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Vortex lattice and matching fields for a long superconducting wire
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We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross
section in the presence of an external magnetic field. For this study we write the London theory for a long
cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using
the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to
the vortex position and we obtain the ground state of the vortex lattichl fo8 up to 18 vortices. The free
energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the
case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a
vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with
experimental result§S0163-182@08)03430-4

I. INTRODUCTION infinite sample, vortices interact with each other via a two-
body potential. Nevertheless, if the surface is taken into ac-
Modern technology has made it possible to fabricate sueount, additional terms that describe the interaction of the
perconducting samples of small size, like films of thicknessvortex with the surface come in. In this work we develop the
less than the London penetration length, as well as supercotheory to describe such interactions in a long cylinder. In
ducting wires of radii of the order of this length. This has addition, we use the London theory to determine the free
aroused the interest to study again the geometrical or sizenergy of the Meissner state of a long superconducting wire.
effects in superconductors. The size problem was alreadior the determination of the ground state of the vortex lat-
studied a long time agb? but recently it has been reconsid- tice, we use the Monte Carlo simulated annealing minimiza-
ered, and some studies of transport currents, magnetizatiofipn method. We obtain the ground-state lattice pattern start-
magnetic moment, reversibility lines, and flux penetration ining from an arbitrary configuration. This procedure is
finite-size samples have been m3d¥. In particular, the different than the one usually used where the free energy of

penetration of the magnetic flux in finite-size superconductthe vortex lattice for several predetermined configurations is
ors has attracted the attention of physicists in the last yearglculated and the lowest one is chosen.

due to the fact that in finite Samples the geometrical effects The paper is outlined as follows. In Sec. |l we determine
can produce important modifications in the critical state andhe magnetic field of an arbitrary distribution of vortices in
in the resulting vortex distribution. As an example, we canthe mixed state and its corresponding inductispatial av-
cite the results of Zeldoet al.” in thin superconductor strips erage of the local magnetic figldn addition, we find both
that have been found to cause a delay in the penetration @he London and Gibbs free energy. In Sec. Ill we repeat this
the vortex lines, and a vortex accumulation at the center oalculation to the Meissner state. In Secs. IV and V we ana-

the sample due to the geometrical barrier effect, but otheyze the matching fields and the vortex lattice patterns.
studies in this respect have been made. this way, our

main interest in this work is to study, specifically, the size

effe_cts in t_he vortex lattice and in the matching _fie_[d_&:e Il. MIXED STATE
minimum field for a new vortex penetratipfor an infinite
superconducting wire with a circular cross section. In what follows, we develop a theory for the mixed state

We use the London theory to study the formation of theof a long superconducting wire. Our starting point is the
vortex lattice in the mixed state of a long superconducting-ondon equation. This equation is obtained from the second
cylinder. The London theory is valid in the limit of low Ginzburg-Landau equation by assuming that the supercon-
induction (fields well below the upper critical fieltH.,),  ducting order parameter is a constant throughout the whole
where most of the experiments can be performed to obsengpace, that is, it neglects variations of the order parameter
the vortex lattice. This theory fails in the limit of the small inside the vortex core. The London approximation is valid
length scale. This breakdown of the theory is based upon therovided that the Ginzburg-Landau parameies \/¢>1;
fact that the finite size of the vortex cores is neglected. Thushere¢ is the coherence length andis the London penetra-
the London theory is not suitable to treat the self-energy of dion length. In addition, the vortices, whose size is of the
single vortex line. However, what really matters in determin-order of A, may overlap, but not the vortex cores. In cylin-
ing the shape of the ground state of the vortex lattice is therical polar coordinatesr(¢), the London equation for the
interaction energy between vortices on different sites. For afocal magnetic fielch=hz is given by
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where®, is the quantum fluxr; is the position of theath TH lo(r/N) 6)
vortex inside the cylinder, and(r) = 46(x) é(y) is the two- lo(a/N)”
dimensionals function. Here we are assuming that the vor-
tices are straight lines. Therefore, a three-dimensi¢8@)  The London(Helmholtz in the thermodynamic contgxt
problem is reduced to a 2D one. We will solve this equationfree energy contains basically two contributions. One is the
subject to the following boundary conditions: energy stored in the field and the other one is the kinetic
energy of the supercurrents. The London free energy per unit
h(a,¢)=H, length is
oh F 1 fafzﬂrd dorl n2e 2 ah)2+ >\2< ah)z
ag) % @ L8y ), 999 or| T2\ 9
where a is the radius of the cylinder. The first condition ®, Hax2 (27 [ oh
assures that outside the sample the field is uniform and is :8_772 h(r; ,¢>i)+8—77f dd’(a_r , (7
i 0

