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Aims: To verify whether the nanoencapsulation of 15d-PGJ2 in poly(D,L-lactide-co-glycolide) (PLGA)
nanocapsules (15d-PGJ2-NC) might potentialize its antinociceptive activity into rats’ temporomandibular
joint (TMJ).
Main methods: Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to
evaluate the morphology and suspension of the PLGA nanocapsules. Rats were pretreated (15 min) with
an intra-TMJ injection of unloaded 15d-PGJ2 or 15d-PGJ2-NC at concentrations of 10, 100 or 1000 pg
followed by an ipsilateral intra-TMJ injection of 1.5% formalin. The nociceptive behavioral response was
observed during 45 min; animals were then sacrificed and the periarticular tissue was removed for IL-
1β measurements.

Key finding: TEM and AFM analyses showed that 15d-PGJ2-NC is spherical without any aggregates or ad-
hesion confirming that this formulation is a good drug carrier system for 15d-PGJ2. Pretreatment with
15d-PGJ2-NC (100 and 1000 pg/TMJ), but not unloaded 15d-PGJ2, was found to significantly decrease
the release of IL-1β cytokine and the animals’ nociceptive behavioral response induced by intra-TMJ injec-
tion of formalin.
Significance: The compound 15d-PGJ2-NC might be used as a potential antinociceptive and anti-inflammatory
agent to treat temporomandibular disorders in clinical practice.
© 2012 Elsevier Inc. All rights reserved.
Introduction

Temporomandibular disorders (TMD) involve multifactorial eti-
ology and might result in temporomandibular joint (TMJ) and/or
masticatory muscle pain leading, in many cases, to chronic
orofacial pain (Cairns, 2010). Since traditional strategies to control
TMD-related pain are unsatisfactory, an alternative and efficient
approach to treat such condition is of great interest to both pa-
tients and clinicians (Cairns, 2010). Therefore, the development
of new drugs and/or new formulation to treat chronic inflammato-
ry diseases continues to be of considerable importance to re-
searchers (Bernardi et al., 2009).
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Peroxisome proliferators-activated receptor-γ (PPARγ) is a
ligand-activated transcription factor of the nuclear hormone recep-
tor superfamily (Escher and Wahli, 2000). Synthetic PPAR-γ ago-
nists of the thiazolidinedione class act as insulin sensitizers and
have become important in the treatment of type 2 diabetes
(Lehrke and Lazar, 2005). PPAR ligands represent a promising ther-
apeutic strategy for other diseases such as arthritis, sepsis, peritoni-
tis, and colitis (Chima et al., 2008; Cuzzocrea et al., 2003; Kaplan et
al., 2005; Napimoga et al., 2008a, 2008b; Shan et al., 2004), espe-
cially when it involves inflammatory pain (Pena-dos-Santos et al.,
2009). Otherwise, PPAR-γ agonists are neuroprotective in animal
models of acute central nervous system injury including focal ische-
mia, spinal cord injury and surgical trauma (Hyong et al., 2008;
McTigue et al., 2007; Park et al., 2007; Pereira et al., 2006;
Sundararajan et al., 2005; Tureyen et al., 2007; Zhao et al., 2005,
2006). Considering the neuroprotective effect of PPAR-γ agonists,
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), which is a natural li-
gand for PPAR-γ (Ricote et al., 1998; Schoonjans et al., 1997), was
found to have a peripheral antinociceptive effect on the TMJ via
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PPAR-γ with the co-participation of κ/δ opiod receptors (Pena-dos-
Santos et al., 2009).

Nanomedicine has emerged as a new field of study and is
considered one of the most promising pathways for the development
of effective targeted therapies (Huynh et al., 2009). Polymeric
nanoparticles are colloidal structures below 1 μm and have been
used to encapsulate lipophilic drugs to target organs and/or
tissues, to avoid drug degradation, to improve its efficacy, and to
circumvent its toxicity (Adair et al., 2010; Couvreur et al., 2002).
Nanoencapsulation of drugs was observed to greatly prolong their
pharmacological activity and decrease their toxicity (Alves et al.,
2011; Bernardi et al., 2009; Elron-Gross et al., 2009; Grillo et al.,
2010). In particular, the systemic administration of 15d-PGJ2-NC,
when compared to unloaded 15d-PGJ2, was found to improve the la-
tency and the anti-inflammatory effect of the 15d-PGJ2 at a much
smaller dose (Alves et al., 2011). Therefore, the present study aimed
to analyze if the nanoencapsulation of 15d-PGJ2 might keep or en-
hance the antinociceptive effects of peripheral injection on acute in-
flammatory TMJ nociception in a rat model.

