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The objective of this work was to compare a model based on the use of an average numerator
relationship matrix (ANRM) and a hierarchical animal model (HIER) to indicate the most ap-
propriate statistical procedure to better estimate the genetic value of Nellore animals that
have unknown paternity. The data set contained records of 62,212 Nellore animals. The pedi-
gree file contained a total of 75,088 animals. Two approaches were adopted for the treatment
of uncertain paternity. In the model based on the use of the ANRM probabilities were attribut-
ed to each of the possible parents of the animals with uncertain paternity. The other method
adopted in the present study, i.e., the HIER, considers uncertainty in the assignment of pater-
nity of animals participating in the multiple-sire (MS) system. Within this context, a priori
probabilities are assigned to each possible sire of animals with uncertain paternity, which
are altered according to information present in the data for the generation of posterior proba-
bilities. Univariate analyses were carried out under Bayesian approach via Markov Chain
Monte Carlo (MCMC) methods, implementing a chain of 400,000 rounds where the first
10,000 rounds were discarded (burn-in period). Models were compared by deviance informa-
tion criteria (DIC) and pseudo Bayes factors (PBF). The model that best fits the data for estimat-
ing genetic parameter of animals with uncertain paternity is the Bayesian hierarchical model.
Nevertheless, for genetic evaluation, the choice between these models would have no impact
on genetic value classification of animals for selection.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Different statistical models have been proposed for the
prediction of genetic merit of animals with uncertain paterni-
ty. The average numerator relationshipmatrix (ANRM)model
proposed byHenderson (1988) is amodel used for the genetic
ience, São Paulo State
il. Tel.: +55 16 3209

rque).

ll rights reserved.
evaluation of animals with uncertain paternity. This proce-
dure is based on knowledge of the probability of each sire
being the true sire of a certain animal. The ANRM specify the
correct genetic (co)variance matrix when these probabilities
are presumed to be known, thus facilitating best linear unbi-
ased prediction of genetic merit.

A hierarchical animal model (HIER), proposed by Cardoso
and Tempelman (2003), is another procedure used for the ge-
netic evaluation of animalswith uncertain paternity. TheHIER
combines data and prior information to determine posterior
probabilities of sire assignments to infer genetic merit of indi-
viduals with uncertain paternity and their sire assignments.
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Table 1
Data structure of datafile, pedigree file and multiple sire (MS) file after data
edition.

Number of animals in datafile 62,212
Number of sires 581
Number of dams 27,743

Number of animals in a pedigree file 75,088
Number of animals belonging base population 12,876
Number of animals with parents known 39,402
Number of offspring originated MS mating 22,810

Number of MS group 1024
Groups possessed an identification of the participating sires 177
Groups have no identification about participating sires 847
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The main advantage of HIER model is that it can properly ac-
count for smaller precision on genetic merit inference due to
uncertainty on sire assignments. Cardoso and Tempelman
(2004) presented that the HIER model was consistently fa-
vored based on Bayesian model choice criteria over the
ANRM. Moreover, there is literature that suggests that inclu-
sion of phenotypic information to ascertain paternity can en-
hance the accuracy of breeding value predictions (Cardoso
and Tempelman, 2003, 2004; Sapp et al., 2007).

The limitation with using phenotypic data for ascertaining
paternity is that the relationshipmatrix has to be reconstructed
for every possible combination of offspring and sire whichmay
not be computationally feasible for large data sets. Thus, Sapp
(2005) presented a method for predicting breeding values
that does not require construction of the inverse matrix. This
method can have smaller computation time and the estimates
tend to be lower than reported by Cardoso and Tempelman
(2003), although the differences are not significant (Sapp
et al., 2007). Therefore, the objectives of the present study
were to compare the average numerator relationship matrix
(ANRM) and hierarchical animal models (HIER) to indicate
the most appropriate statistical procedure to better estimate
the genetic value of Nellore who have uncertain paternity.

2. Material and methods

2.1. General

Records of 62,212 Nellore animals born between 1984
and 2006 were used. They belong to Agropecuária Jacare-
zinho Ltda., municipality of Valparaíso, São Paulo, Brazil.

