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Vortex lattice and matching fields for a long superconducting wire
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We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross
section in the presence of an external magnetic field. For this study we write the London theory for a long
cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using
the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to
the vortex position and we obtain the ground state of the vortex lattice forN53 up to 18 vortices. The free
energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the
case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a
vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with
experimental results.@S0163-1829~98!03430-4#
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I. INTRODUCTION

Modern technology has made it possible to fabricate
perconducting samples of small size, like films of thickne
less than the London penetration length, as well as super
ducting wires of radii of the order of this length. This h
aroused the interest to study again the geometrical or
effects in superconductors. The size problem was alre
studied a long time ago,1,2 but recently it has been reconsid
ered, and some studies of transport currents, magnetiza
magnetic moment, reversibility lines, and flux penetration
finite-size samples have been made.2–10 In particular, the
penetration of the magnetic flux in finite-size supercondu
ors has attracted the attention of physicists in the last y
due to the fact that in finite samples the geometrical effe
can produce important modifications in the critical state a
in the resulting vortex distribution. As an example, we c
cite the results of Zeldovet al.7 in thin superconductor strip
that have been found to cause a delay in the penetratio
the vortex lines, and a vortex accumulation at the cente
the sample due to the geometrical barrier effect, but ot
studies in this respect have been made.2 In this way, our
main interest in this work is to study, specifically, the si
effects in the vortex lattice and in the matching fields~the
minimum field for a new vortex penetration! for an infinite
superconducting wire with a circular cross section.

We use the London theory to study the formation of t
vortex lattice in the mixed state of a long superconduct
cylinder. The London theory is valid in the limit of low
induction ~fields well below the upper critical fieldHc2),
where most of the experiments can be performed to obs
the vortex lattice. This theory fails in the limit of the sma
length scale. This breakdown of the theory is based upon
fact that the finite size of the vortex cores is neglected. Th
the London theory is not suitable to treat the self-energy o
single vortex line. However, what really matters in determ
ing the shape of the ground state of the vortex lattice is
interaction energy between vortices on different sites. Fo
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infinite sample, vortices interact with each other via a tw
body potential. Nevertheless, if the surface is taken into
count, additional terms that describe the interaction of
vortex with the surface come in. In this work we develop t
theory to describe such interactions in a long cylinder.
addition, we use the London theory to determine the f
energy of the Meissner state of a long superconducting w
For the determination of the ground state of the vortex
tice, we use the Monte Carlo simulated annealing minimi
tion method. We obtain the ground-state lattice pattern st
ing from an arbitrary configuration. This procedure
different than the one usually used where the free energ
the vortex lattice for several predetermined configuration
calculated and the lowest one is chosen.

The paper is outlined as follows. In Sec. II we determi
the magnetic field of an arbitrary distribution of vortices
the mixed state and its corresponding induction~spatial av-
erage of the local magnetic field!. In addition, we find both
the London and Gibbs free energy. In Sec. III we repeat
calculation to the Meissner state. In Secs. IV and V we a
lyze the matching fields and the vortex lattice patterns.

II. MIXED STATE

In what follows, we develop a theory for the mixed sta
of a long superconducting wire. Our starting point is t
London equation. This equation is obtained from the sec
Ginzburg-Landau equation by assuming that the superc
ducting order parameter is a constant throughout the wh
space, that is, it neglects variations of the order param
inside the vortex core. The London approximation is va
provided that the Ginzburg-Landau parameterk5l/j@1;
herej is the coherence length andl is the London penetra
tion length. In addition, the vortices, whose size is of t
order ofl, may overlap, but not the vortex cores. In cylin
drical polar coordinates (r ,f), the London equation for the
local magnetic fieldh5hz is given by
5789 © 1998 The American Physical Society
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]2h

]f2D 1h5F0(
i

d~r2r i !, ~1!

whereF0 is the quantum flux,r i is the position of thei th
vortex inside the cylinder, andd(r )5d(x)d(y) is the two-
dimensionald function. Here we are assuming that the vo
tices are straight lines. Therefore, a three-dimensional~3D!
problem is reduced to a 2D one. We will solve this equat
subject to the following boundary conditions:

h~a,f!5H,

S ]h

]f D
r 5a

50, ~2!

where a is the radius of the cylinder. The first conditio
assures that outside the sample the field is uniform an
precisely the external fieldH; the second one states that t
perpendicular component of the current vanishes at
boundaryr 5a, that is, the Cooper pairs cannot jump out
the sample.