Material and methods

Preparation of the PLGA nanocapsules with 15d-PGJ2

The poly (D,L-lactic-co-glycolic acid, 50:50) (PLGA) nanocapsules
were prepared by the nanoprecipitation method (Fessi et al., 1989),
which involves mixing an organic phase into an aqueous phase. The
organic phase consisted of PLGA polymer (100 mg), acetone
(30 mL), 15d-PGJ2 (100 μg), sorbitan monostereate (40 mg) and cap-
rylic/capric acid triglyceride (200 mg). The aqueous phase was com-
posed of polysorbate 80 (60 mg) and deionized water (30 mL). After
dissolution of the components of both phases, the organic phase
was gradually added to the aqueous phase, and the suspension
maintained under agitation for 10 min. The solvent (acetone) was re-
moved by evaporation and the suspension was concentrated to a vol-
ume of 10 mL under low pressure, using a rotary evaporator, in order
to obtain a suspension of 15d-PGJ2 with a final concentration of 10 μg/
mL. After evaporation no traces of acetone were observed in the for-
mulation (data not shown). A control formulation (without 15d-
PGJ2) was also prepared, following the methodology described above.

All parameters such as size and polydispersion measurements,
Zeta potential measurements and efficiency of association of 15d-
PGJ2 in the PLGA nanocapsules were employed as described previous-
ly (Alves et al., 2011).

Transmission electron microscopy (TEM)

The morphology and structure of the PLGA nanocapsules with
15d-PGJ2 were examined in a JEOL 1200EX II microscope (Jeol ltda,
Akishima, Japan) operating at 80 kV. In order to perform the TEM ob-
servations, the 15d-PGJ2-NC was first diluted in water and after that
the sample was diluted with a 2% uranyl acetate solution (w/v). One
drop of the mixture was deposited on a standard copper grid covered
by a carbon film and dried at ambient temperature before TEM
analysis.

Atomic force microscopy (AFM)

The microscopy studies of suspension of PLGA nanocapsules with
15d-PGJ2 were performed with a Nanosurf Easy Scan 2 Basic atomic
force microscope (BT02217, Nanosurf, Switzerland). The suspension
was deposited onto a silicon surface and the immobilized sample
was air-jet dried and analyzed using in contact mode. The analysis
was made using a commercial Contr 10 cantilever. The diameters of
PLGA nanoparticles were measured and a size distribution was per-
formed using Nanosurf software.
Animals

This study was carried out with male Wistar rats (150–250 g)
maintained in a temperature-controlled room (23°±1 °C) with a
12‐hour light–dark cycle. All experiments were conducted in
accordance to the IASP guidelines on using laboratory animals
for investigations of experimental pain in conscious animals. All
animal experimental procedures and protocols were approved by
the Committee on Animal Research of the University of Uberaba
(# 047/2009). The animals suffering and number per group were
kept at a minimum and each animal was used once.

Testing procedure for TMJ pain

Testing sessions took place during the light phase (between
9:00 AM and 5:00 PM) in a quiet room maintained at 23 °C±1 °C.
Each animal was manipulated for 7 days to be habituated to the ex-
perimental manipulation. After this period, the animal was placed
in a test chamber (30×30×30 cm mirrored wood chamber with a
glass at the front side) for 15 min habituation period to minimize
stress. Animals were briefly anesthetized by inhalation of halothane
to allow the TMJ injection, which was performed with a 30-gauge
needle connected to a 50‐μL Hamilton syringe (Roveroni et al.,
2001). Each animal regained consciousness approximately 30 s
after discontinuing the anesthetic and was returned to the test
chamber for counting nociceptive responses. The nociceptive re-
sponse score was defined as the cumulative total number of
seconds that the animal spent rubbing the orofacial region asym-
metrically with the ipsilateral fore or hind paw plus the number
of head flinches counted during the observation period as described
previously. Since head flinches followed a uniform pattern of 1 s of
duration, each flinch was expressed as 1 s. Results are expressed as
the duration time of nociceptive behavior (Roveroni et al., 2001).
All animals received a final volume of 30 μL into TMJ. All experi-
ments were conducted in a double blind fashion in which the
person who injected the solutions was different from the one
who made the behavioral assessment.

