## Competition between spin, charge, and bond waves in a Peierls-Hubbard model

Pablo A. Venegas

Departamento de Física, Faculdade de Ciências, Universidade Estadual Paulista, Campus Bauru, Av. Engenheiro Luis Coube s/n, 17033-360 Bauru, São Paulo, Brazil

Carlos Henríquez

Comisión Chilena de Energía Nuclear, Casilla 118-D, Santiago, Chile

Jaime Rössler

Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

(Received 26 March 1996)

We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that *reduce symmetry on increasing temperature*. [S0163-1829(96)04229-4]

#### I. INTRODUCTION

One-dimensional electronic systems have been extensively studied in the literature over the last two decades.<sup>1–14</sup> In order to obtain a theoretical understanding of them, two main aspects have been considered: electron-electron (*e-e*) repulsion<sup>3–5</sup> and electron-phonon (*e*-ph) coupling.<sup>6–8</sup> Also, the combined effect of both interactions has been studied.<sup>9–13</sup> Due to these interactions, an ordered phase is expected at zero temperature, with a  $2k_F$  or  $4k_F$  modulation of the lattice. However, quantum fluctuations may reduce the former effect to short-range correlations.<sup>6–8</sup>

In the particular case of a half-filled band, the lattice and distortion periods are commensurable by the simple rational  $\frac{1}{2}$ . Therefore quantum fluctuations are strongly suppressed, as the period-2 modulation is hard locked to the lattice.<sup>6,13</sup> The last one is supported by Monte Carlo simulations,<sup>7,10</sup> where distortions with long-range order (LRO) are reported for realistic (not too high) phonon frequencies. Since the half-filled band chain is an insulator, three main ordered phases can appear: a spin density wave (SW),<sup>9</sup> a charge density wave (CW),<sup>1,13</sup> or a bond density wave (BW);<sup>1,12</sup> these phases can also coexist.<sup>1,9,13</sup>

The present paper deals with a half-filled band extended Hubbard model<sup>4,5</sup> coupled to intracell and intercell phonons.<sup>1</sup> The analysis is performed for arbitrary temperature. We use Hartree-Fock (HF) (Refs. 1,9,12) and adiabatic approximations; consequently a period-2 static deformation is expected. The adiabatic approximation yields a small overestimation of Peierls distortion (e.g., a 15% in polyacetylene<sup>7</sup>). Despite the HF limitations,<sup>14</sup> in the present case (where a finite gap separates the filled and empty electronic states) HF becomes fair, and its predictions over some actual systems are in good agreement with experiments.<sup>12</sup>

Rössler and Gottlieb<sup>1</sup> (RG) analyzed a model similar to the present one, although they considered a 1/4-filled band and an infinite intracell Coulomb repulsion. They used a mean field approach, obtaining results formally equivalent to the present ones by a substitution of parameters. Other authors have also faced similar, but rather simpler models,  $^{2,7,10,13}$  analyzing the T=0 case.

Our generalized Peierls-Hubbard Hamiltonian is

$$H = -\sum_{l,\sigma} \left[ t - g(u_{l+1} - u_l) \right] (c_{l\sigma}^{\dagger} c_{l+1,\sigma} + c_{l+1,\sigma}^{\dagger} c_{l,\sigma}) + \sum_{l,\sigma} \check{n}_{l,\sigma} \left[ -\lambda v_l + \frac{U}{2} \check{n}_{l,-\sigma} + V \sum_{\sigma'} \check{n}_{l+1,\sigma'} \right] + \frac{1}{2} \sum_{l} \left[ K(u_{l+1} - u_l)^2 + Q v_l^2 \right];$$
(1)

here  $v_l$  and  $u_l$  represent intracell and intercell displacements respectively,  $c_{l,\sigma}^{\dagger}$  creates a spin  $\sigma$  electron on site l, and  $\check{n}_{l,\sigma} \equiv c_{l,\sigma}^{\dagger} c_{l,\sigma}$ . We choose t=1 as the energy unit.

Applying the HF approximation to the *e-e* interactions and using the period-2 translational symmetry in the electronic averages, we have  $\langle \check{n}_{l,\sigma} \rangle \equiv \frac{1}{2} + (-1)^l \Gamma_{\sigma}$ . Due to Mattis's theorem, the spin up and down directions are equivalent in a one-dimensional system. Thus, choosing  $\Gamma_{\uparrow} \equiv \Gamma \geq 0$  we have  $\Gamma_{\downarrow} = \Gamma$  for a CW, while  $\Gamma_{\downarrow} = -\Gamma$  for a SW. In addition  $\langle c_{l,\sigma}^{\dagger} c_{l+1,\sigma} \rangle \equiv \tau + (-1)^l \Delta$ .

