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Scaling in the BCS to Bose crossover problem in different partial waves
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The BCS superconductivity to Bose condensation crossover problem is studied in two dimensions inS,
P, andD waves, for a simple anisotropic pairing, with a finite-range separable potential at zero temperature.
The gap parameter and the chemical potential as a function of Cooper-pair bindingBc exhibit universal scaling.
In the BCS limit the results for coherence lengthj and the critical temperatureTc are appropriate for high-
Tc cuprate superconductors and also exhibit universal scaling as a function ofBc . @S0163-1829~97!02501-0#
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A collection of electrons~Fermions!, interacting via a
weak residual interaction at very low temperature and h
density, exhibits pairing instability. Overlapping Coop
pairs1 are formed spontaneously according to the Barde
Cooper-Schreiffer~BCS! theory of superconductivity.2 For
usual superconductors, the BCS theory yieldsjkF;1000
and 2D/(kBTc)53.52 in agreement with experiments, whe
kF is the Fermi momentum,kB the Boltzmann constant,D
the gap parameter,Tc the critical temperature, andj the
coherence length.

In the opposite limit of a strong residual interaction, no
overlapping diatomic bosonic molecules emerge as bo
states of fermion pairs.3,4 At sufficiently low density and
temperature, these composite objects act as an ideal g
bosons withjkF;0, which may undergo a phase transitio
In three dimensions this phase transition is the usual B
condensation.3,5 In two dimensions one can have a superflu
transition under appropriate conditions.6,7 Hence the two ex-
treme limits of the same system exhibit two interesting p
nomena.

Leggett3 emphasized the importance of the abov
mentioned BCS superconductivity to the Bose condensa
crossover problem. This problem has gained new impe
after the discovery of high-Tc cuprate superconductors wit
certain general properties.5,7–10 These superconductors hav
a very small coherence lengthjkF;10,8,9 and exhibit a lin-
ear scaling betweenTc and TF known as the Uemura
scaling,11 where TF is the Fermi temperature. The sma
value ofj suggests that its superconducting phase migh
understood as one in the above-mentioned cross
regime.5,7,8,10

Many high-Tc superconductors have a conducting stru
ture similar to a two-dimensional layer of carriers,8,10,11

which suggests the use of two-dimensional models. T
mathematical complications of the crossover problem
also simpler in two dimensions than in one or thr
dimensions.5,7–9Hence, in order to understand the subtlet
of this problem, the present study is limited to two dime
sions.

In the S-wave crossover problem in three dimension
Leggett consideredN electrons, each of massm and of spac-
ing l , interacting via a weak short-range potential of ran
r 0(! l ). The scattering lengtha satisfiesuau@r 0. By varying
the ratiol /a, the BCS and the Bose limits could be attaine
When suitably scaled, most of the properties of the sys
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are insensitive to the details of the potential and are unive
functions of the dimensionless variablel /a. In three dimen-
sionsl;kF

21 and hence one could use the equivalent varia
1/(kFa). For theS-wave problem in two dimensions with
very-short-range attractive potential, the presence of a t
body bound state in vacuum is the necessary and suffic
condition for pairing instability.4,8 Hence the convenient di
mensionless variable could beB2 /EF with B2 the two-body
binding in vacuum andEF[kBTF[\2kF

2/(2m) the Fermi
energy.

The usual treatment of BCS employs a potential in m
mentum space with a constant value for momentum betw
2m(EF2ED)/\

2 and 2m(EF1ED)/\
2 and zero elsewhere

with ED the Debye energy. This implies a moderate range
the interaction. This potential is a physically motivate
phonon-induced electron-electron one.2 The objective of the
present work is to find out to what extent the univers
nature4,7,8 of the solution of the crossover problem is mod
fied after introducing a smooth potential of medium range
place of the above potential. For some of the high-Tc mate-
rials, experiments suggest non-S-wave Cooper pairing.8,9

This is why we have also extended the discussion of univ
sality to the crossover problem inP and D waves, for a
simple anisotropic pairing.