To solve Eq.~1!, we use the Green’s-function metho
Assuming for the Green’s function that the boundary con
tions G(a,f,r 8,f8)50, G(r ,f,r 8,f8) continuous at r
5r 8, ]G(r ,f,r 8,f8)/]r discontinuous atr 5r 8, and assum-
ing that bothG andh are periodic inf, one obtains

h~r 8,f8!5F0(
i

G~r i ,f i ,r 8,f8!

2Hal2E
0

2p

dfS ]G

]r D
r 5a

. ~3!

To proceed, we need to solve the equation for the Gree
function. The method we use to find this function is outlin
in Ref. 11 except for the fact that there the Green’s funct
is associated with the Poisson equation and boundary co
tions are taken at infinity. One has

G~r ,f,r 8,f8!5
1

2pl2
@K0~ ur2r 8u/l!2s~r ,f,r 8,f8!#,

~4!

where

s~r ,f,r 8,f8!5 (
m52`

1`

cos@m~f2f8!#

3
Km~a/l!

I m~a/l!
I m~r /l!I m~r 8/l!, ~5!

whereI m andKm are the modified Bessel functions.
We are now in a position to find the local magnetic fie

Substituting Eq.~4! into Eq. ~3! and using the identity
I m(x)Km8 (x)2I m8 (x)Km(x)52 1/x ~where the primes onI
and K stands for the first derivative with respect tox) to
develop the second term for the field expression, one obt
-
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h~r ,f!5
F0

2pl2 (i
@K0~ ur2r i u/l!2s~r ,f,r i ,f i !#

1H
I 0~r /l!

I 0~a/l!
. ~6!

The London~Helmholtz in the thermodynamic contex!
free energy contains basically two contributions. One is
energy stored in the field and the other one is the kine
energy of the supercurrents. The London free energy per
length is

F

L
5

1

8p E
0

aE
0

2p

dr dfr Fh21l2S ]h

]r D 2

1
l2

r 2 S ]h

]f D 2G
5

F0

8p (
i

h~r i ,f i !1
Hal2

8p E
0

2p

dfS ]h

]r D
r 5a

, ~7!

where on going from the first to the second line we ha
used the London equation~1! and the boundary condition
~2! and the periodicity of the field. HereL is the length of the
system.

Now, the London free energy can be evaluated by int
ducing Eq.~6! into Eq. ~7!. This yields,

F

L
5S F0

4pl D 2H (
i , j

@K0~ ur i2r j u/l!2s~r i ,f i ,r j ,f j !#

1S H̃

2
D 2

a

l

I 1~a/l!

I 0~a/l!J , ~8!

whereH̃5H/(F0/4pl2).
To obtain the equilibrium configuration of the vortex la

tice, the Helmholtz free energy is not convenient because
calculations involve a fixed magnetic fieldH. Therefore, it is
necessary to perform a Legendre transformation to obtain
Gibbs free energy. The Gibbs free energy~in units of vol-
ume! is given by

G5F2
BH

4p
, ~9!

whereF5F/AL, with A5pa2, andB is the induction that is
the spatial average of the local magnetic field

B5
1

AE d2rh. ~10!

The evaluation of this integral is tedious but straightfo
ward. We obtain

B5
NF0

A
1

2palH

A

I 1~a/l!

I 0~a/l!
2

F0

A

1

I 0~a/l!(i
I 0~r i /l!.

~11!

Finally, we obtain for the Gibbs free energy
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G5S F0

4pl2D 2
l2

A FN lnk1(
iÞ j

K0~ ur i2r j u/l!

2(
i , j

s~r i ,f i ,r j ,f j !1H̃ (
i

S I 0~r i /l!

I 0~a/l!
21D

2S H̃

2
D 2

a

l

I 1~a/l!