The equilibrium values of  $\{u_l, v_l\}$  are obtained by minimizing the Helmholtz free energy. Using the Hellmann-Feynman theorem, we conclude that  $u_{l+1} - u_l = -(4g/K)[\tau + (-1)^l \Delta]$  and  $v_l = (\lambda/Q)[1 + (-1)^l (\Gamma + \Gamma_{\downarrow})]$ . Thus,  $\Delta$  measures the fluctuations in intercell distance associated with a BW phase. We note that  $\Gamma \leq \frac{1}{2}$  and  $\Delta \leq \frac{1}{4}$ . The case  $\Gamma = \frac{1}{2}$  represents a saturated CW or SW, while  $\Delta = \frac{1}{4} = \tau$  corresponds to a saturated BW, where the system breaks into N/2 dimers.<sup>1</sup> The SW phase produces a uniform lattice contraction, instead of a Peierls distortion.

Later developments transform our Hamiltonian into the "effective" one

3015

$$H_{\text{eff}} = -A\Gamma \sum_{l,\sigma} (-1)^{l} \theta_{\sigma} \check{n}_{l,\sigma} - \sum_{l,\sigma} [W + G(-1)^{l} \Delta] \\ \times [c_{l\sigma}^{\dagger} c_{l+1,\sigma} + c_{l+1,\sigma}^{\dagger} c_{l,\sigma}], \qquad (2)$$

where  $A = U \equiv A_{SW}$  for SW,  $A = 4V - U + 2\lambda^2/Q \equiv A_{CW}$  for CW,  $W = t + G\tau$ , and  $G = V + 4g^2/K$ . The parameter W is an "effective" electronic transfer term, where t is corrected due to lattice contraction and HF exchange contribution.

We diagonalize  $H_{\rm eff}$  obtaining its quasiparticle spectrum

$$W_{k,\xi} = \xi \sqrt{4 W^2 \cos^2 k + 4 G^2 \Delta^2 \sin^2 k + A^2 \Gamma^2},$$
 (3)

with  $\xi = \pm$ .

Here  $-\frac{1}{2}\pi < k \leq \frac{1}{2}\pi$  is the new Brillouin zone. The relation  $W_k \equiv W_{k,+} = -W_{k,-}$  implies a zero chemical potential. We evaluate the electronic averages using the eigenfunctions of  $H_{\text{eff}}$ . The latter yields the following self-consistent conditions for  $\tau$  and the order parameters  $\Gamma, \Delta$ :

$$\begin{cases} \Gamma \\ \Delta \\ \tau \end{cases} = \frac{2}{N} \sum_{k=0}^{\pi/2} \frac{1}{W_k} \operatorname{tanh} \left( \frac{W_k}{2T} \right) \begin{cases} A\Gamma \\ 2G\Delta \sin^2(k) \\ 2W\cos^2(k) \end{cases} .$$
(4)

These conditions coincide with those of RG under the substitutions  $V \rightarrow A$ ,  $G_2=0$ ,  $\Delta_1 \rightarrow \Delta$  and  $G_1 \rightarrow G$ ; here the left side corresponds to RG.

After some calculations we also obtain the Helmholtz free energy  $F = 2G[\tau^2 + \Delta^2] + A\Gamma^2 - (8T/N)\Sigma_{k=0}^{\pi/2} \ln[2\cosh(W_k/2T)].$ 

We use *F* to determine the most stable phase at a given temperature. It is easy to prove that  $\partial F/\partial A = -\Gamma^2 \leq 0$ . Therefore, defining  $V_{\text{eff}} = V + \lambda^2/(2Q)$ , we have

$$A = \max\{A_{SW}, A_{CW}\} = 2V_{eff} + |U - 2V_{eff}|.$$

Thus, the SW phase is stable if  $U > 2V_{\text{eff}}$  and vice versa for the CW phase. Monte Carlo simulations on a rigid lattice<sup>5</sup> give a very small departure from the latter condition.

We define D=A-2G and use the replacements specified below Eq. (4) in order to describe our system in terms of the two parameters of RG (*D* and *G*), thus inheriting their results. However, since the present model differs from RG, the physical conclusions are also distinct. In particular, the CW phase of RG becomes our SW phase if  $U>2V_{\text{eff}}$ . In this way, the seven parameters appearing in our Hamiltonian (1) reduce to two independent constants, plus the sign of  $U-2V_{\text{eff}}$  (remember that we chose t=1). Moreover, for a pure BW phase (case  $\Gamma=0$ ) the parameter *D* does not play any role, excepting for determining the BW boundary.

