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Scaling in the BCS to Bose crossover problem in different partial waves
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The BCS superconductivity to Bose condensation crossover problem is studied in two dimens&ns in
P, andD waves, for a simple anisotropic pairing, with a finite-range separable potential at zero temperature.
The gap parameter and the chemical potential as a function of Cooper-pair bBydndibit universal scaling.

In the BCS limit the results for coherence lendtland the critical temperatur€, are appropriate for high-
T, cuprate superconductors and also exhibit universal scaling as a functiin $60163-18207)02501-0

A collection of electrons(Fermiong, interacting via a are insensitive to the details of the potential and are universal
weak residual interaction at very low temperature and highHunctions of the dimensionless variabla. In three dimen-
density, exhibits pairing instability. Overlapping Cooper sionsl~k:* and hence one could use the equivalent variable
pairs- are formed spontaneously according to the Bardeent/(kga). For theS-wave problem in two dimensions with a
Cooper-Schreiffe(BCS) theory of superconductivity.For  very-short-range attractive potential, the presence of a two-
usual superconductors, the BCS theory yielde~1000 body bound state in vacuum is the necessary and sufficient
and 2A/(kgT.) =3.52 in agreement with experiments, where condition for pairing instability® Hence the convenient di-
ke is the Fermi momenturmkg the Boltzmann constanty mensionless variable could B /Er with B, the two-body
the gap parameteiT, the critical temperature, and the  binding in vacuum ancEFEkBTFEﬁZkEI(Zm) the Fermi
coherence length. energy.

In the opposite limit of a strong residual interaction, non-  The usual treatment of BCS employs a potential in mo-
overlapping diatomic bosonic molecules emerge as bounthentum space with a constant value for momentum between
states of fermion paird? At sufficiently low density and 2m(Er—Ep)/A2 and 2n(Eg+Ep)/#? and zero elsewhere
temperature, these composite objects act as an ideal gas with Ej the Debye energy. This implies a moderate range of
bosons withékg~0, which may undergo a phase transition. the interaction. This potential is a physically motivated
In three dimensions this phase transition is the usual Bosphonon-induced electron-electron dnéhe objective of the
condensatiort® In two dimensions one can have a superfluidpresent work is to find out to what extent the universal
transition under appropriate conditioh§Hence the two ex- naturé”® of the solution of the crossover problem is modi-
treme limits of the same system exhibit two interesting phefied after introducing a smooth potential of medium range in
nomena. place of the above potential. For some of the highmate-

Leggetf emphasized the importance of the above-rials, experiments suggest n@wave Cooper pairing?®
mentioned BCS superconductivity to the Bose condensatiomhis is why we have also extended the discussion of univer-
crossover problem. This problem has gained new impetusality to the crossover problem iR and D waves, for a
after the discovery of higfi cuprate superconductors with simple anisotropic pairing.
certain general properties*° These superconductors have  The energyB, is not really the ideal variable for studying
a very small coherence lengttk-~102° and exhibit a lin-  universality in the crossover problem in two dimensions for
ear scaling betweerm, and Tg known as the Uemura non<S partial waves, because B and D waves one could
scalingr* where T¢ is the Fermi temperature. The small have Cooper pairing, and hence BCS superconductivity, in
value of ¢ suggests that its superconducting phase might béhe absence of a two-body bound state in vac8urhe ap-
understood as one in the above-mentioned -crossovegropriate reference variable for studying the crossover prob-
regime> /810 lem in all cases, including the three-dimensional probtém,

Many highT. superconductors have a conducting struc-is the Cooper-pair binding.. For the zero-rang& wave
ture similar to a two-dimensional layer of carriér®'*  model of Ref. 88,=B.. Previously, there have been stud-
which suggests the use of two-dimensional models. Thées of the crossover problem in terms of the potential
mathematical complications of the crossover problem aratrength or scattering length.
also simpler in two dimensions than in one or three We studied the crossover problem with a finite-range
dimensions:’~®Hence, in order to understand the subtletiesseparable potential and, especially, the dependence of the
of this problem, the present study is limited to two dimen-universal behavior of the crossover problem on the range of
sions. the interaction potential. We found that the universal behav-