The artificial insemination, controlled mating andmultiple-
sire (MS) mating (with a bull:cow ratio of 1:30) were used as
mating system. There were two breeding seasons. In the first,
called anticipated breeding season, all heifers are mated be-
tween February and April, irrespective ofweight and body con-
dition. This first breeding season lasts approximately 60 days.
The second, called normal breeding season, starts in the second
half of November and lasts approximately 70 days. In this sea-
son, heifers that did not conceive during the anticipated breed-
ing season and all cows of the herd aremated. The birth periods
of the calves are concentrated between August and October
and between November and January. The calves are kept with
their mothers on pasture until 7 mo of age.

2.2. Traits

The traits considered in this work were postweaning
gain adjusted to 345 days (PWG), which considered the
gain from weaning (205 days) to long-yearling (550 days)
and yearling weight (YW) at 550 days, obtained at a mini-
mum and maximum age of 420 and 640 days, respectively.
The mean±standard deviations were 98.40±33.33 kg and
274.34±42.02 kg for PWG and YW, respectively.

2.3. Data consistency

Data from contemporary groups (CGs) with less than three
animals and those which differed more than 3.5SD from the
mean, respectively, for each trait were discarded. Contempo-
rary groupswere formed by combining the information relative
to sex, farm, year and season of birth,month and CG atweaning
and farm, month and management group at yearling. At least
the dam was known for all animals.

Connectedness between CGs was tested based on the total
number of genetic ties (minimum of 10) in the animal model
using the AMC program (Roso et al., 2006). The program offers
various options to test CG connectedness, with the possibility
of choosing themodel (sire and cow, animal, etc.) and themin-
imumnumber of direct genetic links and observations to define
a connected CG. The program identifies the CG groups with the
largest number of genetic connections and subsequently all
other groups connected to it (archipelago 1). Next, the program
identifies the group with the largest number of connections
among those not connected to archipelago 1 and the remaining
groups connected to it to form archipelago 2, and so forth until
only unconnected groups remain.

A summary of data structure is presented in Table 1. After
data edition, 62,212 animals were maintained in the file. The
pedigree file contained a total of 75,088 animals. The
multiple-sire mating generally is cows exposed to more than
one male within the same breeding season. The sires should
be identified in the multiple-sire groups. In the present work,
there were 1024 MS groups, however, only 177 groups pos-
sessed an identification of the participating sires, i.e., the 847
MS groups have no identification about participating sires.
Among the 177MS groups, 153were connected and possessed
performance or progeny information and noprogeny or perfor-
mance informationwas available for 24. A genetic groupmodel
was adopted for MS groups without sire identification, in
which eachMS groupwas identified as a genetic group. The ge-
netic groups were formatted by assigning “phantom parents”
for animals with uncertain paternity, however, MS offspring
were clustered in genetic groups according to their year of
birth, every three years (based on generation interval for
males).

In the file with identified sires and their respective groups
of sires (177 groups), 559 sires were identified in groups of
specific sires. For 40 sires, no performance data or known
progeny were available. Only six sires of the MS groups pos-
sessed no performance data but had known progeny, 351 pos-
sessed performance data but had no known progeny, and 162
had performance data and known progeny. The average size
of the MS groups was 4.8 sires (ranging from 2 to 16).

2.4. Statistics

PWG and YW were modeled as a linear function of fixed
effects (effects with a bounded uniform priori distribution)
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and random effects (effects with a normal multivariate a
priori distribution). Direct genetic effects of the animals, CG
effects, maternal genetic effects and permanent environmen-
tal effects were included as random effects. The last two ef-
fects were only considered for the analysis of YW. Effects of
animal age at yearling and dam age (2–16 yr) (linear and
quadratic effects) were included as fixed effects for both
traits.

Two approaches were adopted for the treatment of uncer-
tain paternity. In the model based on the use of the ANRM
proposed by Henderson (1988) equal probabilities were at-
tributed to each of the possible parents of the animals with
uncertain paternity. These probabilities are used to obtain
the additive relationship coefficient of the animal with uncer-
tain paternity, which is calculated as follows:

aij ¼
1
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a jð Þ
is p

jð Þ
i þ…þ a jð Þ

isg
p jð Þ
g þ a jð Þ

id

h i
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where aij is the additive relationship between animal i and j;
aisk
(j) is the additive relationship between animal i and each of

the possible parents (k=1, 2,…, g) of animal j; pk
(j) is the

probability of sire k to be father of animal j; and aid
(j) is the ad-

ditive relationship between animal i and the mother of ani-
mal j.