I 0~a/l!G . ~12!

Notice that the first term is the vortex self-energy and
second one describes the repulsive interaction between
vortices~the bulk term!. The third term describes the attra
tive interaction between the vortices and image vortices
cated outside the sample. The effect of this interaction is
push the vortices close to the surface. The argument of
fourth term represents the fluxF/F05@12I 0(r )/I 0(a)#.
The first term of this argument represents the repulsive in
action between a vortex and the magnetic field that p
etrates the sample surface, and it pushes the vortices to
center of the sample. The second term in this argument
resents the vortex magnetic energy. The fifth term is
Meissner state energy~see the next section!. The competition
between the vortex-vortex image interaction and the inte
tion between the vortex and the surface field represent
energy barrier that the vortex has to overcome to be abl
enter the sample. When the external field is below the ma
ing value, the vortex-vortex image interaction is more imp
tant and a new vortex is not able to enter. When the field
increased up to or above the critical value, the vortex
overcome the surface energy barrier and enters into
sample. On the other hand, we want to point out that the b
interaction is invariant under any translation, but this sy
metry is no longer valid for the whole free energy because
the presence of the various interactions. However, the sys
is still invariant under any rotation because it depends o
on the angle difference.

III. MEISSNER STATE

In the Meissner state, although we have no penetratio
the vortex lines, we have penetration of the magnetic fi
near the surface. In a semi-infinite superconductor, for
stance, the external field penetrates exponentially over a
tancel. For a superconductor with cylindrical geometry, t
field inside the sample is given by the London equation

2l2S ]2h

]r 2
1

1

r

]h

]r D 1h50. ~13!

The boundary condition is

h~a!5H. ~14!

The solution for this equation with the appropriate boun
ary conditions is

h~r !5H
I 0~r /l!

I 0~a/l!
. ~15!

Using Eq.~7!, the London free energy per unit length ca
be written as
e
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L
5S F0

4pl D 2S H̃

2
D 2

a

l

I 1~a/l!

I 0~a/l!
, ~16!

which is the second term of Eq.~8!. Notice that ifa@l, near
the surface the field has an exponential behaviorh
;H(a/r )e(r 2a)/l, as in a semi-infinite superconductor.

Similar to Eq.~11!, we find for the induction

B5
2palH

A

I 1~a/l!

I 0~a/l!
, ~17!

which is the second term of Eq.~11!.
The Gibbs free energy can be calculated by substitu

Eqs.~16! and ~17! into Eq. ~9!. One has

G52S F0

4pl2D 2
l2

A
F S H̃

2
D 2

a

l

I 1~a/l!

I 0~a/l!
G , ~18!

which is the fourth term of Eq.~12!. The previous results
comprise the framework for the discussion of the superc
ducting properties of a long cylinder. In the following se
tions we examine the matching fields and the vortex latt
patterns.

IV. MATCHING FIELDS

The lower critical fieldHc1, defined as the lowest externa
field strong enough to cause penetration of at least one
tex line, is determined assuming that at the phase trans
from the Meissner state to the mixed state, the Gibbs f
energy per unit length, i.e.,GA, has the same value. In wha
follows, S stands for the mixed state andM for the Meissner
state. One has,

AFM2
ABMHc1

4p
5AFS2

ABSHc1

4p
, ~19!

where (AFM ,ABM) is given by Eqs.~16! and ~17! and
(AFS ,ABS) by Eqs.~8! and ~11!, respectively. Introducing
these equations into Eq.~19!, we find for the lower critical
field

Hc15
F0

4pl2F ln k2
K0~a/l!

I 0~a/l!

12
1

I 0~a/l!

G . ~20!

