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Competition between spin, charge, and bond waves in a Peierls-Hubbard model
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We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for
a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary
temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that
lack inversion symmetry, and phase transitions thmatluce symmetry on increasing temperature
[S0163-182606)04229-4

[. INTRODUCTION the present ones by a substitution of parameters. Other au-
thors have also faced similar, but rather simpler
One-dimensional electronic systems have been extermodels®’'%*3analyzing theT=0 case.
sively studied in the literature over the last two decadé$. Our generalized Peierls—Hubbard Hamiltonian is
In order to obtain a theoretical understanding of them, two
main aspects have been considered: electron-elecea@) (
repuIS|or3r.‘5 and electron-phonone¢ph) coupling®~8 Also, H=—> [t=g(U:1—U)I(C) Cli10+Cli1,C10)
the combined effect of both interactions has been stutiiEd. lo
Due to these interactions, an ordered phase is expected at U
zero temperature, with ak2 or 4k modulation of the lat- A — AU+ =1 _ gtV Disg g
tice. However, quantum fluctuations may reduce the former Lo 2" o' '
effect to short-range correlatiofis? 1
In the particular case of a half-filled band, the lattice and - 12 2q.
distortion periods are commensurable by the simple rational * 2§|: [K U2 =)™+ Quil: @
1. Therefore quantum fluctuations are strongly suppressed,
as the period-2 modulation is hard locked to the latlite. . . .
The last one is supported by Monte Carlo simulatibHs, herev, gndu, gepresent mtracgll and intercell dls:placements
where distortions with long-range ordérRO) are reported [especfrlvely,c,vg creates a spinr electron on sitel, and
for realistic (not too high phonon frequencies. Since the M.c=CiCi.o- We chooseé=1 as the energy unit.
half-filled band chain is an insulator, three main ordered APPlying the HF approximation to the-e interactions
sity wave (CW),2*3 or a bond density wavéBW):11? these  tronic averages, we hay@, ,)=3+(—1)'T,. Due to Mat-
phases can also coexist’® tis’s theorem, the spin up and down directions are equivalent
The present paper deals with a half-filled band extendedn @ one-dimensional system. Thus, choosihg='=0 we
Hubbard modél® coupled to intracell and intercell phonohs. havel' | =I" for a CW, whilel’) = —I" for a SW. In addition
The analysis is performed for arbitrary temperature. We USéCIT,aCI+1,o>ET+(_1)|A-
Hartree-Fock(HF) (Refs. 1,9,12 and adiabatic approxima- The equilibrium values ofu,,v|} are obtained by mini-
tions; consequently a period-2 static deformation is expectednizing the Helmholtz free energy. Using the Hellmann-
The adiabatic approximation yields a small overestimation offeynman theorem, we conclude that,;—u=—(4g/
Peierls distortior(e.g., a 15% in polyacetylefile Despite the ~ K)[7+(—1)'A] andv;=(\/Q)[1+(—1)(I'+I))]. Thus,
HF limitations#in the present casevhere a finite gap sepa- A measures the fluctuations in intercell distance associated
rates the filled and empty electronic statel§ becomes fair, with a BW phase. We note that<3; and A<3. The case
and its predictions over some actual systems are in gooH=3 represents a saturated CW or SW, while- 3= 7 cor-
agreement with experiments. responds to a saturated BW, where the system breaks into
Rossler and Gottlieb(RG) analyzed a model similar to N/2 dimerst The SW phase produces a uniform lattice con-
the present one, although they considered a 1/4-filled bantlaction, instead of a Peierls distortion.
and an infinite intracell Coulomb repulsion. They used a Later developments transform our Hamiltonian into the
mean field approach, obtaining results formally equivalent td'effective”” one
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whereA=U=Ag, for SW, A=4V—U+2\?/Q=A.,, for
CW, W=t+Gr, andG=V+4g?/ K. The parameteW is an
“effective” electronic transfer term, whereis corrected due
to lattice contraction and HF exchange contribution.

We diagonalizeH o obtaining its quasiparticle spectrum

)

W, = £VAW?cosk+ 4G2AZsirPk+ A’T?,

with é==+.
Here — iw<k<1im is the new Brillouin zone. The rela-
tion W,=W, . =—W, _ implies a zero chemical potential.

We evaluate the electronic averages using the eigenfunctions

of He. The latter yields the following self-consistent con-
ditions for 7 and the order parametef5A:

2 /2 1 W Al

Ap == —tan _") 2GAsir?(k) (4)
NEO W~ | 2T

T 2Wcog (k)
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These conditions coincide with those of RG under the FIG. 1. Phase diagram in the plaf&,U] for Vey=5. The

substitutionsvV —A, G,=0, A;—A andG;—G; here the
left side corresponds to RG.