It is useful to define  $L \equiv 4g^2/K - \lambda^2/(2Q)$ ; with *L* as a measure of the competition between the intercell and intracell *e*-ph interactions. Now  $G = L + V_{\text{eff}}$  and  $D = |U - 2V_{\text{eff}}| - 2L$ .

## **II. RESULTS**

Our solution involves six different phases. In fact, beyond the "pure" BW, SW, and CW phases and the hightemperature homogeneous (H) state ( $\Gamma = 0 = \Delta$ ), there are intermediate phases which lack inversion symmetry; on them a BW order coexists with CW or SW order ( $\Delta \neq 0 \neq \Gamma$ ). The



FIG. 1. Phase diagram in the plane [G, U] for  $V_{\text{eff}}=5$ . The magnification shows the F and SP phases.

intermediate phase between BW and SW phases is a spin-Peierls (SP) state, <sup>9,11</sup> while that between BW and CW phases is ferroelectric (F). The phase transitions  $CW \rightarrow F \rightarrow BW$  and  $SW \rightarrow SP \rightarrow BW$  are continuous, while the transition  $CW \rightarrow SW$  is discontinuous.

According to Eq. (4), at intermediate F or SP phases it holds that  $\tau = -tD/[2G(D+G)]$ . The boundaries of these intermediate phases (e.g., BW-F or F-CW) are obtained by equating this expression with the value of  $\tau$  at a "pure" phase.

## A. Phase diagram at T=0

Let  $D_{BW}(G) < D < D_{CW}(G)$  be the boundaries of the intermediate F  $(U < 2V_{eff})$  or SP  $(U > 2V_{eff})$  phases. Reference 1 shows the curves  $D_{BW}(G)$  and  $D_{CW}(G)$ . In the case  $G \leq 2\pi t$ , the widths of the intermediate phases are exponentially small, holding that  $D_{CW} \approx D_{BW} \approx -2G^2/(\pi t + 2G)$  and  $D_{CW} - D_{BW} \approx \pi t [G/(\pi t + 2G)]^3 \exp[-2\pi t/G]$ . In the opposite limit,  $G \geq 2\pi t$ , these boundaries are given by  $D_{CW} = -G + \sqrt[3]{3}Gt^2/2}$  and  $D_{BW} = -G + 2Gt/(4t+G)$ .

In order to obtain a physical feeling of the stability range of the different phases, let us first consider a phase map in the plane [G,U] for a fixed  $V_{\text{eff}}$  (remember that  $G=L+V_{\text{eff}}$ ). Figure 1 illustrates the case  $V_{\text{eff}}=5$ . Defining  $f_{\text{CW}}(G)=D_{\text{CW}}(G)+2G$ , and an analogous expression for  $f_{\text{BW}}(G)$ , we conclude the following:

(a) The SW phase is stable for  $U > 2V_{\text{eff}}$  and  $U > f_{\text{CW}}(G)$ .

(b) The CW phase is stable for  $U < 2V_{\text{eff}}$  and  $U < 4V_{\text{eff}} - f_{\text{CW}}(G)$ .

(c) The BW phase is stable for  $4V_{\text{eff}} - f_{\text{CW}}(G) < U < f_{\text{CW}}(G)$ .

(d) Obviously, the ferroelectric and spin-Peierls phases correspond to the small strips lying between the CW-BW and BW-SW phases, respectively.



FIG. 2. Phase diagram in the plane  $[V_{\text{eff}}, U]$  for L = 0.5. Also, a magnification is provided to make apparent the intermediate phases.

In this way, the CW-F-BW and SW-SP-BW phase boundaries are related to each other by a mirror reflection into the horizontal line  $U=2V_{\text{eff}}$ . Thus, the phase diagram can be obtained for any value of  $V_{\text{eff}}$  by using the dotted curve of Fig. 1.

Our conclusions are consistent with Hirsch results;<sup>10</sup>; especially his condition for the BW loss,  $U > U_c = 4g^2/K$ , is a particularization of our results for the case  $V = 0 = \lambda$ , and a small *t*.