The other method adopted in the present study, i.e., the
HIER proposed by Cardoso and Tempelman (2003), considers
uncertainty in the assignment of paternity of animals partic-
ipating in the MS system. Within this context, equal priori
probabilities are assigned to each possible sire of animals
with uncertain paternity, which are altered according to in-
formation present in the data for the generation of posterior
probabilities.

This model can be divided into four stages:

1st Stage: The performance of animals is described in this
stage as a linear function of genetic and non-
genetic effects, resulting in the following condi-
tional distribution of all parameters:

y a; b;m; gc; pe;σ 2
e eN Xbþ Z1aþ Z2mþ Z3gcþ Z4pe; Iσ

2
e

� �
;

���
where y is the vector of data, b is the vector of
non-genetic effects, a is the vector of additive ge-
netic effects; m is the vector of maternal genetic
effects and pe is the vector of maternal permanent
environmental effect, both were considered only
for the YW; gc is the vector of contemporary
group effects; e is the vector of residual, with
e|σe

2~N(0, Iσe
2); X, Z1, Z2, Z3 and Z4 are incidence

matrices relating observations to non-genetic, ad-
ditive genetic effects, maternal genetic effects,
contemporary group and maternal permanent en-
vironmental, respectively; σe

2 is the residual vari-
ances; and I is identity matrix.

2nd Stage: The prior distribution for non-genetic and addi-
tive genetic effects is described in this stage:
Non-genetic effects (b): b~N(b0,Vb).
Breeding values (a) :a|s,σa

2~N(0,Asσa
2).

a
m
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:

Contemporary group effects: gc~N(0, Ισgc
2 ).

Maternal permanent environmental effects: pe~
N(0, Ισpe

2 ).
To calculate the animal genetic values, additive
genetic (co)variances are based on the genetic
relationship matrix (A), designated sires (s) and
genetic variance (σa

2). σgc
2 is the contemporary

group variance; σpe
2 is the maternal permanent

environmental variance; Vb is a diagonal matrix
of the a priori of b, assuming Vb∝∞.
A scale inverse chi-squared a priori distribution is
assumed for residual variances (σe

2), which is
given by σe

2~Se2χv
−2, where Se

2 is the a priori value
of residual variance based on literature data and
v is the degree of confidence in this value
(Sorensen and Gianola, 2002).

3nd Stage: Genetic variances assume the following values:

σ2
a e S2aχ

−2
v að Þ;

where Sa
2 is the a priori value of genetic variance

based on literature data and v(a) is the degree
of confidence in this value.
Moreover, in this stage is a specified probability
that s(j) is being the true sire of animal j:

π kð Þ
j ¼ Prob sj ¼ s kð Þ

j

� �
for all candidate sires k ¼ 1; 2;…; vj;

thus, the set of priori probabilities of each sire vj
be the true sire of animal j:

πj ¼ π 1ð Þ
j ;π 2ð Þ

j ;…;π
vjð Þ

j

� �
for vj candidate sires of animal j:

4th Stage: The prior distribution for probabilities of paternity
is described in this stage. The entire set of proba-
bilities for all non-base animals is rarely known
with absolute certainty, and so in this model
they are regarded as random quantities from a
Dirichlet distribution:

p π
���α� �

∝∏q
j¼qbþ1∏

vj
k¼1 π kð Þ

j

� �α kð Þ
j ;

where αj={αj
(k)}k=1

vj , αj
(k)>0 to k=1,2,…,vj and

π
vjð Þ

j ¼ 1− Pvj−1

k¼1
π kð Þ
j . Specifications set of hyper-

parameters α={αj}j=qb+1
q

can be based on the
reliability of the evaluation of an external source
of information about the a priori probabilities
assigned to each sire.
A Gibbs sampler in which each chain consisted of
400,000 cycles was used. First 10,000 cycles were



Table 2
The average deviance (DEV), penalty for effective number of parameters
(pd), deviance information criterion (DIC) and conditional predictive ordi-
nate (CPO) for postweaning gain (PWG) and yearling weight (YW).

