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We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for
a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary
temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that
lack inversion symmetry, and phase transitions thatreduce symmetry on increasing temperature.
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I. INTRODUCTION

One-dimensional electronic systems have been exten-
sively studied in the literature over the last two decades.1–14

In order to obtain a theoretical understanding of them, two
main aspects have been considered: electron-electron (e-e)
repulsion3–5 and electron-phonon (e-ph! coupling.6–8 Also,
the combined effect of both interactions has been studied.9–13

Due to these interactions, an ordered phase is expected at
zero temperature, with a 2kF or 4kF modulation of the lat-
tice. However, quantum fluctuations may reduce the former
effect to short-range correlations.6–8

In the particular case of a half-filled band, the lattice and
distortion periods are commensurable by the simple rational
1
2. Therefore quantum fluctuations are strongly suppressed,
as the period-2 modulation is hard locked to the lattice.6,13

The last one is supported by Monte Carlo simulations,7,10

where distortions with long-range order~LRO! are reported
for realistic ~not too high! phonon frequencies. Since the
half-filled band chain is an insulator, three main ordered
phases can appear: a spin density wave~SW!,9 a charge den-
sity wave~CW!,1,13 or a bond density wave~BW!;1,12 these
phases can also coexist.1,9,13

The present paper deals with a half-filled band extended
Hubbard model4,5 coupled to intracell and intercell phonons.1

The analysis is performed for arbitrary temperature. We use
Hartree-Fock~HF! ~Refs. 1,9,12! and adiabatic approxima-
tions; consequently a period-2 static deformation is expected.
The adiabatic approximation yields a small overestimation of
Peierls distortion~e.g., a 15% in polyacetylene7!. Despite the
HF limitations,14 in the present case~where a finite gap sepa-
rates the filled and empty electronic states! HF becomes fair,
and its predictions over some actual systems are in good
agreement with experiments.12

Rössler and Gottlieb1 ~RG! analyzed a model similar to
the present one, although they considered a 1/4-filled band
and an infinite intracell Coulomb repulsion. They used a
mean field approach, obtaining results formally equivalent to

the present ones by a substitution of parameters. Other au-
thors have also faced similar, but rather simpler
models,2,7,10,13analyzing theT50 case.

Our generalized Peierls–Hubbard Hamiltonian is
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herev l andul represent intracell and intercell displacements
respectively,cl ,s

† creates a spins electron on sitel , and
ňl ,s[cl ,s

† cl ,s . We chooset51 as the energy unit.
Applying the HF approximation to thee-e interactions

and using the period-2 translational symmetry in the elec-
tronic averages, we have^ňl ,s&[ 1

21(21)lGs . Due to Mat-
tis’s theorem, the spin up and down directions are equivalent
in a one-dimensional system. Thus, choosingG↑[G>0 we
haveG↓5G for a CW, whileG↓52G for a SW. In addition
^cl ,s

† cl11,s&[t1(21)lD.
The equilibrium values of$ul ,v l% are obtained by mini-

mizing the Helmholtz free energy. Using the Hellmann-
Feynman theorem, we conclude thatul112ul52(4g/
K)@t1(21)lD# andv l5(l/Q)@11(21)l(G1G↓)#. Thus,
D measures the fluctuations in intercell distance associated
with a BW phase. We note thatG< 1

2 andD< 1
4. The case

G5 1
2 represents a saturated CW or SW, whileD5 1

45t cor-
responds to a saturated BW, where the system breaks into
N/2 dimers.1 The SW phase produces a uniform lattice con-
traction, instead of a Peierls distortion.

Later developments transform our Hamiltonian into the
‘‘effective’’ one
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whereA5U[ASW for SW, A54V2U12l2/Q[ACW for
CW,W5t1Gt, andG5V14g2/K. The parameterW is an
‘‘effective’’ electronic transfer term, wheret is corrected due
to lattice contraction and HF exchange contribution.

We diagonalizeHeff obtaining its quasiparticle spectrum

Wk,j5jA4W2cos2k14G2D2sin2k1A2G2, ~3!

with j56.
Here2 1

2p,k< 1
2p is the new Brillouin zone. The rela-

tion Wk[Wk,152Wk,2 implies a zero chemical potential.
We evaluate the electronic averages using the eigenfunctions
of Heff . The latter yields the following self-consistent con-
ditions for t and the order parametersG,D:
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These conditions coincide with those of RG under the
substitutionsV→A, G250, D1→D andG1→G; here the
left side corresponds to RG.

After some calculations we also obtain the
Helmholtz free energy F52G@t21D2#1AG22(8T/
N)(k50

p/2 ln@2cosh(Wk/2T)#.
We useF to determine the most stable phase at a given

temperature. It is easy to prove that]F/]A52G2<0.
Therefore, definingVeff5V1l2/(2Q), we have

A5max$ASW,ACW%52Veff1uU22Veffu .

