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Electric charge quantization in a chiral bilepton gauge model
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In the context of the standard model the quantization of the electric charge occurs only family by family.
When we consider the three families together with massless neutrinos the electric charge is not quantized any
more. Here we show that a chiral bilepton gauge model based on the gauge group-&B(AB).
®U(1)y explains the quantization of the electric charge when we take into account the three families of
fermions. This result does not depend on the neutrino masses. Charge quantization occurs whether the neutri-
nos are massless or Dirac or Majorana massive fi¢&®3556-282(98)02115-9

PACS numbd(s): 12.60.Cn, 12.96:b

I. INTRODUCTION This paper is organized as follows. In Sec. Il we analyze
the QECH in the SM with one and three families showing

The reason why the electric charges of fundamental partthe hidden symmetries that lead to the effect of dequantiza-
ticles appear only in discrete units is still an open questiontion. In Sec. Il we extend the analysis to the chiral bilepton
Over the years some proposals have appeared intending &guge model and we obtain the quantization of the electric
explain it. The first proposal was given by Dirfd through ~ charge through classical and quantum constraints and in Sec.
the postulate of the magnetic monopoles. The second prdY We summarize our conclusions.
posal comes from the grand unification theor(&@UT’s)
through its group structurg]. But the GUT’s are ruled out !l THE QUANTIZATION IN THE STANDARD MODEL
and magnetic monopoles still have not been detected. A. The standard model with one family

Recently the quantization of the electric chak@ECH) , i , )
has been analyzed within gauge models that contain fig U The electric charge operator in the SM can be defined in a
factor in its gauge group3—5|. The approach given here 9eneral form as
relates the (1) charges of the fermions and Higgs bosons of Q=Ts+bY 1)
the model through classical and quantum constraints in such 8 '

a manner that it leads to the QECH The classical ConstrainWhereb is an unknown parameter. For nonvanishing fermion
imply that the Lagrangian of the model be invariant by themasses we must introduce a Higgs douklet(1,2,Y,,) that
gauge group; the quantum ones imply that the model be fregcquires a vacuum expectation value
from anomalieg3,4,6].

By analyzing the QECH in the standard mod&M), 0
whose gauge group iGSgy=SU(3)c®SU(2) @ U(1)y, <¢>o~(v)- ()
several authors showed that the SM with one family contains
the QECH[3-5,7,8. Nevertheless, when we increase the  gince we want the operat@ unbroken,Q($), must be
number of families to three the effect of dequantization oc~erg. With this condition we finb=1Y,. So the electric
curs[3,8,9). To understand this we need to see that in the SMgharge operator takes the form
with three families an independent anomaly free global
U(l)Y1 symmetry arise§3,4]. By independent we mean that

the U(l)Y1 is independent of the gauge symmetry of the SM.
By anomaly free we mean that the U(d%5y and U(L1);

anomalies are canceld@]. This kind of symmetry is also
called hidden symmetry. It creates an arbitrariness in th
definition of the electric charge operator singeand Y
+aY;, are equally good choices for the gaugéllin the

Y

Then, the problem of the quantization of the electric charge
turns into writing all hypercharges as functions of the Higgs
‘FlyperchargeYd,. To achieve this we use the classical and
guantum constraints. The only sector in the Lagrangian able
to give information about the hypercharges through classical
gauge group of Fhe stgndard modi@}4]. . . . constraints is the Yukawa one, while the information about

We show, using this approach, that in a Ch.'ral b'Iept(?nthe hypercharges through quantum constraints comes from
gauge model, proposed some years ago by Pisano, Ple'tetﬁe three nontrivial anomaly cancellationsU(1)y]3
and Frampton[10], based on the symmetry gauge group[su(z) J2U(1)y, and[SU(3)c]2U(1) v
G33;=SU(3)c®SU(3) ®U(1)y, there is the QECH L v c S , ,

; ’ L .. In the SM the quarks and leptons come in the following

through classical and quantum constraints independently Fepresentations:
neutrinos are massless or not. This model embeds the SM; it
adds new physics with no hidden symmetries, the leptons Ve
come in the SU(3) representation and it has three nontrivial LLz( ) ~(1,2Y)), er~(1,1,Y,),
anomaly cancellationgL1]. e/L
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B. The standard model with three families
Q= ( d) L~(3’2’Yq)’ Ur~(3,1,Yu), With three families the representation content is
Va
dr~(3,1,Yq), (4) Lau=| o | ~(12Y1), er=(LLY),
alL

with the Yukawa interaction being
ua

— — — ~ = -~ 3,2,Y y ~ 311|Y ’
—LY=g}L, per+093Q ddr+gsQ dug+H.c. (5 QaL (da>L( %) Uar™ (34 Ye)

This Lagrangian, being U(1,)gauge invariant, implies that dar~(3,1,Yg), (10)

Ye=Y1=Yy, Yu=YqtYs, Ya=Yq=Y4. ()  \jith the Yukawa interaction being

After this only two nontrivial anomaly constraints remain, _EY:gLaLaL(ﬁeaRJr gngaL¢dbR+ g;anLaubﬁ H.c.,
(11

1
2 - _ =
[SU2) JU(D)y=Yq= 3Y" wherea,b=1,2,3.