precisely the external fieldl; the second one states that the
perpendicular component of the current vanishes at the

boundaryr =a, that is, the Cooper pairs cannot jump out of where on going from the first to the second line we have
the sample. used the London equatiofl) and the boundary conditions

To solve Eq.(1), we use the Green’s-function method. (2) and the periodicity of the field. Helte is the length of the

Assuming for the Green’s function that the boundary condi-SyStem- _
tions G(a,é,r',¢')=0, G(r,é,r',¢') continuous atr Now, the London free energy can be evaluated by intro-

=r',9G(r,¢,r',¢')lar discontinuous at=r’, and assum- ducing Eq.(6) into Eq. (7). This yields,
ing that bothG andh are periodic in¢, one obtains

r=a

F [ ®g)\?
[:(m) 2 [Ko(Iri=rjl/IN) = a(ri, i1, é))]
h(r',¢")=®o2 G(ri i .r',¢) !

+<E 23|1(a/>\)J ®
—Ha)\zfohd(ﬁ(i—?) . ) 2] Mo

whereH=H/(®y/4m\?).

To proceed, we need to solve the equa’[ion for the Green’'s TO obtain the equilibrium Configuration of the vortex lat-
function. The method we use to find this function is outlinedtice, the Helmholtz free energy is not convenient because the
in Ref. 11 except for the fact that there the Green’s functiorfalculations involve a fixed magnetic fiettl Therefore, it is
is associated with the Poisson equation and boundary condirecessary to perform a Legendre transformation to obtain the
tions are taken at infinity. One has Gibbs free energy. The Gibbs free enel@y units of vol-

ume is given by

G(r,p,r', ') = Ko([r=r'|IN)—o(r,é,r",é")], BH
(1" @)= S Ko(lr =1l —a(r, g1, )] 67, ©
(4)
where whereF=F/AL, with A= 7ra?, andB is the induction that is
the spatial average of the local magnetic field
—+ oo
ot g, ¢)= 3 cogm(¢—g")] B= > [ ¢rh (10)
e =a rh.
Km(a/\) . .. . . .
mlm(r/)\)lm(r’lk), (5) The evaluation of this integral is tedious but straightfor-
m

ward. We obtain

wherel ,, andK,, are the modified Bessel functions.
We are now in a position to find the local magnetic field. B= N®, + 2makH [y(a/h) @ 1 E Lo(Fi/\)
- i :
I

Substituting Eq.(4) into Eqg. (3) and using the identity A A Ig(@/\) A lg(aln)

() K (X)) = 1 1(X)Kiy(X) = — 1/x (where the primes ot (11
and K stands for the first derivative with respect x® to

develop the second term for the field expression, one obtains Finally, we obtain for the Gibbs free energy
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2,2 2/ ™\ 2
_[ %o F [ @ \2(A) alan)
g_(4m2 KN'””; Ko(lri=ril) L \am) \2) X (16)
_ Lo(ri/\) which is the second term of E(B). Notice that ifa>\, near
= (i, i f, ¢ +H Y [ — the surface the field has an exponential behavior
] I ™\ lo(a/N)

~H(alr)el" """ as in a semi-infinite superconductor.