It is also instructive to consider the T=0 phase diagram in the plane  $[V_{\text{eff}}, U]$ , and a fixed value of L; the case L=0.5 is shown in Fig. 2. From these two figures and our mathematical analysis we conclude:

(i) An increase in L, all other parameters fixed, leads from a SW or CW to a BW phase; this result is obvious, since L measures the relative importance of intercell e-ph interaction. The BW phase is precluded if L is lower than a critical value,  $L < L_0$ . An approximate expression for  $L_0$  (particularly suitable for small or moderate values of  $V_{\rm eff}/\pi t$ ) is  $L_0 = \sqrt{V_{\rm eff}^2 + \pi^2 t^2/4} - \pi t/2$ . For a fixed L, the upper boundary of the BW region (recall Fig. 2) is given by  $U = U_0 \sim 2\sqrt{L^2 + L\pi t}$ ,  $V_{\rm eff} = U_0/2$ .

(ii) Let us fix  $L, V_{eff}$  and increase U. At U=0 the system is in a CW or BW-like ( $\Delta \neq 0$ ) phase (see Figs. 1 and 2). For  $L>L_0$  an increase in U leads to a *continuous* transition to the SW phase by crossing through the BW-like phases (e.g., CW  $\rightarrow$ F $\rightarrow$ BW $\rightarrow$ SP $\rightarrow$ SW). If  $L < L_0$ , there is a direct and *discontinuous* CW $\rightarrow$ SW phase transition at  $U=2V_{eff}$ .

(iii) We now fix U,L and vary  $V_{eff}$ . For  $V_{eff}=0$  and  $L>L_0$ ,  $U>f_{CW}(L)\approx L[1 + \pi t/(\pi t + 2L)]$ , the system is in a SW phase, while lower values of U correspond to BW. A first increase in  $V_{eff}$  favors the BW phase, while a further increase leads to CW. The BW $\rightarrow$ F $\rightarrow$ CW transition approximately occurs at  $V_{eff}=[U+L]/3$  for small t.



FIG. 3. Excitation gap  $\mu_g$  vs V for a four-atom cluster with U=1 and  $g=\lambda=0$ . The exact and HF results correspond to solid and dotted curves, respectively.

(iv) Finally we consider the effect of an increase in the electronic transfer term *t* (e.g., due to an external pressure), which leads to a radial movement of point (G/t,D/t) toward the origin in Fig. 1 of RG. In this case a SW-CW transition is precluded. A transition from SW or CW regions toward the BW phase is possible if -G < D < 0, while BW is stable if D < -G < 0. The SW or CW phases are stable if D > 0.

## **B.** Effect of temperature

Let us increase the temperature from T=0. According to RG, if we start on a SW or CW phase, only a transition to the H phase is possible. The same is true for the BW phase, excepting in a narrow strip located around the intermediate F or SP phases and G < 5.7t. Over this strip we have the sequence of phase transitions  $BW \rightarrow SP \rightarrow SW \rightarrow H$  or  $BW \rightarrow F \rightarrow CW \rightarrow H$  on increasing T.<sup>1</sup> This phenomenon is very peculiar, since a symmetry reduction occurs *on increasing temperature* (as F or SP phases lack inversion symmetry, while BW phase has that symmetry). This result is not an "artifact" of HF approximation, since it persists even when *e-e* repulsion is absent. Only a few other examples of this kind are known.<sup>15</sup>

It is necessary to point out that our analisys for  $T \neq 0$  is more reliable for weak *e-e* correlation.<sup>1</sup> Note also that Landau theorem forbids LRO in one-dimensional systems; thus, the concept of phase transition becomes blurred,<sup>6,8</sup> and our LRO parameters must be replaced by short-range correlations. However, the correlation length is very large for  $T < T_c / 4$ ; here  $T_c$  is the mean field critical temperature.<sup>6</sup>

## C. Fermi gap

Now we analyze the Fermi gap, defined  
by<sup>3</sup> 
$$\mu_g \equiv \mu(N_e+1) - \mu(N_e)$$
, where  $\mu(N_e) = E_{GS}(N_e)$ 

 $-E_{\rm GS}(N_e-1)$  is the chemical potential and  $E_{\rm GS}(N_e)$  is the ground-state energy for a system with  $N_e$  electrons. Postulating periodic HF solutions, it holds that  $\mu_g$  coincides with the gap in the quasiparticles spectrum,  $\delta_g$ ; the latter one is given by the minimum of  $W_{k,+} - W_{k,-} = 2W_k$  in Eq. (3). However,  $\mu_g \neq \delta_g$  for the exact solution of the interacting system. For example, in the  $t \rightarrow 0$ ,  $g = \lambda = 0$  case, we have the exact results  $\mu_g = U$ ,  $\delta_g = U - V$  for the SW phase;  $\mu_g = 4V - U$ ,  $\delta_g = 3V - U$  for the CW phase.