In order to be this Lagrangian U(})gauge invariant we

[U(Lyi=Yi=—Y,. (7)  have
Equationg6) and Eqs(7) leave all fermion hypercharges Ye,=Yi,7 Yo,
as functions of the Higgs one,
Yo,=Yq, Yy =Yu, Yg=VYq,
1 (12
Y==Y. Ye=—2Y4 Yq=3Y,, _

with

4 2 Yo=Yqt+ Yy, Ya=Ygq—Yy.

Yu=3Ys Ya=—3Ye. (8) L R a ¢

After that we have only two nontrivial anomaly constraints,

Substituting the above results into E@), we obtain the
guantization of the electric charge with the correct electric
charges for leptons and quarks:

[SU2),]2U(1)y and [U(1)y]3. (13)

So we have five free parameters from the classical con-

5 1 straints, Eq(12), and only two equations from the quantum

Q,=0, Q.=-1, Q,==, and Qu=—=. (9 constraints, Eq(13). This prevents us from obtaining the
3 3 QECH. This is again the effect of dequantization. The hidden

. o . o symmetry here is U(3), with L being one of the quantum
Next if we admit a right-handed neutrino with Dirac massnympersL =L, LLe—L,L,—L,[3].

term and we attribute the hyperchargg to it we find from To restore the QECH in the SM with three families we
the Yukawa terni | ¢vg thatY,=Y,;+Y,, butnow we only  need to introduce either right-handed neutrinos with Majo-
have one nontrivial anomaly constraipBuU(2), ]2U(1)y . rana mass terms,8], or another Higgs doubl¢8], or some

So we have three free parametéfs, Yo, andY, from  neutral fermiong9].

classical constraints and only one equation from quantum

constraints. This prevents us from leaving all the hyper- |l THE QUANTIZATION IN A CHIRAL BILEPTON

charges as functions of only the Higgs hypercharge. This is GAUGE MODEL

the dequantization effedB,4]. The explanation is that the

SM with Dirac massive neutrinos present, besides the bari- In a chiral b”epton gauge model presented in the Intro-
onic (B) and leptonic L) global symmetries, thB—L glo-  duction the electric charge operator can be defined in a gen-
bal symmetry. TheB and L symmetries are not free from geral form as

anomalies. So they are not hidden symmetries. Nevertheless,

the B—L symmetry is free from anomalies. Then it is a 1

hidden symmetry which superposes to the hypercharge one Q= 5(7\3_ \/§)\B)+ bN, (14)
and which obstructs us from knowing if the U¢dfactor in

the electric charge operator is dueYoor to the superposi- with N being the operator generator of the group U(1) 3
tion Y+ a(B—L) [3,4]. Now if we, instead of Dirac neutri- and\g being the two diagonal Gell-Mann matrices.

nos, have a Majorana one with the mass—tenTF[@’lvR that In order to break the symmetry spontaneously and to give
breaks theB—L global symmetry, we restore the quantiza- mass to the fermions, three Higgs triplets and one Higgs
tion condition[5]. sextet doublets are introducgtio—12,
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7]~(1131N7y)1 p~(1¥3!Np)l X~(1!31N)()! u;
= d ~
S~(L6,Ng), (15) um) ) TN
1L
with the corresponding U(3)charges as unknown param-
eters.
To generate mass correctly, those Higgs boson must ac- YR~ (3L Ny, dir~(3LNg), Jr~(3,LNy).
quire the following vacuum expectation valug9—12: (21
v, 0 d;
~( 0 ~[ v
<7]>0 ' <p>0 P QiL: u; ~(3’3*!Nqi)1
0 0 3
L
0 0 0 O
o~ O], (S)~[0 0 v'|. (16) dir~(3,LNg), Ur~(3,LNy), Jir~(3LN,),
v, 0 v 0 (22)
With the requirement that the charge operator must anniwherei=2,3. The quarksi e d are the usual ones with
hilate the vacuum, we obtain the following relations: being the exotic quarks_ Now we are ready to obtain the
QECH.
N,=0, b:i, N,=—N,, Ng=0. 17) In order to obtgin reIationg among the_se U(loharges
N, through the classical constraints, we again use the Yukawa