24 1 (a/\) Similar to Eq.(11), we find for the induction

INRENY

. 12

f
_(5 _ 2manH 1y(ain)

. , . A ly(aln)’ (7
Notice that the first term is the vortex self-energy and the 0
second one describes the repulsive interaction between thghich is the second term of E¢l1).
vortices(the bulk term. The third term describes the attrac- The Gibbs free energy can be calculated by substituting
tive interaction between the vortices and image vortices loEgs.(16) and(17) into Eq. (9). One has
cated outside the sample. The effect of this interaction is to
push the vortices close to the surface. The argument of the G ( D,

2)\2

A

A\%a 1 am)
fourth term represents the flusb/®y=[1—1y(r)/1o(a)]. > 2] X iyan
The first term of this argument represents the repulsive inter- 4arh 0

2
action between a vortex and the magnetic field that penghich is the fourth term of Eq(12). The previous results
etrates the sample surface, and it pushes the vortices to thgmprise the framework for the discussion of the supercon-
center of the Sample. The second term in this argument remUcting properties of a |ong Cy"nder_ In the fo”owing sec-

resents the vortex magnetic energy. The fifth term is thgjons we examine the matching fields and the vortex lattice
Meissner state energgee the next sectigriThe competition  patterns.

between the vortex-vortex image interaction and the interac-
tion between the vortex and the surface field represents an
energy barrier that the vortex has to overcome to be able to
enter the sample. When the external field is below the match- The lower critical fieldH ., defined as the lowest external
ing value, the vortex-vortex image interaction is more impor-field strong enough to cause penetration of at least one vor-
tant and a new vortex is not able to enter. When the field igex line, is determined assuming that at the phase transition
increased up to or above the critical value, the vortex carfrom the Meissner state to the mixed state, the Gibbs free
overcome the surface energy barrier and enters into thenergy per unit length, i.eGA, has the same value. In what
sample. On the other hand, we want to point out that the bulkollows, S stands for the mixed state ail for the Meissner
interaction is invariant under any translation, but this sym-state. One has,

metry is no longer valid for the whole free energy because of

the presence of the various interactions. However, the system ABynHc1 ABgHc1

is still invariant under any rotation because it depends only AFm— A =AFs— A (19)
on the angle difference.

: (18

IV. MATCHING FIELDS

where @AFy,ABy) is given by Eqgs.(16) and (17) and
Ill. MEISSNER STATE (AFs,ABg) by Egs.(8) and (11), respectively. Introducing
these equations into Eq19), we find for the lower critical
In the Meissner state, although we have no penetration dfeld
the vortex lines, we have penetration of the magnetic field

near the surface. In a semi-infinite superconductor, for in- Ko(a/N)
stance, the external field penetrates exponentially over a dis- d, k= lo(a/N)
tance\. For a superconductor with cylindrical geometry, the Hc1=4 2 1 (20)
field inside the sample is given by the London equation m [ S —
lo(alN)
#*h 1 6h : :
AN =—+=Z—|+h=0. (13 Here we have taken the center of the cylinder as the equi-
grz ror librium position of a single vortex line in Eq$8) and (11).

In this case, only then=0 term survives in the sum far
[cf. Eq. (5)]. By taking the limit ofa—« in Eq. (20), we
h(a)=H. (14) recover the well-known resuli; = (®o/4m\?)Ink. In Fig.

1 we plot the differenceAH=H—Hg; in units of

The solution for this equation with the appropriate bound-(®¢/4m\?), which shows that the smaller the valuesagf

The boundary condition is

ary conditions is the larger the value of the lower critical field. In this way,
this result shows clearly that the size effect provokes a delay
lo(r/\) in the first flux penetration, as found in experiments on other
h(r)=H Io(a/N) 19 finite systems of different geometfy’.

As a consequence of the energy barrier generated by the
Using Eq.(7), the London free energy per unit length can finite size of the sample, we have a delay not only for the
be written as first vortex line penetration, but for the subsequent lines too.
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TABLE I. Here Ng represents a vortex at the center of the
sample,N; and N, are the number of vortices on the first and
second ring, andR; andR, are the respective radii of these rings.
From 3 to 9 vortices, all the radii coincide up to the last digit shown
in the table. Above 9 vortices, the internal radi,) coincide but,
because of the fluctuations in the value of the external radii, we
have assumed, as the mean value. The seventh column is the
energy associated with the terms that depend on the vortex positions
and the last column represents the values of the critical fields for
each configuration ofN vortices. The critical fields were deter-
mined with a precision of 10’ and the energies of 10° respec-
tively, though these two quantities are quoted with seven decimals.
Here we have used the same parameters as in Figs. 2 and 3.