Since  $\tau > \Delta$ , the HF gap lies at  $k = \pi/2$ , holding that  $\mu_g = 2\sqrt{4G^2\Delta^2 + A^2\Gamma^2}$ . In the former case  $(t \rightarrow 0, \lambda = g = 0)$  the HF gap goes to  $\mu_g = A$ . The latter one reproduces the exact results for the chemical potential, but not the minimal quasiparticle excitation energy  $\delta_g$ .

## D. Test for the HF approximation

Now we compare the exact and HF results for the gap  $\mu_g$ . Both calculations are done in a four-atom cluster; thus, finite-size effects affect HF and exact solutions in the same manner. Figure 3 shows  $\mu_g$  versus V for U=1, t=0.2,  $g=\lambda=0$ . The HF curve (dotted) closely follows the exact results (solid curve), especially for  $U\sim 2V$ . However, the exact calculation leads to a local maximum of  $\mu_g$  at

- <sup>1</sup>J. Rössler and D. Gottlieb, J. Phys. Condens. Matter **2**, 3723 (1990).
- <sup>2</sup>N. Tomita and H. Fukutome, Solid State Commun. **81**, 659 (1992).
- <sup>3</sup>L. Lieb and F.Y. Wu, Phys. Rev. Lett. **20**, 1445 (1968).
- <sup>4</sup>J. Rössler, B. Fernández, and M. Kiwi, Phys. Rev. B 24, 5299 (1981).
- <sup>5</sup>J. Hirsch, Phys. Rev. Lett. **53**, 2327 (1984).
- <sup>6</sup>P.A. Lee, T. Rice, and P.W. Anderson, Phys. Rev. Lett. **31**, 462 (1973).
- <sup>7</sup>E. Fradkin and J. Hirsch, Phys. Rev. B 27, 1680 (1983); 27, 4302

 $V \sim 0.2U$ , while the HF phase gives a monotonic decrease of the gap when 0 < V < U/2. The kink at U = 2V is due to the SW-CW transition.

We have also compared the thermal behavior of exact and HF solutions using small clusters.<sup>1,4,15</sup> For strong *e-e* interactions we have concluded that the HF approximation is fair when  $T < T_c/4$  especially in the CW phase. However, the HF approximation fails to account the magnetic properties of the SW phase.<sup>4,16</sup> In particular, for  $g = \lambda = 0$ , U > 2V,  $U \gg t$ , the Hubbard and antiferromagnetic Heisenberg models become equivalent,<sup>4</sup> holding  $J = 2t^2/(U-V)$  for the Heisenberg exchange. The HF approximation breaks the spin rotational symmetry, thus being inadequate to describe the magnetic correlations and low-energy excitations of the SW phase.<sup>15</sup>

In the  $t \to \infty$  limit, the exact and HF results converge,<sup>9</sup> leading to the same exponential behavior for the gap of the one-dimensional Hubbard model,  $\delta_g \propto \exp[-2\pi t/U]$ .

# ACKNOWLEDGMENTS

This work was supported by FONDECYT (Project Nos. 1940341 and 1950655), FAPESP, FUNDUNESP, and CNPQ.

(1983).

- <sup>8</sup>L. Degiorgi, G. Grüner, K. Kim, R.H. McKenzie, and P. Watcher, Phys. Rev. B **49**, 14754 (1994).
- <sup>9</sup>S. Kivelson and D. E. Heim, Phys. Rev. B 26, 4278 (1982).
- <sup>10</sup>J. Hirsch, Phys. Rev. Lett. **51**, 296 (1983).
- <sup>11</sup>C. Esparza, M. Elgueta, and J. Rössler, J. Phys. Condens. Matter 6, 4361 (1994).
- <sup>12</sup>J.C. Hicks and J. Tinka Gammel, Phys. Rev. B 37, 6315 (1988).
- <sup>13</sup>A. Painelli and A. Girlando, Phys. Rev. B 48, 10683 (1993).
- <sup>14</sup>P. Kopietz, Phys. Rev. B **48**, 13789 (1993).
- <sup>15</sup>D. Gottlieb and M. Lagos, Phys. Rev. B **39**, 2960 (1989).
- <sup>16</sup>C. Henríquez; M.Sc. thesis, Universidad de Chile, 1989.