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Dimensional versus cut-off renormalization and the nucleon-nucleon interaction
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The role of dimensional regularization is discussed and compared with that of cut-off regularization in some
guantum mechanical problems with ultraviolet divergence in two and three dimensions with special emphasis
on the nucleon-nucleon interaction. Both types of renormalizations are performed for attractive divergent one-
and two-term separable potentials, a divergent tensor potential, and the sum of a delta function and its
derivatives. We allow energy-dependent couplings, and determine the form that these couplings should take if
equivalence between the two regularization schemes is to be enforced. We also perform renormalization of an
attractive separable potential superposed on an analytic divergent pofesaah6-28188)07310-5

PACS numbgs): 21.30—x, 03.65.Nk, 11.10.Gh, 13.75.Cs

I. INTRODUCTION V(p,q)=pL>\LqL, (1)

Ultraviolet divergences appear in exact as well as perturwith L the angular momentum. Far=0, this potential is the
bative treatments of the nonrelativistic quantum mechanicalisual é-function potential. As the Lippmann-Schwinger
two-body problem in momentum space interacting via two-€quation has the same generic form in all partial waves, the
body potentials with certain singular behavior at short dis-ultraviolet divergence of this potential becomes stronger and
tances[1-13 in two and three space dimensions. SimilarStronger ad increases. Next we consider a two-term sepa-
divergences appear in perturbative quantum field theory antbPle potential of the form

are usually treated by renormalization techniq(i&4,15. B
There are several variants of renormalization that employ V(p,a)=\ou(p)u(q) +Arzv(p)v(a), 2

different types of regularizations, such as the cut-off, andyherey(p) andu(p) are each divergent form factors of the
dimensional regularizations. Unless there is some symmetiyne pL * considered in the first potential. We also consider
violation in performing regularization, in perturbative field the potential5,6,10,11

theory, both regularization schemes are expected to lead to

the same renormalized result at low energies. The closely V(p,q) =N+ A(p?+q?). 3
related technique of discretization on the lattice in such field

theoretic problems also should lead to equivalent results. ExPotential(3) is the sum of as function and its second de-
actly as in quantum field theory, the ultraviolet divergencedivatives. This potential is interesting as it appears as a piece
in quantum mechanics can be treated by renormalizatiori? the low-energy nucleon-nucleon potential derived from

Three schemes have been used for the purpose: cut-off reggffective field theory and has received attention recently
larization [1-3,5-7,10,1 dimensional regularization [11,13. Finally, we consider the following minimal tensor

[6,9,11], and discretization on the latti¢d]. For the simplest nucleon-nucleon potential possessing ultraviolet divergence:

S-function potential all three approaches lead to the identical Voo P,0)  VoaP,3)
result. v, (p, E( ’ ’ )
Recently, cut-off1,5—7,10,11 and dimensiondl6,10,11 Vi (P Vao(p.d)  Vaip.q)
regularizations have been successfully used by several work-
ers in quantum mechanical problemsSrand higher partial
waves in the context of nucleon-nucleon interaction. Al-
though both regularization schemes have been successful entum labeld. andL’ are explicitly shown. The term in-
used for the purpose of renormalization in quantum mechani\-/

| bl ith ultraviolet di thei val olving \; provides theS-D coupling. WhenA =0, theS
cal problems with ultraviolet divergeénce, their equivalence, yn \yayes decouple and we essentially have potefitjal

cannot be demonstrated except in the simplest problems. LPhe functionsp? andg? are the threshold factors far=2
this work we consider several problems with ultraviolet di- " " “leon-nucleon potential derived from a chiral La-

vergence, allow energy-dependent bare couplings, and f'nlgrangian formulation of effective field theory contains usual

the forms that these couplings must take in order to obtai inite_range potentials superposed on divergent potentials

equwalence_ between the two regu!arlzanqn scheme_s. containing delta function and derivativegradient$ and can
We consider four potentials for illustration. The smplest(Pe written ag5,6,10,11

is the minimal potential in a general partial wave considere
recently [1]. In momentum space this potential possesses V(p,q)=Vi(p,q) + A g+ Ao p2+G2) + A 3p2g2

only the threshold behavior and is given by the following

one-term separable form: +h(pHHaghH+ -, 5)