N No N; N R, R, Energy Hgn
3 3 3.2745 0.0348092 3.7047593
10 4 4 3.6834 0.0702077 3.7157228
5 5 4.0392 0.1283152 3.7313060
6 1 5 4.5206 0.2092658 3.746867 1
FIG. 1. The lower critical field differencAH=H—Hgz; in 7 1 6 4.6694 0.2931292 3.748958 3
units of (®o/47\?) as a function ofa/\ for k=40. 8 1 7 4.833 0.4137502 3.7722957
9 1 8 4.999 0.5784389 3.800308 2
In this way, at low fieldsnear the lower critical field we 10 2 8 1744 523 07557322 3.8088703
have a well-defined critical field for each new penetratlon11 3 8 2163 545 09599388 3.8258413
(matching field and, different from the bulk case, where the 1 3 9 2146 553 11768955 3.8335742
induction increases continuously with the external field, here’L3 4 9 2473 510 14435189 3.8639324
the induction increases by steps as shown in Fig. 2. A new4 4 10 2455 577 17204882 3.8702223
vortex enters the sample only when the energy is enough t& 5 10 2745 539 20593652 3.9075828
overcome the surface energy barrier. As we go to highet6 5 11 2724 597 24020796 3.9106818
magnetic fields, the induction approaches the bulk case. 17 1 5 11 3.178 560 27966109 3.9419102
The matching fields for each configuration of vortices18 1 6 11 3.314 571 3.1954771 3.9465753

[Hn=Hsn/(PoldmA?), N=1, ... ,18;with Hy=H] are

calculated using the same procedure used to obtajni.e.,

equating the Gibbs free energy of the configurations with Scendental equation iAl (because the radii implicitly de-
andN+1 vortices,Gy= Gy, 1. In this way we obtain a tran- pends onH) that can be solved iteratively. However, each
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FIG. 2. Induction B) for N=1 to 18 vortices as a function of
the external magnetic fieldH) in units of (®y/47\?). For eachN

vortices configuration, the induction

is calculated
[Hen, Hsni1l field range. Here we have used/A=10, \
=200 nm, andk=40.

time the free energy is calculated for a given magnetic field,
this free energy must be calculated with the vortices in the
equilibrium position. Thus, for each iteration the free energy
must be minimized. The iterative work was performed using
the Secant method and the minimization using the Monte-
Carlo simulated annealing meth&H°For a/\ = 10, the val-

ues obtained foHy can be seen in Table I.

V. VORTEX LATTICES

The usual procedure to find the ground state of the vortex
lattice is to assume some particular geometry and then evalu-
ate the Gibbs free energy. The configuration corresponding
to the lowest value is supposedly, the most stable vortex
lattice. Other authof8'® have used the imaging method to
determine the vortex configuration. In the present work we
follow a different procedure. Using the Monte Carlo simu-
lated annealing method;°we start from an initial configu-
ration chosen randomly, and we let the vortex lattice evolve
towards the global minimum. The energy minimization is
made using different initial configurations and different
seeds for the random number generator. In this way we ob-

in the tain different annealing schedules, ensuring that the system

goes to the global minimum. This procedure has been usu-
ally avoided by many authors because the computational
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time greatly increases with the number of vortices. However,
with the advent of very fast computers, this is no longer a
major problem.