Experimental protocols

Effect of 15d-PGJ2-NC on formalin-induced TMJ nociception
Rats were pretreated (15 min) with an intra-TMJ injection of

unloaded 15d-PGJ2 or 15d-PGJ2-loaded nanocapsules (15d-PGJ2-NC)
in the concentrations of 10, 100 or 1000 pg (n=6; 15 μL/TMJ)
followed by ipsilateral intra-TMJ injection of 1.5% formalin in a
final volume of 30 μL. In order to test whether empty nanocapsules
could affect formalin-induced TMJ nociception, a control group of
rats were pretreated with empty nanocapsules (the amount of
nanocapsules corresponding to the highest dose used, 1000 pg/TMJ,
diluted in saline in a final volume of 15 μL) followed by injection of
saline or 1.5% formalin into the TMJ. Behavioral nociception response
was evaluated for a 45‐minute observation period. In order to confirm
the peripheral 15d-PGJ2-mediated antinociception, the highest dose
of 15d-PGJ2 was also injected in the contralateral TMJ that received
injection of 1.5% formalin.

Effect of 15d-PGJ2-NC on formalin-induced IL-1β cytokine release
After the evaluation of the formalin-induced TMJ nociception,

the animals were sacrificed and the periarticular tissues were
removed and homogenized in cold RIPA buffer (20 mM Tris–HCl,
150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1%
sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-
glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin, pH 7.5). The
samples were centrifuged at 10,000 g for 10 min at 4 °C. The super-
natant was removed and centrifuged again. IL-1β levels were
detected by ELISA (Enzyme Linked Immunosorbent Assay) using



Fig. 1. Transmission electron microscopy images of a spherical PLGA NC observed after
negative fixation.
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protocols supplied by the manufacturer (R&D Systems, Minneapolis,
USA). After all standard procedures, the optical density (O.D.) was
measured at 490 nm. Results are expressed as pg/mg of the cyto-
kine, based on the standard curves.

Statistical analysis

To determine if there were significant differences (pb0.05) among
treatment groups, the data was analyzed using the t-test or one-way
ANOVA as appropriate. If there was a significant between-subjects
main effect of treatment group following one-way ANOVA, post-hoc
contrasts, using the Bonferroni test, were performed to determine
the basis of the significant difference. Data are presented in figures
as means±S.E.M.
Fig. 2. Atomic force microscopy images of 15d-PGJ2-NC. A) bi-dimensional im
Results

Characterization of the 15d-PGJ2-NC

The images of transmission electron microscopy (Fig. 1) showed
that 15d-PGJ2-NC were spherical, contained no aggregates, and had
a size distribution between 182 and 220 nm. This range is lower
than that observed by photon correlation spectroscopy and, in this
technique, the samples were dried. Another analysis of morphology
of the PLGA 15d-PGJ2-NC was determined by AFM confirming that
15d-PGJ2-NC were spherical and without aggregates (Fig. 2). An in-
teresting fact observed in this image was that the size distribution
of 15d-PGJ2-NC had a size range between 250 and 600 nm and this in-
crease in the diameter of the nanoparticles can be explained by the
flattening or deformation of nanocapsules when the formulation
was dripped on the surface of silicon. The 3D view of the AFM
image showed that the height of the nanocapsules was only 26 nm,
clearly showing that the technique of dripping or a possible interac-
tion with the substrate structure resulted in the formation of the flat-
tened structure of the nanocapsules.
Effect of 15d-PGJ2-NC on formalin-induced TMJ nociception

Compared with saline administration, the injection of formalin
into the TMJ (1.5%) significantly increased the nociceptive behavior
(Fig. 3A and B). On the other hand, pretreatment with 15d-PGJ2-NC
(100 and 1000 pg/TMJ) strongly decreased the nociceptive behavior
induced by intraarticular injection of formalin (Fig. 3A; Pb0.05).
Interestingly, pretreatment with unloaded 15d-PGJ2 (10, 100 and
1000 pg/TMJ) did not reduce the nociceptive behavioral (Fig. 3B).
The injection of 15d-PGJ2-NC at the highest concentration in
the contralateral TMJ, did not decrease the formalin-induced
age; B) three-dimensional image and C) size distribution of 15d-PGJ2-NC.

image of Fig.�2
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TMJ nociception (data not shown) demonstrating that the anti-
nociceptive effect is local.

In order to test whether the empty nanocapsules induced any al-
teration in the nociceptive behavior, it was injected empty
nanocapsules followed by saline or formalin administration. In nei-
ther case was there any significant change (P>0.05) in the nocicep-
tive behavior (Fig. 3C).