The energyB2 is not really the ideal variable for studyin
universality in the crossover problem in two dimensions
non-S partial waves, because inP andD waves one could
have Cooper pairing, and hence BCS superconductivity
the absence of a two-body bound state in vacuum.8 The ap-
propriate reference variable for studying the crossover pr
lem in all cases, including the three-dimensional problem12

is the Cooper-pair bindingBc . For the zero-rangeS wave
model of Ref. 8,B25Bc . Previously, there have been stu
ies of the crossover problem in terms of the poten
strength or scattering length.

We studied the crossover problem with a finite-ran
separable potential and, especially, the dependence of
universal behavior of the crossover problem on the range
the interaction potential. We found that the universal beh
ior of the crossover problem does not significantly chan
with the change of the range of potentials. We calculated
zero-temperature chemical potentialm and gap paramete
D in the entire crossover region, andj andTc in the BCS
region for different values of the range parameter. We fou
robust universal scaling in each case, valid over several
1110 © 1997 The American Physical Society
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55 1111SCALING IN THE BCS TO BOSE CROSSOVER . . .
cades of Cooper-pair binding. We did not find similar scali
when m, D, Tc , and j were considered as a function o
potential strength or of bindingB2.

12 The present model als
produced an appropriateTc /TF ratio and a smallj in the
BCS region in accordance with experiments on high-Tc cu-
prate superconductors.

The two-body problem and the Cooper and BCS mod
all exhibit ultraviolet divergences for zero-range potenti
and require renormalization to produce finite results.8 For
non-S partial waves, the nature of these divergences is m
complicated and there is no general prescription for ren
malization. The present study with finite-range potenti
leads to a well-defined mathematical problem without
necessity for renormalization.

We consider a two-body system, each of massm, in the
center-of-mass frame.8 The single-~two-! particle energy is
given byeq5\2q2/2m (2eq), whereq is the wave number
We consider the attractive separable short-range pote
Vpp852l f pf p8. The angular momentum (L) dependence o
all the variables will not be explicitly shown. This potenti
leads to pairing instability for anyl, L, and f p .

12 In even
~odd! partial waves pairing occurs in singlet~triplet! state.
The correspondingt matrix is

Tpp8~2E!5 f pf p8F2l212(
q

f q
2~2E22eq!

21G21

,

where 2E is the parametric relative energy. The condition f
a bound state at energy 2E52B2 is

l21[(
q

f q
2~B212eq!

21. ~1!

The Cooper-pair problem for two electrons above
filled Fermi sea for this potential is given by1,2

l215(q.kF
f q
2(2eq22Ê)21, with Cooper binding

Bc[2EF22Ê. Using Eq.~1!, the Cooper problem is written
as

(
q

f q
2~B212eq!

212 (
q.kF

f q
2~2eq22Ê!2150. ~2!

Leggett3 provided a generalization of the BCS mod
valid for a crossover from large to small coherence length
zero temperature. The finite-temperature (T) version of this
problem is given by the BCS gap and number equations4

Dp52(
q

Vpq

Dq

2Eq
tanh

Eq

2kBT
, ~3!

N5(
q

F12
eq2m

Eq
tanh

Eq

2kBT
G , ~4!

with Eq5@(eq2m)21uDqu2#1/2 andm (ÞEF). At finite tem-
peratures the coupled system of equations~3! and~4! is only
valid in the weak-coupling BCS region characterized
positivem/EF . In the strong-coupling Bose region, chara
terized by negativem/EF , due to the existence of preforme
composite bosons at finite temperatures aboveTc the number
equation~4! breaks down.5,7 Actually, the physical proces
changes as one moves from the BCS to the Bose limit. In
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BCS limit the formation of Cooper pairs atT5Tc signals
superconductivity, whereas in the Bose limit the preform
composite bosons may undergo a superfluid phase trans
at T5Tc under appropriate conditions.6,7 At zero tempera-
ture Eqs.~3! and~4! are valid in the whole crossover region8

As in Ref. 8, we consider the simplest case of anisotro
pairing in two dimensions whereDq has the angular
dependence;exp~iLu!. With the present potential,Dq of
Eq. ~3! then behaves asDq[D f qexp (iLu). Equation~3! then
becomes

l215(
q

f q
2 1

2Eq
tanh

Eq

2kBT
, ~5!

whereEq5@(eq2m)21D2f q
2#1/2. Using Eqs.~1! and~2!, Eq.

