic acid when administered simultaneously
with either of the alkylating agents methylmethanesulfonate or
nitrogen mustard in a SMART assay in D. melanogaster (Lehmann
et al., 2000).

Previous studies have shown that MeOH- and EtOAc-soluble
fractions of P. cubeba significantly inhibit the human CYP3A4-med-
iated metabolism of (N-methyl-14C)erythromycin (Usia et al.,
2006). Thus, it is possible that (�)-cubebin acts by interacting with
the enzyme systems that catalyze the metabolic detoxification of
DXR in D. melanogaster. Such an interaction could explain the high
frequency of mutant spots observed at 2.0 mM (ST cross) and the
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cytotoxic effect observed at 2.0 mM (HB cross) and 4.0 mM (in both
ST and HB crosses).

Mitochondria have also been often implicated in cell death. (�)-
Cubebin and its derivatives typically inhibit the mitochondrial
complex I, as demonstrated by the inhibition of glutamate/ma-
late-supported state 3 respiration of mitochondria and the NADH
oxidase activity of submitochondrial particles (Saraiva et al.,
2009). The inhibition of mitochondrial complex I is another possi-
ble mechanism to explain the toxicity observed at high (�)-
cubebin concentrations.

In the Drosophila SMART assay (�)-cubebin significantly alters
the generation of DXR-induced wing spots, which are the result
of somatic mutation and mitotic recombination. Our data, in com-
bination with the data from previous studies using different com-
pounds, allow us to suggest that (�)-cubebin may act as a free
radical scavenger at low concentrations and a pro-oxidant at high-
er concentrations when it interacts with the enzymatic system that
catalyzes the metabolic detoxification of DXR. Alternatively, (�)-
cubebin may inhibit mitochondrial complex I, leading to cell death.

In this study, we showed that (�)-cubebin can positively or neg-
atively influence DXR-induced mutagenicity, depending on the
concentration. With the long-term goal of developing chemopre-
vention strategies, future work will focus on investigating the con-
ditions under which (�)-cubebin can prevent genome damage, its
mechanisms of action and its pharmacokinetic interaction with
conventional drugs.
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