Effect of low doses of 15d-PGJ2-NC on IL-1β releases

The possible interference of 15d-PGJ2-NC in the release of IL-1β
into the periarticular tissue was investigated since this is an impor-
tant nociceptive mediator. There was a dose-dependent decrease in
the levels of IL-1β in the periarticular tissue of rats pretreated with
Fig. 3. Effect of 15d-PGJ2-NC on formalin-induced TMJ nociception. (A) 15d-
PGJ2-loaded nanocapsules (15d-PGJ2-NC) (1000, 100 but not 10 ng/TMJ) significantly
reduced the magnitude of 1.5% formalin-induced nociceptive responses (pb0.05). (B)
Pre-treatment with unloaded 15d-PGJ2 (1000, 100 and 10 ng/TMJ) did not reduce the
magnitude of 1.5% formalin-induced nociceptive responses (p>0.05). (C) Pre-
treatment with empty nanocapsules (NC) did not change the behavioral response of
animal that received intra-TMJ injection of saline or 1.5% formalin (p>0.05). The sym-
bol (#) indicates statistical significance compared to saline; the symbol (*) indicates
statistical significance (pb0.05, ANOVA, Bonferroni test) compared to 1.5% formalin.

Fig. 4. Effect of low doses of 15d-PGJ2-NC on IL-1β release. (A) Pre-treatment with 15d-
PGJ2-NC (1000, 100 but not 10 ng/TMJ) significantly reduced the release of formalin-
induced IL-1β cytokine (pb0.05). (B) Pre-treatment with unloaded 15d-PGJ2 (1000,
100 and 10 ng/TMJ) did not reduce the release of IL-1β (p>0.05). The symbol (#) in-
dicates statistical significance (pb0.05, Bonferroni test) compared to saline; the symbol
(*) indicates statistical significance (pb0.05, ANOVA, Bonferroni test) compared to 1.5%
formalin.
15d-PGJ2-NC, in contrast to rats pretreated with saline and injected
with formalin (Fig. 4A). On the other hand, there was no statistical re-
duction of cytokine levels in the periarticular tissue of animals treated
with the same concentration (10, 100 and 1000 pg/TMJ) of non-
encapsulated 15d-PGJ2 (Fig. 4B).

Discussion

Developing new chemical and biological compounds intended for
therapeutics is a great challenge for researchers’ worldwide (Huynh
et al., 2009). The carrier system is considered a reliable approach to
target the drug delivery site (Couvreur et al., 2002; Couvreur and
Vauthier, 2006). Among the different nanocarrier systems, biodegrad-
able nanoparticles have been reported as potential drug delivery ve-
hicles over the last few years. A new versatile nanodelivery system
for the targeted delivery of therapeutic compounds has shown poten-
tial activity against several diseases (Adair et al., 2010).

The biocompatibility of nanoparticles is one of the major con-
cerns in biomedical applications. Lipid nanocapsules are potential
vectors for the delivery of drugs into the inner ear after round win-
dow membrane application without morphological or cochlear neu-
ral functional changes (Zhang et al., 2011). PLGA nanocapsules with
15d-PGJ2 were used in the present study which is an FDA-approved
polymer used for the preparation of nanoparticles. In particular,
intra-articular injections of PLGA nanocapsules causes no alteration
in articular tissue functions in the knee or TMJ of healthy rats or of
those undergoing degenerative or inflammatory conditions such as
arthritis and/or osteoarthritis, suggesting that PLGA-nanocapsules

image of Fig.�3
image of Fig.�4
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could be used as a safe drug delivery system to treat articular dis-
eases, allowing a wide range of encapsulating molecules (Zille et
al., 2010; Mountziaris et al., 2010). In addition, polymers containing
PLGA, in previous animal experiments, were found to be biocom-
patible and to have low immunogenicity and little toxicity (Alves
et al., 2011; Ishihara et al., 2010; Shive and Anderson, 1997).

In a previous study, 15d-PGJ2-containing PLGA-nanoparticles (hy-
drodynamic diameter: 100 to 400 nm; polydispersity: b0.2; and zeta
potential: −30 mV) were reported as an efficient carrier system
(Alves et al., 2011). In the present study, morphological analysis of
this carrier system using transmission electron microscopy (TEM)
and atomic force microscopy (AFM) showed that 15d-PGJ2-NC is
spherical without any aggregates or adhesions, which are important
characteristics of colloidal stability in solution.