Here we have taken the center of the cylinder as the e
librium position of a single vortex line in Eqs.~8! and ~11!.
In this case, only them50 term survives in the sum fors
@cf. Eq. ~5!#. By taking the limit of a→` in Eq. ~20!, we
recover the well-known resultHc1

` 5(F0/4pl2)lnk. In Fig.
1 we plot the differenceDH5Hc12Hc1

` in units of
(F0/4pl2), which shows that the smaller the values ofa,
the larger the value of the lower critical field. In this wa
this result shows clearly that the size effect provokes a de
in the first flux penetration, as found in experiments on ot
finite systems of different geometry.2,6

As a consequence of the energy barrier generated by
finite size of the sample, we have a delay not only for t
first vortex line penetration, but for the subsequent lines t
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In this way, at low fields~near the lower critical field!, we
have a well-defined critical field for each new penetrat
~matching field! and, different from the bulk case, where th
induction increases continuously with the external field, h
the induction increases by steps as shown in Fig. 2. A n
vortex enters the sample only when the energy is enoug
overcome the surface energy barrier. As we go to hig
magnetic fields, the induction approaches the bulk case.

The matching fields for each configuration of vortic

@H̃sN5HsN /(F0/4pl2), N51, . . . ,18;with H̃s1[H̃c1] are
calculated using the same procedure used to obtainH̃c1, i.e.,
equating the Gibbs free energy of the configurations withN
andN11 vortices,GN5GN11. In this way we obtain a tran

FIG. 1. The lower critical field differenceDH5Hc12Hc1
` in

units of (F0/4pl2) as a function ofa/l for k540.

FIG. 2. Induction (B) for N51 to 18 vortices as a function o
the external magnetic field (H) in units of (F0/4pl2). For eachN
vortices configuration, the induction is calculated in t
@HsN , HsN11# field range. Here we have useda/l510, l
5200 nm, andk540.
e
w
to
r

scendental equation inH̃ ~because the radii implicitly de
pends onH̃) that can be solved iteratively. However, ea
time the free energy is calculated for a given magnetic fie
this free energy must be calculated with the vortices in
equilibrium position. Thus, for each iteration the free ener
must be minimized. The iterative work was performed us
the Secant method and the minimization using the Mon
Carlo simulated annealing method.14,15For a/l510, the val-
ues obtained forH̃sN can be seen in Table I.

V. VORTEX LATTICES

The usual procedure to find the ground state of the vor
lattice is to assume some particular geometry and then ev
ate the Gibbs free energy. The configuration correspond
to the lowest value is supposedly, the most stable vor
lattice. Other authors12,13 have used the imaging method
determine the vortex configuration. In the present work
follow a different procedure. Using the Monte Carlo sim
lated annealing method,14,15 we start from an initial configu-
ration chosen randomly, and we let the vortex lattice evo
towards the global minimum. The energy minimization
made using different initial configurations and differe
seeds for the random number generator. In this way we
tain different annealing schedules, ensuring that the sys
goes to the global minimum. This procedure has been u
ally avoided by many authors because the computatio

TABLE I. Here N0 represents a vortex at the center of t
sample,N1 and N2 are the number of vortices on the first an
second ring, andR1 andR2 are the respective radii of these ring
From 3 to 9 vortices, all the radii coincide up to the last digit sho
in the table. Above 9 vortices, the internal radii (R1) coincide but,
because of the fluctuations in the value of the external radii,
have assumedR2 as the mean value. The seventh column is
energy associated with the terms that depend on the vortex posi
and the last column represents the values of the critical fields
each configuration ofN vortices. The critical fields were deter
mined with a precision of 1027 and the energies of 10210, respec-
tively, though these two quantities are quoted with seven decim
Here we have used the same parameters as in Figs. 2 and 3.

N N0 N1 N2 R1 R2 Energy HsN

3 3 3.2745 0.034 809 2 3.704 759 3
4 4 3.6834 0.070 207 7 3.715 722 8
5 5 4.0392 0.128 315 2 3.731 306 0
6 1 5 4.5206 0.209 265 8 3.746 867 1
7 1 6 4.6694 0.293 129 2 3.748 958 3
8 1 7 4.833 0.413 750 2 3.772 295 7
9 1 8 4.999 0.578 438 9 3.800 308 2
10 2 8 1.744 5.23 0.755 732 2 3.808 870
11 3 8 2.163 5.45 0.959 938 8 3.825 841
12 3 9 2.146 5.53 1.176 895 5 3.833 574
13 4 9 2.473 5.10 1.443 518 9 3.863 932
14 4 10 2.455 5.77 1.720 488 2 3.870 222
15 5 10 2.745 5.39 2.059 365 2 3.907 582
16 5 11 2.724 5.97 2.402 079 6 3.910 681
17 1 5 11 3.178 5.60 2.796 610 9 3.941 910
18 1 6 11 3.314 5.71 3.195 477 1 3.946 575
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time greatly increases with the number of vortices. Howev
with the advent of very fast computers, this is no longe
major problem.