After some calculations we also obtain
Helmholtz free energy F=2G[ 7%+ A?]+AI'>—(8T/
N) =72 In[ 2coshV/2T)].

magnification shows the F and SP phases.

intermediate phase between BW and SW phases is a spin-

the peierls(SP state?!! while that between BW and CW phases

is ferroelectric(F). The phase transitions CWF—BW and
SW—SP—BW are continuous, while the transition CW

We useF to determine the most stable phase at a given—SW is discontinuous.

temperature. It is easy to prove thaF/dA=—T12<0.
Therefore, defining/.s=V+\?/(2Q), we have

A= ma.){Asw,Acw} = 2Veff+ | U-— 2Veff| .

Thus, the SW phase is stableUf>2V 4 and vice versa
for the CW phase. Monte Carlo simulations on a rigid laftice
give a very small departure from the latter condition.

According to Eq.(4), at intermediate F or SP phases it
holds thatr=—tD/[2G(D+G)]. The boundaries of these
intermediate phase®.g., BW-F or F-CW are obtained by
equating this expression with the value ofat a “pure”
phase.

A. Phase diagram atT =0

We defineD=A—2G and use the replacements specified -6t Daw(G) <D <Dcw(G) be the boundaries of the in-

below Eq.(4) in order to describe our system in terms of the

two parameters of RGI and G), thus inheriting their re-

termediate F U<2V.) or SP U>2Vy4) phases. Refer-
ence 1 shows the curvé&gy(G) andDcyw(G). In the case

sults. However, since the present model differs from RG, th& <27t, the widths of the intermediate phases are exponen-

physical conclusions are also distinct. In particular, the C
phase of RG becomes our SW phasdJif-2V. In this
way, the seven parameters appearing in our Hamilto(ian
reduce to two independent constants, plus the sign
U—-2V; (remember that we chode=1). Moreover, for a
pure BW phasdcasel’=0) the parameteD does not play
any role, excepting for determining the BW boundary.

It is useful to defineL=4g%/K—\?/(2Q); with L as a

whially small, holding thatDcw~Dgw~

—2G?/(7t+2G)
and Dcyw— Dy~ 7t[G/(mt+2G) Pexd —2#t/G]. In the
opposite limit, G>2xt, these boundaries are given by

Pcw=—G+ [3Gt?2 andDgy=—G+2Gt/(4t+G).

In order to obtain a physical feeling of the stability range
of the different phases, let us first consider a phase map in
the plane [G,U] for a fixed Vg (remember that
G=L+V.). Figure 1 illustrates the cadéq= 5. Defining

measure of the competition between the intercell andcw(G)=Dcw(G)+2G, and an analogous expression for

intracell e-ph interactions. and

D=|U—2Veq—2L.

Now G=L+ Vg

Il. RESULTS

Our solution involves six different phases. In fact, beyond

the “pure” BW, SW, and CW phases and the high-
temperature homogeneousl) state '=0=A), there are

few(G) , we conclude the following:

(@ The SW phase is stable folU>2V. and
U>fon(G).

(b) The CW phase
U<4Vq 45— fonl(G).

(0 The BW phase
<U<few(G).

(d) Obviously, the ferroelectric and spin-Peierls phases

is stable folU<2V. and

is stable for V44— fow(G)

intermediate phases which lack inversion symmetry; on thereorrespond to the small strips lying between the CW-BW

a BW order coexists with CW or SW ordeA #0+#1"). The

and BW-SW phases, respectively.
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FIG. 3. Excitation gapuy vs V for a four-atom cluster with
FIG. 2. Phase diagram in the plaj¥é.;,U] for L=0.5. Also,a U=1 andg=\=0. The exact and HF results correspond to solid
magnification is provided to make apparent the intermediate phaseand dotted curves, respectively.

In this way, the CW-F-BW and SW-SP-BW phase bound- (iv) Finally we consider the effect of an increase in the
aries are related to each other by a mirror reflection into thelectronic transfer ternh (e.g., due to an external pressyre
horizontal lineU=2V. Thus, the phase diagram can be which leads to a radial movement of poil@{t,D/t) toward
obtained for any value 0¥/ by using the dotted curve of the origin in Fig. 1 of RG. In this case a SW-CW transition
Fig. 1. is precluded. A transition from SW or CW regions toward

Our conclusions are consistent with Hirsch restfltes-  the BW phase is possible # G<D <0, while BW is stable
pecially his condition for the BW loss)>U_.=4g%/K, isa if D<—G<0. The SW or CW phases are stableif>0.
particularization of our results for the ca¥%e=0=\, and a
smallt. B. Effect of temperature