As the minimization method may require a large number
of evaluations of the Gibbs free energy, we must find some
effective manner of calculating(r,¢,r’,¢’) [cf. Eq. (5)],
which involves a sum of infinite terms. We will considar
>\, but still finite. Within this approximation],(a/\)
~ 1/\2malx e¥* andK (a/\)~ 7/2a/xe”¥*. One has,

a(r,o,r', ¢ )=me 2 My([r+r'|/N), (22)

where we have used the following identify:

+
> cod M)l ()1 m(y)=1o(VX*+y>+2xy cosp).
(22)
The Gibbs free energy can be simplified to FIG. 3. Vortex patterns for different values fot=3 up toN
=12. The parameters used here afe@ =10 andx=40. The dis-
0 2,2 tance between adjacent circles igi units of \).
:(477)\2 A Nln'ﬁL;j Ko(lri=ril/n) interactions, as we pointed out at the end of Sec. Il. When

the external field is larger thald;,, the repulsive interac-
lo(ri/N) tion of the vortices with the field that penetrates the surface
|o(61—/>\) - is more imp(_)rtant than the vortex-vortex !mage inter_action.
This interaction competes with the repulsive interaction be-
tween the vortices, which is more important between the
, (23)  central vortices and the vortices of the outer ring that are
closer to them. This result agrees with the result of Ter-
o novskii and Shekhatd. They showed that for a semi-infinite
wherer;=—r;. plane, the vortex lattice is distorted near the surface.

To analyze the vortex patterns for each number of vorti- As long as a decade ago, Yarmchuk and co-worfers
ces we choose arbitrarily the magnetic field in the middle ofdetermined experimentally the vortex patterns up to 11 vor-
the interval betweeit.y and Flgy. 1. The minimization of ~tices in superfluids, and Campbell and Ziffnade a very
the free energy was performed again using the simulate@Xtensive numerical study of these patterns. The interaction
tem is invariant under any rotation. Therefore, we can fix ondlistance\, whereas in a superfluid this interaction is loga-

procedure will involve N—1 variables. We have done this interaction, the behavior of both systems is quite similar as
for N=3 up toN=18. The vortex patterns fdd=3 up to explained below. The patterns found here are in excellent
N=11 are illustrated in Fig. 3 and the complete numericalRgreement with the experlme_nta_ll results found in Ref. 18.
data forN=3 to 18 is shown in Table I. As can be seen from The vortices not only show similar patterns, but show the
the figure and the table, the vortices arrange themselves #2Me tendency to vortex accumulation at the center of the
quite simple geometries. For example, fé=3, an equilat- S&mple. The same tendency has been observed in experi-
eral triangle; forN=4, a square: foN=5, a pentagon: for ments with finite-size superconducting samples of different
N=6 a per;tagon with a vortex at the center- for=7 a  9eometries;® and this suggests that this tendency is proper
hexagon with a vortex at the center; and o 18, a vortex for finite samples mdependent of the part!cular geometry.
at the center, a first ring of six vortices forming a hexagon,OUr results are also in good agreement with the results of
and a second ring of eleven almost equally spaced vortice§ef- 19, if we compare the ring structure, but two differences
The results show a clear tendency of the inner vortices t&2" P€ pointed out. First, as they supposed, the predeter-

form a hexagonal lattice, however, the external vortices dgnined ring structures of their vortex patterns do not show the
not. ForN=3 to 9, the radii of all the vortices in the ring detailed structure of the outer rings as our more accurate

coincide, however, foN>9 the vortices in the outer ring calculations do. Second, their vortex patterns do not show
show small radii fluctuationgno more thar7%). For ex- the tendency of vortex accumulation at the center of the

ample, as we can see in Fig. 3 for the caseNef10, we sample.

have two vortices in a symmetric po_smon_related tc_) the cen- VI. SUMMARY

ter of the sample and an external ring with 8 vortices. The

vortices closer to the central ones have a bigger radius than In summary, by using the London theory we have studied

those closer to the empty space between them. This is easytioe size effects on a long superconducting cylinder both in

understand based on the competition between the differeithe mixed and Meissner states. We have determined numeri-

—ae 2 1o —rl)+RY
L) i

(H Zal,(al)
2] Nlgaln)
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cally the ground state of the system and have obtained thapparently, that this is a consequence of the finite size of the
vortex patterns, the induction, and matching fields for samples and not of the particular geometry.

=3 up toN=18 vortices. Our results show a clear tendency

of vortex accumulation in the center of the sample, delay in ACKNOWLEDGMENTS
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