In the S-wave crossover problem in three dimensions,ior of the crossover problem does not significantly change
Leggett consideretl electrons, each of mass and of spac-  with the change of the range of potentials. We calculated the
ing |, interacting via a weak short-range potential of rangezero-temperature chemical potential and gap parameter
ro(<l). The scattering length satisfieda|>r,. By varying A in the entire crossover region, agdand T, in the BCS
the ratiol/a, the BCS and the Bose limits could be attained.region for different values of the range parameter. We found
When suitably scaled, most of the properties of the systemobust universal scaling in each case, valid over several de-
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cades of Cooper-pair binding. We did not find similar scalingBCS limit the formation of Cooper pairs dt=T, signals
when u, A, T,, and ¢ were considered as a function of superconductivity, whereas in the Bose limit the preformed
potential strength or of binding,.1? The present model also composite bosons may undergo a superfluid phase transition
produced an appropriaf€,/Tg ratio and a smalk in the at T=T. under appropriate conditiofis. At zero tempera-
BCS region in accordance with experiments on Higheu-  ture Eqs(3) and(4) are valid in the whole crossover regibn.
prate superconductors. As in Ref. 8, we consider the simplest case of anisotropic
The two-body problem and the Cooper and BCS modelgairing in two dimensions whered, has the angular
all exhibit ultraviolet divergences for zero-range potentialsdependence~exp(iL 6). With the present potential), of
and require renormalization to produce finite restil®or  Eq.(3) then behaves as,=Afgexp(L6). Equation(3) then
non-S partial waves, the nature of these divergences is morbecomes
complicated and there is no general prescription for renor-
malization. The present study with finite-range potentials )\_1:2 fzitan
leads to a well-defined mathematical problem without the T 92E
necessity for renormalization.
We consider a two-body system, each of massn the ~ WhereEq=[(eq—w)?+A2f2]¥2 Using Egs(1) and(2), Eq.
center-of-mass framfeThe single-(two-) particle energy is (5 can be rewritten as
given by e,=%2qg%/2m (2¢,), whereq is the wave number.

a (5)
q kgT’

We consider the attractive separable short-range potential fg fé q
Vppr = —Afpf,,. The angular momentunij dependence of e eq— £ Eq: E—qtan KT =0. (6)

all the variables will not be explicitly shown. This potential
leads to pairing instability for ank, L, andf, 2 In even  Equation(6) is valid independent of the existence of a two-
(odd partial waves pairing occurs in singlériplet) state.  body bound state in vacuum.

The corresponding matrix is Equations(4) and(6) can be explicitly written as
. ’ 7 = f2 = f2 E
Top (2E)=fof | =2 —% f2(2E—2¢) : EFdeq Eq_‘*E - JO dqu—‘;tan ksT=o, @
where ZE is the parametric relative energy. The condition for
a bound state at energyE2= — B, is fwdeq 1— qu_ Fean qu —2E,. ®)
0 q B

-1_ 2 -1
A _g fo(B2F26€q) . @ Equations(7) and (8) permit the following analytic solu-

tions for Swave (L=0) zero-range potential given by
The Cooper-pair problem for two electrons above thef,=1. At T=0, A=(2B.Ep)Y? and u=Er—B/28 At
filled Fermi sea for this potential is given by T=T.(A=0) in the BCS limit (x~E¢) we find the ana-
)\*1=Eq>ka§(26q—2E)*l, with  Cooper  binding Iytic solutions wu+2kgT In[2coshw)/(2kgT)]=2Er and
B.=2E¢— 2E. Using Eq.(1), the Cooper problem is written 1c/TF= V2exp0)(Be/Er)m where y=0.577 22. In this
as case A/(kgT.)=2m/exp(y)~3.528.
Next Egs. (7) and (8) are solved numerically inS
5 _ ) ~ (L=0), P (L=1), andD (L=2) waves with form factors
; fa(Bat+2€q) _q>2k fo(2¢q—2E)""=0. (2 fo=0"[a/(g®+a)]"* 12 where « is the range parameter.
F We studied the crossover problem in the entire domain at
Leggett provided a generalization of the BCS model T=0 and calculated the dimensionless order parameter
valid for a crossover from large to small coherence lengths @@ =A/E{' "2 and the chemical potential/E¢ as functions
zero temperature. The finite-temperatu® {ersion of this  of B;/Eg for differentL and «. The order parameters are
problem is given by the BCS gap and number equafions shown in Figs. a), 1(b), and Xc) for S, P, andD waves,
respectively. In Fig. 2 we exhibji/Er in these cases. The
A=-S v 29 3 cohezrence Iezngth, or the pair_size in the BCS region, defi_ned
P T 'PI2E, kgT’ by & =<¢q|_r | ) (gl thg), with the zero-temperature pair
wave functiony,=A4/(2E,), was numerically calculated
€~ 1 a usingr?=—V3. The calculated kg)? are shown in Fig. 3
N:Z 1- E tan KTl (4) as a function ofB./Er. The S-wave Pippard coherence
a a B length[ =% kg /(7rmA)] is also shown in Fig. 3 for compari-
with Eq=[(eq— u)?+|A4|?1¥2andu (#Eg). At finite tem-  son. We also calculated, in the BCS domain by setting
peratures the coupled system of equati@sand(4) isonly ~ A,=0 in Egs.(7) and (8). The calculatedT./Tg is also
valid in the weak-coupling BCS region characterized byplotted in Fig. 1 for different partial waves.
positive w/Eg . In the strong-coupling Bose region, charac- Before presenting a discussion of the results we mention
terized by negative./Eg, due to the existence of preformed two limitations of the present model. First, for n@hwaves
composite bosons at finite temperatures abyvthe number the zero-range limit¢— ) cannot be taken because of the
equation(4) breaks down:’ Actually, the physical process appearance of strong ultraviolet divergences. Saraves,
changes as one moves from the BCS to the Bose limit. In théhis limiting solution is analytically knowf Second, the size
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FIG. 1. logy(2D) and logo(T./Tg) vs logoB./Eg) plots for(a) S (L=0), (b) P (L=1), and(c) D (L=2) waves, denoted by solid
and dash-dotted lines, respectively, whbre A/EZ /2 . T, is calculated in the weak-coupling or the BCS regime as the finite-temperature
version of the Leggett equations are valid only in this regime.