It is also instructive to consider tHE=0 phase diagram
in the plane[Vg4,U], and a fixed value olL; the case
L=0.5 is shown in Fig. 2. From these two figures and our
mathematical analysis we conclude:

(i) Anincrease irL, all other parameters fixed, leads from
a SW or CW to a BW phase; this result is obvious, sihce
measures the relative importance of interezlbh interac-
tion. The BW phase is precludedlifis lower than a critical
value, L<L,. An approximate expression fdr, (particu-
larly suitable for small or moderate values 9fx/mt) is

— 242 ]

Lo=Veq+ m /4= mt/2 . For a fixedL, the upper bound- ¢ "ot W apnroximation, since it persists even whese

ary of the BW region (recall Fig. 3 is given by repulsion is absent. Only a few other examples of this kind
U=Ug~ 2JL2+L7t, Veg=U,/2. are known'>

(i) Let us fixL,Vey and increase). At U=0 the system It is necessary to point out that our analisys To#0 is

is in a CW or BW-like A #0) phasdsee Figs. 1 and)2For o0 reliaple for weale-e correlationt Note also that Lan-
L>L, anincrease i) leads to ontinuoudransition to the 4, theorem forbids LRO in one-dimensional systems; thus,
SW phase by crossing through the BW-like phageg., CW  {he concept of phase transition becomes bluffednd our
—F—=BW—SP~SW). If L<L,, there is a direct andis- | r5 parameters must be replaced by short-range correla-
continuousCW— SW phase transition a =2V tions. However, the correlation length is very large for

(iii) We now fix U,L and varyVe. For V=0 and 171 /4. hereT, is the mean field critical temperatufe.
L>Lg, U>fow(L)~L[1 + at/(mt+2L)], the system is in

a SW phase, while lower values of correspond to BW. A
first increase inVy favors the BW phase, while a further
increase leads to CW. The BWF— CW transition approxi- Now we analyze the Fermi gap, defined
mately occurs aV4=[U +L]/3 for smallt. by? mg=m(Ne+1)—u(Ng), where wu(Ng)=Egg(Ne)

Let us increase the temperature frdn+ 0. According to
RG, if we start on a SW or CW phase, only a transition to the
H phase is possible. The same is true for the BW phase,
excepting in a narrow strip located around the intermediate F
or SP phases an@<5.7t. Over this strip we have the se-
quence of phase transitions BWSP— SW—H or BW—F
—CW—H on increasingl.! This phenomenon is very pe-
culiar, since a symmetry reduction occuars increasing tem-
perature(as F or SP phases lack inversion symmetry, while
BW phase has that symmelryThis result is not an “arti-

C. Fermi gap
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V~0.2U, while the HF phase gives a monotonic decrease of
the gap when &V<U/2. The kink atU=2V is due to the
SW-CW transition.

—EggNe—1) is the chemical potential arfel;(N,) is the
ground-state energy for a system witlh electrons. Postulat-
ing periodic HF solutions, it holds thaty coincides with the _
gap in the quasiparticles spectrusy, the latter one is given We have also compared the thermal behavior of exact and
by the minimum oW, , — W, _= 2W in Eq. (3). However, HF solutions using small clustetd:'® For stronge-e inter-
wg# 8y for the exact solution of the interacting system. Foractions we have concluded that the HF approximation is fair
example, in the—0, g=\=0 case, we have the exact re- WhenT<T./ 4 especially in the CW phase. However, the
sults ug=U, 8;=U—V for the SW phaseu,=4V—U, HF approximation fails to account the magnetic properties of
8,=3V—U for the CW phase. the SW phasé!® In particular, forg=A=0, U>2V, U
Since 7>A, the HF gap lies ak=/2, holding that >t, the Hubbard and antiferromagnetic Heisenberg models
Mgzz\/szz_ In the former case t(-0, become equivaler?tholdingJ=2t_2/(U_—V) for the Heisen-
\=g=0) the HF gap goes tp,=A. The latter one repro- berg exchange. The HF approximation breaks the spin rota-
duces the exact results for the chemical potential, but not thBonal symmetry, thus being inadequate to describe the mag-

minimal quasiparticle excitation energy,. nﬁticegorrelations and low-energy excitations of the SW
phase:
In the t—oo limit, the exact and HF results converye,

D. Test for the HF approximation . . .
PP leading to the same exponential behavior for the gap of the

Now we compare the exact and HF results for the gapne-dimensional Hubbard modei,ocexy —2mt/U].
ig- Both calculations are done in a four-atom cluster; thus,

finite-size effects affect HF and exact solutions in the same

manner. Figure 3 showgy versusV for U=1, t=0.2,
g=A=0. The HF curve(dotted closely follows the exact
results (solid curve, especially forU~2V. However, the
exact calculation leads to a local maximum pf; at
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