Thus, the SW phase is stable ifU.2Veff and vice versa
for the CW phase. Monte Carlo simulations on a rigid lattice5

give a very small departure from the latter condition.
We defineD5A22G and use the replacements specified

below Eq.~4! in order to describe our system in terms of the
two parameters of RG (D andG), thus inheriting their re-
sults. However, since the present model differs from RG, the
physical conclusions are also distinct. In particular, the CW
phase of RG becomes our SW phase ifU.2Veff . In this
way, the seven parameters appearing in our Hamiltonian~1!
reduce to two independent constants, plus the sign of
U22Veff ~remember that we choset51). Moreover, for a
pure BW phase~caseG50) the parameterD does not play
any role, excepting for determining the BW boundary.

It is useful to defineL[4g2/K2l2/(2Q); with L as a
measure of the competition between the intercell and
intracell e-ph interactions. Now G5L1Veff and
D5uU22Veffu22L.

II. RESULTS

Our solution involves six different phases. In fact, beyond
the ‘‘pure’’ BW, SW, and CW phases and the high-
temperature homogeneous~H! state (G505D), there are
intermediate phases which lack inversion symmetry; on them
a BW order coexists with CW or SW order (DÞ0ÞG). The

intermediate phase between BW and SW phases is a spin-
Peierls~SP! state,9,11while that between BW and CW phases
is ferroelectric~F!. The phase transitions CW→F→BW and
SW→SP→BW are continuous, while the transition CW
→SW is discontinuous.

According to Eq.~4!, at intermediate F or SP phases it
holds thatt52tD/@2G(D1G)#. The boundaries of these
intermediate phases~e.g., BW-F or F-CW! are obtained by
equating this expression with the value oft at a ‘‘pure’’
phase.

A. Phase diagram atT50

Let DBW(G),D,DCW(G) be the boundaries of the in-
termediate F (U,2Veff) or SP (U.2Veff) phases. Refer-
ence 1 shows the curvesDBW(G) andDCW(G). In the case
G!2pt, the widths of the intermediate phases are exponen-
tially small, holding thatDCW'DBW'22G2/(pt12G)
and DCW2DBW'pt@G/(pt12G)#3exp@22pt/G#. In the
opposite limit, G@2pt, these boundaries are given by
DCW52G1

3A@3Gt2/2 andDBW52G12Gt/(4t1G).
In order to obtain a physical feeling of the stability range

of the different phases, let us first consider a phase map in
the plane @G,U# for a fixed Veff ~remember that
G5L1Veff). Figure 1 illustrates the caseVeff5 5. Defining
fCW(G)5DCW(G)12G, and an analogous expression for
f BW(G) , we conclude the following:

~a! The SW phase is stable forU.2Veff and
U. fCW(G).

~b! The CW phase is stable forU,2Veff and
U,4Veff2 fCW(G).

~c! The BW phase is stable for 4Veff2 fCW(G)
,U, fCW(G).

~d! Obviously, the ferroelectric and spin-Peierls phases
correspond to the small strips lying between the CW-BW
and BW-SW phases, respectively.

FIG. 1. Phase diagram in the plane@G,U# for Veff55. The
magnification shows the F and SP phases.
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In this way, the CW-F-BW and SW-SP-BW phase bound-
aries are related to each other by a mirror reflection into the
horizontal lineU52Veff . Thus, the phase diagram can be
obtained for any value ofVeff by using the dotted curve of
Fig. 1.

Our conclusions are consistent with Hirsch results;10; es-
pecially his condition for the BW loss,U.Uc54g2/K, is a
particularization of our results for the caseV505l, and a
small t.

It is also instructive to consider theT50 phase diagram
in the plane@Veff ,U#, and a fixed value ofL; the case
L50.5 is shown in Fig. 2. From these two figures and our
mathematical analysis we conclude:

~i! An increase inL, all other parameters fixed, leads from
a SW or CW to a BW phase; this result is obvious, sinceL
measures the relative importance of intercelle-ph interac-
tion. The BW phase is precluded ifL is lower than a critical
value, L,L0. An approximate expression forL0 ~particu-
larly suitable for small or moderate values ofVeff /pt) is
L05AVeff

2 1p2t2/42pt/2 . For a fixedL, the upper bound-
ary of the BW region ~recall Fig. 2! is given by
U5U0; 2AL21Lpt, Veff5U0/2.