Model DEV pd DIC CPO

PWG
ANRM 520,267 10,862 531,129 522,486
HIER 520,110 10,975 531,085 522,262

YW
ANRM 530,093 19,400 549,493 533,822
HIER 529,371 19,867 549,238 533,629

ANRM=model based on the average numerator relationship matrix;
HIER=hierarchical animal model.
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removed before estimatingmarginal posterior dis-
tributions of unknowns, directly from the samples.
Convergence was monitored using initial mono-
tone sequence (Geyer, 1992).
The deviance information criterion (DIC)
(Spiegelhalter et al., 2002) and conditional predic-
tive ordinate (CPO) (Gelfand, 1996) were used as
model choice criteria to determine the best fitting
model. CPO was defined as an MCMC approxima-
tion for the CPO of model Mr with parameters θ is
obtained by a harmonic mean of G MCMC cycles:

p yij
���y −ijð Þ;Mr

� �
≈ 1

1
G

PG
l¼1

p−1 yij θ
lð Þ;Mr

�
;

����

where p(yij|y(− ij),Mr) is the conditional predictive
ordinate (CPO) for observation yij, which refers to
the cross-validation density and describes what
values of yij are likely when the model is fit to all
other observations y(− ij) except for yij.
The DIC consists of a measure of global fit, posteri-
or deviancemean, and a penalization for complex-
ity of the model. According to Spiegelhalter et al.
(2002), the model deviance is estimated by

DEV ¼ 1
G

PG
i¼1

− log p y θ lð Þ
;Mr

��� ��
. The complexity of

the model is determined by the effective number

of parameters pD rð Þ ¼ DEV−DEV θ
	 


, where

DEV θ
	 
 ¼ −2 log p y θ;Mr

�� 
	
, with θ being the pos-

terior mean of θ, i.e., pD(r)
corresponds to the differ-

ence between the posterior deviance mean and
the deviance based on the posterior mean of the
parameters of the model. The DIC for the model
is determined as:

DIC ¼ DEV þ pD rð Þ :

Lower values of DIC are indicative of a better fit-
ting model. Spiegelhalter et al. (2002) have sug-
gested a DIC difference of 7 to be an important
difference in the model fit.
Spearman correlation between posterior means of
additive genetic effects obtained by the two differ-
ent models for PWG and YW was calculated for
different sets of animals: the first dataset included
all animals of the pedigree. The second set includ-
ed only offspring from MS mating, so animal with
uncertain paternity. The third dataset included
only sires. Within each dataset, animals were clas-
sified by their genetic value, the best animals
(TOP) 10, 30 and 50% were used to calculate the
correlation between the mean genetic values
obtained by HIER and ANRM models to different
selection pressures.
The percentage of squared bias (PSB) investigates
the overall goodness of fit of all models, as
introduced by Ali and Schaeffer (1987). The PSB
for the jth trait was defined as:

PSBJ ¼

Po
r¼1

yi−ŷið Þ2

Po
r¼1

yið Þ2
� 100;

where yi is the observed record, ŷi is the predicted
record and o is the number of observations.

3. Results and discussion

The DIC consists of the average deviance (DEV) and penal-
ty for effective number of parameters (pd). In this study, the
difference between ANRM and HIER was 44 for PWG and
255 for YW (Table 2). Thus, the biggest difference between
ANRM and HIER models was observed for YW, which is
more heritable than PWG (see Tables 3 and 4). Since smaller
values of DIC indicate a more appropriate model for estimat-
ing genetic parameters, it was observed that the values of DIC
and DEV smallest for the HIER model compared to ANRM
(Table 2). Thus, the HIER model was more appropriate to cal-
culate the breeding value for PWG and YW. Although the
model HIER has been described as the most appropriate
model, the HIER was also the more complex model, indicated
by higher effective number of parameters. However, this
penalty model was not high enough to change the criteria
of choice and DIC.

For the CPO, the difference between the deviances was
224 for PWG and 193 for the YW. Thus, both criteria, DIC
and CPO, consistently indicated the HIER model as the most
appropriate to predict the genetic value of animals with un-
certain paternity for all traits. These results agree with
those reported in the literature by Cardoso and Tempelman
(2003). These authors also concluded that the HIER model
was more appropriate than ANRM model to infer the genetic
merit of animals with uncertain paternity, when the variance
components were considered known and unknown. More-
over, Cardoso and Tempelman (2004) observed that the
HIER model produced estimates of breeding values for ani-
mals with uncertain paternity with less bias.