Ao \102
T Inp? np%e?)’
(4

where\ and \,p?qg? are divergenS and D wave parts of
he nucleon-nucleon potentiél). In Eq. (4) the angular mo-
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whereV;(p,q) represents the usual finite-range parts of theto worry about unitarity, which can be imposed later via Eq.
potential. The configuration-space derivatives of éhieinc- (7). This is the simplest procedure to follow, as all renormal-
tion appear as powers of momenta in momentum space. Pggation schemes preserve unitarity.

tential (3) is just a part of Eq(5). Though one can renormal-

ize the divergent parts separately, it is not clear that a A. The minimal potential

potential, such as E@5), containing a divergent and a finite- . ) .

range part can be successfully renormalized. Though a gen- Minimal potential (1) has been renormalized by cut-off

eral answer to this question involving local finite-range po-fégularization in three dimensions fa] using thet-matrix
tentials may involve a complicated numerical calculational@PProach. Here we present a brief account of that work with

scheme, we would like to address this point in a much sim@PPropriate generalization to tfematrix approach in both

pler context, where we take the finite-range part to be afwo and three dimensions. We also perform dimensional

attractive separable potential frequently used to simulate thEggularization with this potential and discuss its consistency

nucleon-nucleon interaction. We perform an analysis td"ith cut-off regularization. For minimal potentiél), the K

show that when a divergent potential of the foknor A p?g? matrix of Eq.(6) permits the following analytic solution:

is summed to an attractive separable potential, the renormal- / 2y _ L L

ized scatteringk or t matrix leads to physically plausible KPPk =p kP, ©

results for the nucleon-nucleon system at low energies.
The plan of our work is as follows. We perform renormal-

ization of potentialg1), (2), (3), and(4), in Secs. Il A, Il B,

II C, and Il D, respectively, using both dimensional and cut-

off regularizations. In Sec. Il A we consider the scattering

problem in both two and three dimensions. Potentials lL(k):Pf 9% dqP-G(q;k?). (12)

(3), and (4) are mostly of interest in nuclear physics and

hence we shall be limited to only the three-dimensional case ) )

in Secs. Il B, I C, and Il D. In Sec. Il we present results for Integrall (k) of Eq. (11) possesses ultraviolet divergence.

the renormalization of a divergent potential of the foxnor ~ AS ther function completely determines tiematrix and as

Ap2q? added to an attractive separable potential. Finally, ifh€ divergent terms are contained in it, we consider the

Sec. IV a brief summary of the present work is presented. "€normalization of this function. _
Because of the ultraviolet divergence in EGl), some

regularization is needed to give meaning to it. We use the

following regularized Green’s function with a sharp cutoff:
The partial-wave Lippmann-Schwinger equation for ihe

matrix K, (p,q,k?), at center-of-mass energy, is given, in Gr(d,A;k?)=(k*~q?) 1O (A-q), (12

dimensiond, by

with the 7 function defined by

(K =[A =1 (K]t (10

Il. REGULARIZATION AND RENORMALIZATION

with ®(x)=0 for x<0 and =1 for x>0. In Eq. (12), A
2y _ d—1 (>K) is a large but finite quantity. In the end, the liniit
KL(p.k.k%) V'-(p'kHPf q” "davi(p.a) — has to be taken. Finite results for physical magnitudes,
2 2 asA—x, are obtained only if the coupling, is understood
X G(a:kIK(a.k.k), 6) to be the so-called bare coupling (k,A).
with the free Green's functiorG(q:k?)=(k?*—g?)~L, in In order to prqceed with t_h_e choice of t_he ba_re c_oupling
we have to consider a specific value of dimensibrFirst,
dve considerd=3. The choice of the bare coupling can be
found by inspection of the following regularized form of Eq.