Relieving TMJ pain is a challenge since temporomandibular dis-
orders involve deep tissues, making it difficult to target the trigem-
inal neural system (Cairns, 2010). The nanoparticles can accumulate
in inflamed tissues due to greater microvascular permeability in
those sites (Bernardi et al., 2009). In the present study, an intra-
articular injection of 15d-PGJ2-NC (100 pg/TMJ), at a dose 1000
times lower than that (100 ng/TMJ) used for the unloaded 15d-
PGJ2 (Pena-dos-Santos et al., 2009), enhanced its temporomandibu-
lar peripheral antinociceptive effect. This might be due to its
spherical morphology, containing no aggregates, as well as the
ability of the nanoparticles to reach or release 15d-PGJ2 in the
cells. The literature shows different mechanisms for the endocytosis
of nanoparticles, such as pinocytosis, formation of caveolae and
clathrin, and caveolae/clathrin-independent uptake (Dobrovolskaia
and McNeil, 2007). Thus, the morphological properties of 15d-
PGJ2-NC might allow active compounds to enter the cells via differ-
ent mechanisms, initiating different interactions with organelles
and macromolecules, resulting in different pharmacological activi-
ties (Nel et al., 2009; Gratton et al., 2008).

It is well known that 15d-PGJ2 is a natural ligand for PPAR-γ
(Ricote et al., 1998; Schoonjans et al., 1997). PPAR-γ agonists repre-
sent a promising therapeutic alternative for inflammatory diseases
(Chima et al., 2008; Cuzzocrea et al., 2003; Kaplan et al., 2005;
Napimoga et al., 2008a, 2008b; Pena-dos-Santos et al., 2009; Shan et
al., 2004) and, in particular, they are extremely neuroprotective
(Collino et al., 2006; Hyong et al., 2008; McTigue et al., 2007; Park
et al., 2007; Pereira et al., 2006; Sundararajan et al., 2005; Tureyen
et al., 2007; Zhao et al., 2005, 2006). PPAR-γ was observed to be
more expressive in ischemic neurons in rats with transient cerebral
ischemia, suggesting that neuronal injury might alter PPAR-γ signal-
ing (Victor et al., 2006). Pharmacological activation of PPAR-γ in the
brain and spinal cord rapidly inhibits the spinal transmission of nox-
ious inflammatory signals and local edema. These results suggest that
PPAR-γ plays an important role in pain modulation in the central ner-
vous system (Morgenweck et al., 2010) as well as in peripheral tis-
sues and in peripheral endings of somatic afferents (Napimoga et
al., 2008a; Pena-dos-Santos et al., 2009).

With the co-participation of κ/δ opioid receptors mediated by
the activation of the intracellular L-Arginine-NO/cGMP/K(+)ATP,
15d-PGJ2 was found to activate PPAR-γ in the TMJ, inducing a pe-
ripheral antinociceptive effect (Pena-dos-Santos et al., 2009). TMJ
inflammatory conditions result in the release of several pro-
inflammatory cytokines, especially tumor necrosis factor-α (TNF-
α) and interleukins (Kopp, 2001), both of which contribute to
joint remodeling and cartilage degradation (Vernal et al., 2008).
These cytokines induce the release of a number of pro-nociceptive
compounds, such as potassium chloride, leukotriene B4, prostaglan-
din E2 (PGE2), bradykinin, serotonin, histamine, glutamate and
adenosine triphosphate (ATP), all of which have been shown to ex-
cite and induce spontaneous discharge in the TMJ (Flake and Gold,
2005; Kopp, 2001; Oliveira et al., 2005; Rodrigues et al., 2006). In-
terestingly, in the present study, low doses of 15d-PGJ2-NC, but not
unloaded 15d-PGJ2, were found to inhibit the release of the pro-
inflammatory cytokine IL-1β. Since IL-1β is one of the major
hypernociceptive-mediator (Verri et al., 2006), we may speculate
that this reduced levels of IL-1β might enhance the antinociceptive
activity of 15d-PGJ2-NC.
Conclusion

Nanoencapsulation improves drug efficacy and drug bioavailabil-
ity by providing a more sustained drug release to the inflamed site
resulting in facilitating a 15d-PGJ2 target trigeminal pathway that in
turn enhances the peripheral antinociceptive effect of loading 15d-
PGJ2. Taken together with the biodegradable, biocompatible, and
low toxic properties of the nanoparticle, these results suggest a
strong potential use of this compound as novel pharmacological
agents for antinociceptive and anti-inflammatory therapy in clinical
practice.
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