The percentages of squared bias from both models, ANRM
and HIER, were low and similar, being 1.996 and 1.986 for
PWG and 0.393 and 0.399 for YW, respectively. Nevertheless,



Table 3
Posterior mean (PM), high posterior density at a 95% of probability (HPD
95%), and effective sample size (ESS) for genetic parameters of post weaning
gain obtained by a model based on the average numerator relationship
matrix (ANRM) and hierarchical animal model (HIER).

Model Parameter PM HPD 95% ESS

ANRM σa
2 60.62 [59.19 to 67.29] 1396

σe
2 250.88 [245.52 to 256.25] 2133

hd
2 0.19 [0.18 to 0.21] 1406

HIER σa
2 61.80 [55.24 to 68.54] 1275

σe
2 250.24 [244.87 to 255.59] 1968

hd
2 0.20 [0.18 to 0.22] 1284

σa
2=additive genetic variance; σe

2=residual variance; hd2=direct heritability.
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this criterion does not take into account the complexity of the
model.

The effective sample size (ESS) for each variance compo-
nent was calculated using the initial sequence of monotonic
proposed by Geyer (1992) and was presented in Tables 3
and 4. The ESS estimates the number of independent samples
with information equivalent to those contained within the
sample dependent (Sorensen et al., 1995). The minimum
expected for all components was 100 samples. It was found
that in the present study, the number of cycles (400,000)
used was adequate for convergence of the chain. For PWG,
the ESS was up to 1200 samples for all components of vari-
ance, in addition, the HIER model showed a larger number
of samples. For YW, all components of variance obtained a
much smaller number of samples compared to samples of
components of variance of the PWG. And all samples reached
the minimum (over 100 samples).

The HIER model considers performance data and a prior
probability of candidate sires to infer the posterior probabili-
ties of a particular sire to be the true sire of an animal with
uncertain paternity. Thus, this model should infer the genetic
merit of animals with greater accuracy compared to the
Table 4
Posterior mean (PM), high posterior density at a 95% of probability (HPD
95%), and effective sample size (ESS) for genetic parameters for yearling
weight obtained by a model based on the average numerator relationship
matrix (ANRM) and a hierarchical animal model (HIER).

Model Parameter PM HPD 95% ESS

ANRM σa
2 147.34 [127.70 to 168.61] 277

σe
2 293.84 [282.40 to 305.04] 365

σm
2 10.33 [7.97 to 13.44] 210

σam 3.08 [−4.02 to 9.49] 211
σgc
2 1013.88 [956.23 to 1075.97] 35,642

hd
2 0.31 [0.27 to 0.35] 268

hm
2 0.02 [0.01 to 0.03] 215

rgdm 0.08 [−0.09 to 0.26] 202
HIER σa

2 155.64 [134.65 to 177.61] 231
σe
2 290.46 [278.50 to 301.93] 301

σm
2 10.35 [8.04 to 13.70] 178

σam 1.27 [−6.26 to 8.21] 138
σgc
2 1013.49 [954.20 to 1076.48] 36,928

hd
2 0.32 [0.28 to 0.37] 223

hm
2 0.02 [0.01 to 0.03] 184

rgdm 0.04 [−0.14 to 0.22] 138

σa
2=additive genetic variance; σe

2=residual variance; σm
2 =maternal

variance; σam=covariance between maternal and direct effects;
σgc
2 =contemporary group variance; hd2=direct heritability; hm2 =maternal

heritability; rgdm=correlation between direct and maternal genetic effects.
ANRM model. However, it was found in this study that the
range of highest posterior density interval was higher for
the HIER model for both traits, PWG and YW (Tables 3
and 4). Moreover, it was found that the HPD 95% of each var-
iance component overlaps in all cases, indicating that there is
practically no difference between the models to estimate this
parameter.

In general, posterior means of variance components esti-
mated by ANRM and HIER models were similar for both traits
(Tables 3 and 4). This work is in agreement with the results
of Cardoso and Tempelman (2004), who concluded that
there were no significant differences for the a posteriori aver-
age of variance components estimated by the ANRM and
HIER models.

The slightly higher genetic variance posterior means were
observedwhen using the HIERmodel for PWG and YW. The re-
sidual variance estimates were also lower with this model.
These results are in agreement with Cardoso and Tempelman
(2004), who found that the estimates of additive genetic vari-
ance calculated by ANRM andHIERmodels were close. Howev-
er, these authors found that the HIER model had a tendency of
underestimate the residual variance (Cardoso and Tempelman,
2003).