As the minimization method may require a large numb
of evaluations of the Gibbs free energy, we must find so
effective manner of calculatings(r ,f,r 8,f8) @cf. Eq. ~5!#,
which involves a sum of infinite terms. We will considera
@l, but still finite. Within this approximation,I m(a/l)
' 1/A2pa/l ea/l andKm(a/l)'Ap/2a/le2a/l. One has,

s~r ,f,r 8,f8!5pe22a/lI 0~ ur1r 8u/l!, ~21!

where we have used the following identity:16

(
m52`

1`

cos~mf!I m~x!I m~y!5I 0~Ax21y212xycosf!.

~22!

The Gibbs free energy can be simplified to

G5S F0

4pl2D 2
l2

A FN lnk1(
iÞ j

K0~ ur i2r j u/l!

2pe22a/l(
i , j

I 0~ ur i2 r̄ j u/l!1H̃(
i

S I 0~r i /l!

I 0~a/l!
21D

2S H̃

2
D 2

a

l

I 1~a/l!

I 0~a/l!G , ~23!

where r̄ i52r i .
To analyze the vortex patterns for each number of vo

ces we choose arbitrarily the magnetic field in the middle
the interval betweenH̃sN and H̃sN11. The minimization of
the free energy was performed again using the simula
annealing method. As we have observed in Sec. II, the
tem is invariant under any rotation. Therefore, we can fix o
of the vortices along thex axis so that the minimization
procedure will involve 2N21 variables. We have done th
for N53 up to N518. The vortex patterns forN53 up to
N511 are illustrated in Fig. 3 and the complete numeri
data forN53 to 18 is shown in Table I. As can be seen fro
the figure and the table, the vortices arrange themselve
quite simple geometries. For example, forN53, an equilat-
eral triangle; forN54, a square; forN55, a pentagon; for
N56, a pentagon with a vortex at the center; forN57, a
hexagon with a vortex at the center; and forN518, a vortex
at the center, a first ring of six vortices forming a hexag
and a second ring of eleven almost equally spaced vorti
The results show a clear tendency of the inner vortices
form a hexagonal lattice, however, the external vortices
not. ForN53 to 9, the radii of all the vortices in the rin
coincide, however, forN.9 the vortices in the outer ring
show small radii fluctuations~no more than7%). For ex-
ample, as we can see in Fig. 3 for the case ofN510, we
have two vortices in a symmetric position related to the c
ter of the sample and an external ring with 8 vortices. T
vortices closer to the central ones have a bigger radius
those closer to the empty space between them. This is ea
understand based on the competition between the diffe
r,
a
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interactions, as we pointed out at the end of Sec. II. Wh
the external field is larger thanHs10, the repulsive interac-
tion of the vortices with the field that penetrates the surfa
is more important than the vortex-vortex image interactio
This interaction competes with the repulsive interaction
tween the vortices, which is more important between
central vortices and the vortices of the outer ring that
closer to them. This result agrees with the result of T
novskii and Shekhata.17 They showed that for a semi-infinit
plane, the vortex lattice is distorted near the surface.