of the two-body bound state in vacuum with this potentialbe found in numerical model studies. Hence BIl/ T of
behaves aB;l’z(a‘l) whenB,/2 <(>)«a?. Hence the size Fig. 1 should reduce quickly and attain a small constant
of this bound state as well as the Cooper pair becomes u¥alue asB; increases in the Bose regiéwe find that both
realistic for B,/2>a? Consequently, for very large Tc/Tr andD increase with decreasing andL. The ratio
B./E;, the ideal Bose limit of nonoverlapping bosons is not2D/(T/Te)=2AEE?/(kgT,) increases asa decreases
realized for smalk. Hence the present study is limited to a @nd/orL increases. For example, far/Er=1 (2, 9 this
potential of intermediate ranges Ex~1—10. ratio is 4.93(4.31, 3.87 for L=0, 7.07 (5.29, 4.2) fqr
From Fig. 1 we find that botl> and T./T¢ exhibit uni- L=1, and 10.0(6.37, 4.39 for L=2. The corresponding
versal behavior as functions @&, /Er in different partial ~ universal gap-tdF; ratio 2|A, | /(ksTc) for a/Ep=1 (2, 5
waves. In the BCS region they exhibit linear scaling validis 3.50(3.52, 3.53 for L=0, 3.54(3.53, 3.5} for L=1, and
over about four to five decades. The scaling exponents arg&53(3.47, 3.35 for L=2.
roughly constant for allL and a: D~(B./Ep)'? From Fig. 2 we find that the zero-temperatytehas a
To/Te~(B./Eg)Y2 For an ideal Bose gas there is no con-linear dependence oB, for all « andL almost over the
densation in two dimensions and hence one might think thagntire crossover region. The minor deviation from linearity
T. should reduce to zero a@./Eg increases in the Bose occurs for smallu. We present this dependence up to
region. However, because of a weak residual interaction beB./Ex=40. For largeB./Eg, u is essentially given by the
tween bosons, this system may undergo a superfluid transrero-range analytiS-wave solution;u=Eg—B,/2.
tion with quasi-long-range order below a fixed smBJlI T From Fig. 3, for alla andL, we have the universal scal-
independent oB./Eg.” The T, for this transition can only ing (¢kg)2~(B./Eg) ~* valid over three decades &; in
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FIG. 2. u/Ef vs B /Ef plots for different partial waves and FIG. 3. (¢kg)? vs B./Ef plots for different partial waves and
a. The curves are labeled by partial wés)eand av. a: dashed linesS- (L=0) wave results; dotted line®- (L=1)
wave results; dash-dotted lind3; (L=2) wave results; and solid
lines, theS-wave Pippard coherence lengths. The curves are labeled

the BCS domain. The correspondiBgvave Pippard coher- by partial waves) and a.

ence length satisfies the same scaling. The paraméke) (
decreases as and/ora decreases. The analytic zero-rangeresults may simulate typical highs values for the coherence
S-wave solution has this scalifig.For a fixedB./Eg, Fig.  length& andT.. They also exhibit thd . versusT linear

1 leads to a scaling of . with Tg for all « andL. This  correlation (at a fixed B./Eg) as observed by Uemura
scaling was observed by Uemueaal for high-T, super- et al!! The consequence of these findings in describing the
conductors. From Fig. 1 we find f@&, P, andD waves that high-T. superconductors in two dimensions is not all too
Uemura’s experimental valuel./Tg=0.05 leads to a obvious. Though we have exhibited the results for a specific

B./Ef in the domain 0.01—0.001, which implies the weak- Separable potential model, we verified that the general trend
coupling BCS limit. From Fig. 1 is maintained as form factors are changed. Hence we do not

we find that, for a/Ef=5, T./Te=0.05 leads to believe our findings to be so peculiar as to have no general

B./Er=0.0032(0.0079, 0.0135for S (P, D) waves. From validity._ A preliminary study of the_ S-wave three-
Fig. 3 the above Cooper-pair bindings gi¢g-=9 in all dimensional crossover problem employing the same sepa-

partial waves. This implies a universal correlation betweer]2P!€ potential as a function & /E also leads to similar
T./Tr and ¢ke in all partial waves. universal scaling? A detailed account of that will be re-

In conclusion, we studied the BCS superconductivity toported elsewhere.
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