: ) ] Lagrangian sectdrl2]
With these results we can write the electric charge opera-

tor in the following form: 1
Y _EYZEGabLgL* Lo+ N 1Q1ud1rx +Nij Qi djrx™

+ M 1aQ10darp T M2 QiLUarp™ + N 12Q11Uar?7
with the hypercharg® being

+M[,Qid.r7* +H.C., (23
Y—I + N (29
2 %N, wherea,b=1,2,3 and,j=2,3. x*, p* and »* are antitrip-
. lets, whileS* is an antisextet.
wherel3=3\; andlg= —3/2\s. The main point here is the leptonic sector of the Yukawa

Now the problem of the quantization of the electric Lagrangian. Its framework provides the Ugl}harges of
charge consists of writing all the U(4 xharges as functions the leptons in a direct manner, that is, the U{Zjauge in-
of N,. We achieve this in the same way as we did for thevariance of this term implies
hypercharges in the SM, that is, by making use of the clas-
sical and quantum constraints. The only sector in the La-
grangian able to give information about the U(l9harges
through classical constraints is the Yukawa one, while the
information about the U(%) charges through quantum con-  The U(1), gauge invariance of the quark sectors of the
straints comes from the three nontrivial anomaly cancellayykawa Lagrangian implies
tions, [U(1y)]%, [SU(3)c]?U(1)y, and[SU(3) J*U(1)y.

The leptons in the model come in the &YJrepresenta-

Nll: N|2:N|3:O. (24)

tion NulzNuzzNu3_ Ny,
14
a Ndl_ Nd :Nd3 Nd’
Lac=| €| ~(L3N), (20
e/, N =
qu— Nq3 NCI’
with a=1,2,3. The right-handed charged leptons enter the
model through charge conjugation, i.e., there are no lepton N; =N =Nj,
singlets. 2

The quarks belong to SB) and U1) representations and
one family comes in triplets and the other ones in antitripletsand
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N;=Ng—N,, Then, we showed that the chiral bilepton gauge model
based on a semisimple Lie groGys; contains in its frame-
work the quantization of the electric charge when we take

Ng=Ng., into account the three families of fermions with massless
neutrinos.
_ We finish this section making a short analysis of the ex-
Ny,=Ng+N,, . ) ; . . .
P tensions of this model in order to consider massive neutrinos.
For Majorana neutrinos we only need to use the following
Nj,=Ng+2N,, vacuum expectation value for the sext&g]:
Ng,=Ng+N, . (25 v 00
(S)o~| 0 0 v']. (30
After that we have only one nontrivial anomaly cancellation 0 v O
[13]

[SU(S)L]ZU(l)N:quJr 2N4=0. (26)  This conserves the structure of the leptonic sector, leading
also to the quantization condition. Now if we want a Dirac
neutrino we need to add the following tei®,, L, 7var to

From the last term in Eq$25) and (26) we find the Lagrangianly in Eq. (23) with vaR~(1,1,N,,a). By
gauge invariance we fintl, =0. This result maintains the
1 quantization condition. All of this shows that this model is
Ng=— §Np, 27 interesting in looking for new physics.
wr:]ich leads to the following relations among the Ug(1) IV. CONCLUSIONS
charges:
In summary, we have extended the recent approach of the
2 1 2 electric charge quantization problem in gauge models that
Ng,= §Np’ Ng=— §Np' Nu:ng’ contain an explicit 1) gauge group to the case of 063,
model. First we showed through classical and quantum con-
1 5 4 straints that the standard model with one family explains the
Ng=— §Np, NJ1:§NP, N;=— §Np. quantization of the electric charge, while with three families

28) and massless neutrinos it no longer explains the charge quan-
tization. We discussed the reasons for the above result and
This result allows us, together with Eq@4) and(19) to ~ We also showed that by adding neutrinos with a Majorana

find [when we replace the value of the corresponding Y(1) Mass to the standard model we restored the condition of the
charges the hypercharges of all fermions. Substituting theelectr_lc charge quantlzathn. This happens becaqse Majorana
hypercharges into Eq18) we find the quantization of the Neutrinos break the U(1)hidden symmetry that arises when
electric charge with the correct electric charges for leptondve consider the standard model with three families.

and quarks, The central part of this work analyzed the question of the
guantization of the electric charge inGg3; model and the
Qv v.=0, main result in this work is the following: the QECH through
r classical and quantum constraints occurs in @g; model
Qe =Q=-1, when the three families are taken together even if neutrinos

are massless or not. If they are massive the QECH does not
depend on the nature of the neutrino fields, i.e., it does not
, matter if they are Dirac or Majorana fermions.

Qu=+

Wl N
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