~5! can be rewritten as

(
q.kF

f q
2

eq2Ê
2(

q

f q
2

Eq
tanh

Eq

2kBT
50. ~6!

Equation~6! is valid independent of the existence of a tw
body bound state in vacuum.

Equations~4! and ~6! can be explicitly written as

E
EF

`

deq
f q
2

eq2Ê
2E

0

`

deq
f q
2

Eq
tanh

Eq

2kBT
50, ~7!

E
0

`

deqF12
eq2m

Eq
tanh

Eq

2kBT
G52EF . ~8!

Equations~7! and ~8! permit the following analytic solu-
tions for S-wave (L50) zero-range potential given b
f q51. At T50, D5(2BcEF)

1/2 and m5EF2Bc/2.
8 At

T5Tc (D50) in the BCS limit (m'EF) we find the ana-
lytic solutions m12kBTcln@2cosh(m)/(2kBTc)#52EF and
Tc /TF5A2exp(g)(Bc /EF)1/2/p where g50.577 22. In this
case 2D/(kBTc)52p/exp(g)'3.528.

Next Eqs. ~7! and ~8! are solved numerically inS
(L50), P (L51), andD (L52) waves with form factors
f q5qL@a/(q21a)# (L11)/2 wherea is the range parameter
We studied the crossover problem in the entire domain
T50 and calculated the dimensionless order param
D[D/EF

(12L/2) and the chemical potentialm/EF as functions
of Bc /EF for different L and a. The order parameters ar
shown in Figs. 1~a!, 1~b!, and 1~c! for S, P, andD waves,
respectively. In Fig. 2 we exhibitm/EF in these cases. The
coherence length, or the pair size in the BCS region, defi
by j25^cqur 2ucq&/^cqucq&, with the zero-temperature pa
wave functioncq5Dq /(2Eq), was numerically calculated
using r 2[2¹q

2 . The calculated (jkF)
2 are shown in Fig. 3

as a function ofBc /EF . The S-wave Pippard coherenc
length@5\kF /(pmD)# is also shown in Fig. 3 for compari
son. We also calculatedTc in the BCS domain by setting
Dq50 in Eqs. ~7! and ~8!. The calculatedTc /TF is also
plotted in Fig. 1 for different partial waves.

Before presenting a discussion of the results we men
two limitations of the present model. First, for non-S waves
the zero-range limit (a→`) cannot be taken because of th
appearance of strong ultraviolet divergences. ForS waves,
this limiting solution is analytically known.8 Second, the size
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FIG. 1. log10~2D! and log10(Tc /TF) vs log10(Bc /EF) plots for ~a! S (L50), ~b! P (L51), and~c! D (L52) waves, denoted by solid
and dash-dotted lines, respectively, whereD5D/EF

(12L/2) . Tc is calculated in the weak-coupling or the BCS regime as the finite-tempera
version of the Leggett equations are valid only in this regime.
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of the two-body bound state in vacuum with this potent
behaves asB2

21/2 (a21) whenB2/2 ,(.)a2. Hence the size
of this bound state as well as the Cooper pair becomes
realistic for B2/2.a2. Consequently, for very large
Bc /EF , the ideal Bose limit of nonoverlapping bosons is n
realized for smalla. Hence the present study is limited to
potential of intermediate rangesa/EF;1–10.

From Fig. 1 we find that bothD andTc /TF exhibit uni-
versal behavior as functions ofBc /EF in different partial
waves. In the BCS region they exhibit linear scaling va
over about four to five decades. The scaling exponents
roughly constant for all L and a: D;(Bc /EF)

1/2,
Tc /TF;(Bc /EF)

1/2. For an ideal Bose gas there is no co
densation in two dimensions and hence one might think
Tc should reduce to zero asBc /EF increases in the Bos
region. However, because of a weak residual interaction
tween bosons, this system may undergo a superfluid tra
tion with quasi-long-range order below a fixed smallTc /TF
independent ofBc /EF .