As long as a decade ago, Yarmchuk and co-worke18

determined experimentally the vortex patterns up to 11 v
tices in superfluids, and Campbell and Ziff19 made a very
extensive numerical study of these patterns. The interac
potential between vortices in a superconductor runs ove
distancel, whereas in a superfluid this interaction is log
rithmic and runs over all scales. Despite this difference in
interaction, the behavior of both systems is quite similar
explained below. The patterns found here are in excel
agreement with the experimental results found in Ref.
The vortices not only show similar patterns, but show t
same tendency to vortex accumulation at the center of
sample. The same tendency has been observed in ex
ments with finite-size superconducting samples of differ
geometries,2,6 and this suggests that this tendency is pro
for finite samples independent of the particular geome
Our results are also in good agreement with the results
Ref. 19, if we compare the ring structure, but two differenc
can be pointed out. First, as they supposed, the prede
mined ring structures of their vortex patterns do not show
detailed structure of the outer rings as our more accu
calculations do. Second, their vortex patterns do not sh
the tendency of vortex accumulation at the center of
sample.

VI. SUMMARY

In summary, by using the London theory we have stud
the size effects on a long superconducting cylinder both
the mixed and Meissner states. We have determined num

FIG. 3. Vortex patterns for different values forN53 up to N
512. The parameters used here area/l510 andk540. The dis-
tance between adjacent circles is 2~in units of l).
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cally the ground state of the system and have obtained
vortex patterns, the induction, and matching fields forN
53 up toN518 vortices. Our results show a clear tenden
of vortex accumulation in the center of the sample, delay
the penetration of the flux lines, and irregularities in the d
tribution of the vortices closer to the surface, due to fini
size effects. Those effects have been found before in exp
ments with samples of different geometries showin
u

,

he

y
n
-
-
ri-
,

apparently, that this is a consequence of the finite size of
samples and not of the particular geometry.

ACKNOWLEDGMENTS

P.A.V. thanks the Brazilian Agency Capes for partial
nancial support. E.S. thanks the Brazilian Agencies CN
and FAPESP for partial financial support. We thank Prof
sor Mauro M. Doria for very useful discussions.
.

r-

v.
*On leave from Departamento de Fı´sica, Universidade Estadual
Paulista, Av. Engenheiro Luiz E. Coube S/N, 17033-360 Baur
SP, Brazil.

1See, for example, E. Guyon, inSuperconductivity, edited by P. R.
Wallace~Gordon and Breach, New York, 1969!, and references
therein.

2E. H. Brandt, Rep. Prog. Phys.58, 1465 ~1995!, and references
therein.

3E. H. Brandt, Phys. Rev. B46, 8628~1992!.
4E. H. Brandt and M. Indenbom, Phys. Rev. B48, 12 893~1993!.
5Th. Schuster, H. Kuhn, E. H. Brandt, and S. Klaumu¨nzer, Phys.

Rev. B56, 3413~1997!.
6E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, Phys. Rev

B 49, 9802~1994!.
7E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczykowski

D. Majer, B. Khaykovich, V. M. Vinokur, and H. Shtrikman,
Phys. Rev. Lett.73, 1428~1994!.

8B. P. Thrane, C. Schlenker, J. Dumas, and R. Buder, Phys. Rev
54, 15 518~1996!.

9L. Civale, T. K. Worthington, and A. Gupta, Phys. Rev. B43,
5425 ~1991!.
-

.

. B

10B. Kaykovich, E. Zeldon, M. Konczykowsky, D. Majer, A. I.
Larkin, and J. R. Clem, Physica C235-240, 2757~1994!.

11J. D. Jackson,Classical Electrodynamics~Wiley, New York,
1962!. See Section 3.10, page 84.

12A. Buzdin and D. Feinberg, Physica C256, 303 ~1996!.
13S. H. Brongersma, E. Verweij, N. J. Koeman, D. G. de Groot, R

Griessen, and B. I. Ivlev, Phys. Rev. Lett.71, 2319~1993!.
14W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vette

ling, Numerical Recipes~Cambridge University Press, Cam-
bridge, England, 1992!.

15S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Science220,
671 ~1993!.

16A. P. Prudinikov, Yu. A. Brychkov, and O. I. Marichev,Integrals
and Series~Gordon and Breach, Amsterdam, 1986!. See formula
5.910.

17F. F. Ternovskii and L. N. Shekhata, Sov. Phys. JETP35, 1202
~1972!.

18E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard, Phys. Re
Lett. 43, 214 ~1979!.

19L. J. Campbell and R. M. Ziff, Phys. Rev. B20, 1886~1979!.