~ii ! Let us fixL,Veff and increaseU. At U50 the system
is in a CW or BW-like (DÞ0) phase~see Figs. 1 and 2!. For
L.L0 an increase inU leads to acontinuoustransition to the
SW phase by crossing through the BW-like phases~e.g., CW
→F→BW→SP→SW!. If L,L0 , there is a direct anddis-
continuousCW→SW phase transition atU52Veff .

~iii ! We now fix U,L and varyVeff . For V eff50 and
L.L0 , U. fCW(L)'L@11pt/(pt12L)#, the system is in
a SW phase, while lower values ofU correspond to BW. A
first increase inVeff favors the BW phase, while a further
increase leads to CW. The BW→F→CW transition approxi-
mately occurs atVeff5@U1L#/3 for small t.

~iv! Finally we consider the effect of an increase in the
electronic transfer termt ~e.g., due to an external pressure!,
which leads to a radial movement of point (G/t,D/t) toward
the origin in Fig. 1 of RG. In this case a SW-CW transition
is precluded. A transition from SW or CW regions toward
the BW phase is possible if2G,D,0, while BW is stable
if D,2G,0. The SW or CW phases are stable ifD.0.

B. Effect of temperature

Let us increase the temperature fromT50. According to
RG, if we start on a SW or CW phase, only a transition to the
H phase is possible. The same is true for the BW phase,
excepting in a narrow strip located around the intermediate F
or SP phases andG,5.7t. Over this strip we have the se-
quence of phase transitions BW→SP→SW→H or BW→F
→CW→H on increasingT.1 This phenomenon is very pe-
culiar, since a symmetry reduction occurson increasing tem-
perature~as F or SP phases lack inversion symmetry, while
BW phase has that symmetry!. This result is not an ‘‘arti-
fact’’ of HF approximation, since it persists even whene-e
repulsion is absent. Only a few other examples of this kind
are known.15

It is necessary to point out that our analisys forTÞ0 is
more reliable for weake-e correlation.1 Note also that Lan-
dau theorem forbids LRO in one-dimensional systems; thus,
the concept of phase transition becomes blurred,6,8 and our
LRO parameters must be replaced by short-range correla-
tions. However, the correlation length is very large for
T,Tc / 4; hereTc is the mean field critical temperature.6

C. Fermi gap

Now we analyze the Fermi gap, defined
by3 mg[m(Ne11)2m(Ne), where m(Ne)5EGS(Ne)

FIG. 3. Excitation gapmg vs V for a four-atom cluster with
U51 andg5l50. The exact and HF results correspond to solid
and dotted curves, respectively.

FIG. 2. Phase diagram in the plane@Veff ,U# for L50.5. Also, a
magnification is provided to make apparent the intermediate phases.
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2EGS(Ne21) is the chemical potential andEGS(Ne) is the
ground-state energy for a system withNe electrons. Postulat-
ing periodic HF solutions, it holds thatmg coincides with the
gap in the quasiparticles spectrum,dg ; the latter one is given
by the minimum ofWk,12Wk,25 2Wk in Eq. ~3!. However,
mgÞdg for the exact solution of the interacting system. For
example, in thet→0, g5l50 case, we have the exact re-
sults mg5U, dg5U2V for the SW phase;mg54V2U,
dg53V2U for the CW phase.

Since t.D, the HF gap lies atk5p/2, holding that
mg52A4G2D21A2G2. In the former case (t→0,
l5g50) the HF gap goes tomg5A. The latter one repro-
duces the exact results for the chemical potential, but not the
minimal quasiparticle excitation energydg .

D. Test for the HF approximation

Now we compare the exact and HF results for the gap
mg . Both calculations are done in a four-atom cluster; thus,
finite-size effects affect HF and exact solutions in the same
manner. Figure 3 showsmg versusV for U51, t50.2,
g5l50. The HF curve~dotted! closely follows the exact
results ~solid curve!, especially forU;2V. However, the
exact calculation leads to a local maximum ofmg at

V;0.2U, while the HF phase gives a monotonic decrease of
the gap when 0,V,U/2. The kink atU52V is due to the
SW-CW transition.

We have also compared the thermal behavior of exact and
HF solutions using small clusters.1,4,15 For stronge-e inter-
actions we have concluded that the HF approximation is fair
when T,Tc / 4 especially in the CW phase. However, the
HF approximation fails to account the magnetic properties of
the SW phase.4,16 In particular, for g5l50, U.2V, U
@t, the Hubbard and antiferromagnetic Heisenberg models
become equivalent,4 holdingJ52t2/(U2V) for the Heisen-
berg exchange. The HF approximation breaks the spin rota-
tional symmetry, thus being inadequate to describe the mag-
netic correlations and low-energy excitations of the SW
phase.15

In the t→` limit, the exact and HF results converge,9

leading to the same exponential behavior for the gap of the
one-dimensional Hubbard model,dg}exp@22pt/U#.
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