The average standard deviations (SD) of additive genetic
variances were higher when estimated by HIER model (data
not shown). These results were similar to those described
by Cardoso and Tempelman (2004), who described that the
SD of the additive genetic variances were similar between
ANRM and HIER models, both considering only the base pop-
ulation animals and animals with certain paternity. However,
for individuals with uncertain paternity, the SD of the addi-
tive genetic variance were higher when estimated by HIER
model.

The posterior means the heritability (hd2) obtained with
the ANRM and HIER models overlapped almost completely,
indicating that there were no practical differences between
the models for this parameter (Fig. 1). These values are
close to those reported in the literature for Zebu animals
(Eler et al., 1996; Malhado et al., 2005; Marcondes, 1999;
Paneto et al., 2002). According to these results, selection for
PWG will probably result in long-term genetic gains.

Fig. 2 shows the posterior heritability means for direct ge-
netic and maternal effects for YW. Posterior mean of herita-
bility obtained with the ANRM model was closed when
compared to the HIER (Table 4). Moreover, the high posterior
ig. 1. Marginal posterior distribution of heritability for postweaning weight
ain obtained with a model based on the average numerator relationship
atrix (ANRM) and a hierarchical model (HIER).
F
g
m



Fig. 2. Posterior density of direct heritability (above) and maternal heritabil-
ity (below) for yearling weight obtained with a model based on the average
numerator relationship matrix (ANRM) and hierarchical animal mode
(HIER).

Table 5
Spearman correlation between means of additive genetic effects obtained in
different sets of animals with a model based on the average numerator rela-
tionship matrix and a hierarchical animal model for post-weaning weight
gain (PWG) and yearling weight (YW).

Animal set Number of
animals

Traits

PWG YW

Animalsa Complete 75,088 0.999 0.999
50% 37,544 0.999 0.998
30% 22,526 0.998 0.998
10% 7509 0.997 0.996

Offspring of MSb Complete 22,810 0.999 0.999
50% 11,169 0.995 0.998
30% 6012 0.993 0.997
10% 2281 1.000 0.990

Siresc Complete 519 0.999 0.999
50% 259 0.994 0.999
30% 155 0.990 0.997
10% 52 0.972 0.992

a Dataset was composed of all animals.
b Animals with uncertain paternity were included.
c All the sires were included.
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l

density intervals at 95% overlapped in an important part, in-
dicating no differences between both estimates of this pa-
rameter. The posterior means obtained here are within the
range of values reported by several authors for zebu animals
(Bertazzo et al., 2004; Bittencourt et al., 2002; Boligon et al.,
2008), thus confirming that YW will respond to individual
selection.

The posterior heritability means for maternal genetic ef-
fects obtained with the ANRM and HIER models are close to
those described in the literature for Zebu animals (Gunsky
et al., 2001; Ribeiro et al., 2001). These results indicate little
change of gain by selecting for this purpose in Nellore herd.

Covariances and correlations between genetic and mater-
nal effects estimated with the two models were positive, as
those described by Meyer (1992) in Angus. Differently,
Boligon et al. (2008), Gunsky et al. (2001) and Ribeiro et al.
(2001) also working with Nellore cattle, reported negative
estimates for this correlation. The genetic direct andmaternal
covariance and correlation estimates overlapped in the 95%
highest posterior density interval (HPD 95%), confirming
that there are, virtually, no difference between the estimates
obtained with the two models. In general, the choice be-
tween ANRM and HIER models does not interfere in the esti-
mation of variance components for PWG and YW.
Table 5 shows the rank correlations between breeding
values predicted with the ANRM and HIER models for the
three sets of animals. The rank correlations between breeding
values predicted with the ANRM and HIERmodels for the two
traits were high for all data sets (Table 5), ranging from 0.972
to 1.000. In general, the correlations between models suggest
that the choice of the model does not interfere with the clas-
sification of animals when these data sets are evaluated.
These results agree with those reported by Cardoso and
Tempelman (2003), which also founded high correlation be-
tween genetic parameters estimates by ANRM and HIER
models for traits with medium and high heritability, these
authors reported the highest correlations when trait with
medium heritability was evaluated.

4. Conclusion

Themodel that best fits the data for estimating genetic pa-
rameter of animals with uncertain paternity is the Bayesian
hierarchical model. However, for genetic evaluation, the
choice between these models has no difference in classifica-
tion of genetic value of animals.
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