7 The Tc for this transition can only
l
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be found in numerical model studies. Hence allTc /TF of
Fig. 1 should reduce quickly and attain a small const
value asBc increases in the Bose region.

7 We find that both
Tc /TF andD increase with decreasinga and L. The ratio
2D/(Tc /TF)[2DEF

L/2/(kBTc) increases asa decreases
and/or L increases. For example, fora/EF51 ~2, 5! this
ratio is 4.93 ~4.31, 3.87! for L50, 7.07 ~5.29, 4.21! for
L51, and 10.0~6.37, 4.39! for L52. The corresponding
universal gap-to-Tc ratio 2uDkF

u /(kBTc) for a/EF51 ~2, 5!

is 3.50~3.52, 3.53! for L50, 3.54~3.53, 3.51! for L51, and
3.53 ~3.47, 3.35! for L52.

From Fig. 2 we find that the zero-temperaturem has a
linear dependence onBc for all a and L almost over the
entire crossover region. The minor deviation from linear
occurs for smallm. We present this dependence up
Bc /EF540. For largerBc /EF , m is essentially given by the
zero-range analyticS-wave solution:m5EF2B2/2.

From Fig. 3, for alla andL, we have the universal sca
ing (jkF)

2;(Bc /EF)
21 valid over three decades ofBc in
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55 1113SCALING IN THE BCS TO BOSE CROSSOVER . . .
the BCS domain. The correspondingS-wave Pippard coher
ence length satisfies the same scaling. The parameter (jkF)
decreases asL and/ora decreases. The analytic zero-ran
S-wave solution has this scaling.8,9 For a fixedBc /EF , Fig.
1 leads to a scaling ofTc with TF for all a and L. This
scaling was observed by Uemuraet al.11 for high-Tc super-
conductors. From Fig. 1 we find forS, P, andD waves that
Uemura’s experimental valueTc /TF.0.05 leads to a
Bc /EF in the domain 0.01–0.001, which implies the wea
coupling BCS limit. From Fig. 1
we find that, for a/EF55, Tc /TF50.05 leads to
Bc /EF50.0032~0.0079, 0.0135! for S (P, D) waves. From
Fig. 3 the above Cooper-pair bindings givejkF.9 in all
partial waves. This implies a universal correlation betwe
Tc /TF andjkF in all partial waves.

In conclusion, we studied the BCS superconductivity
Bose condensation crossover problem in different par
waves for a finite-range separable potential. We found rob
scaling relations involving the order parameter, chemical
tential, coherence length and critical temperature as a fu
tion of Cooper-pair binding. In the BCS domain the pres

FIG. 2. m/EF vs Bc /EF plots for different partial waves and
a. The curves are labeled by partial wave~s! anda.
-
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results may simulate typical high-Tc values for the coherenc
length j andTc . They also exhibit theTc versusTF linear
correlation ~at a fixed Bc /EF) as observed by Uemur
et al.11 The consequence of these findings in describing
high-Tc superconductors in two dimensions is not all t
obvious. Though we have exhibited the results for a spec
separable potential model, we verified that the general tr
is maintained as form factors are changed. Hence we do
believe our findings to be so peculiar as to have no gen
validity. A preliminary study of the S-wave three-
dimensional crossover problem employing the same se
rable potential as a function ofBc /EF also leads to similar
universal scaling.12 A detailed account of that will be re
ported elsewhere.
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FIG. 3. (jkF)
2 vs Bc /EF plots for different partial waves and

a: dashed lines,S- (L50) wave results; dotted lines,P- (L51)
wave results; dash-dotted lines,D- (L52) wave results; and solid
lines, theS-wave Pippard coherence lengths. The curves are lab
by partial wave~s! anda.
ys.
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