units#=2m= 1, wherem is the reduced mas® in Eq. (6)
denotes principal value prescription for the integral and th
momentum-space integration limits are from 0o The
(on-shel) scattering amplitudé, (k) is defined by

Lt T @ lru(k,A)=P f A°da o™ Gr(d, Ak (13
(k) K (k¥ 2
whereK (k3 =K, (k,k,k?) = — (2/m)(tans, /k) with & the L L KA AZIHL . kzL“I A—K|
phase shift. All scattering observables can be calculated us- & 2j+1 2 AT k|
ing t, (k). Though we are considering a general dimension (14)

d, we shall be limited in the present work tb=2 and 3.
Most of our results can be generalized to higher dimensiongn the largeA (>k) limit, the logarithmic term in Eq(14)

The condition of unitarity is given by tends to zero and
—_ Tyd-2 2 L p2l-ip2i+1
Imt, (k) == Skt ()%, ® lim 1 (kA= =S (15
Ao i=o 2]+1

where Im denotes the imaginary part. Here we employ a
K-matrix description of scattering. Then the renormalizationAll terms in Eq. (15) diverge asA —». Except forL=0,
algebra will involve only real quantities and we do not havethese divergent terms are moment(kn dependent.
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For obtaining a finite renormalized function, the cou- . 5
pling A\, should be understood to be the so-called bare cou- |RL(k,A)E7’f qdgf Gg(a,A;k?) (20
pling A\ (k,A). In Ref.[1] the following energy-dependent

bare coupling was used: r K
=—|—In—|, L=0 (21
L K2(L-D)p2i+1 L A
MA)= =2 —om— A (k) (16) SO
=— ?—kzlnx, L=1 (22
where functionA o (k?) can be used to introduce the physi- -
cal scalés) of the system and characterizes the strength of (A4 K2A2 K
the interaction. The quantity Af, (k?) could be termed the =—|—+ —k%n—|, L=2, (23
renormalized strength or coupling of the interaction. We are | 4 2 A

taking the bare coupling to be energy dependent. In the

present nonrelativistic context this is not of concern, as th&© that for a general we have

bare coupling is not an observable. We shall see that the L

renormalizedK matrix obtained after renormalization from I (k,A)=— 2

this bare coupling has the desired analytic propertiel’in RLL =1

We shall see that this energy dependence is necessary, in

order to obtain equivalent results from cut-off and dimen-In order to obtain a finite renormalizedfunction, the cou-

sional regularizations. pling A should be understood to be the so-called bare cou-
However, there are reasons to argue against the use pfing defined, for example, by

energy-dependent bare couplings. In field theory they corre- . o

spond to counterterms that violate time reversal invariance, . K2E"DAZE L Ag(K?)

and also destroy the usual Hermitian structure of the A (k’A):_Zl 2j +k™In A (25)

guantum-mechanical potential generating enatrix. In :

.spite.of these, we shall use energy-dependent bare COUP'!”%ere the functiom\ o, (k?) can again be used to introduce

in this study, as that seems to be a means for obtaininghe physical scale) of the system and characterizes the

equivalent results from cut-off and dimensional renormahza-strength of the interaction as in the case vdta 3. If we use

tion as the ultraviolet divergence is energy dependent in thigqs_(24) and (25) in Eq. (17) the following renormalized-
case. The renormalized physical result should be indepenynction is obtained in the limity — o

dent of the regularization schemes employed. [Eo10, be-

k2(L=D A2 Lk

cause of the additional freedom provided by the energy- 1
dependent couplings, we can obtain equivalent results from 1oL (K)=— . (26)
the two different regularization schemes. k?HIn[k/ Ao (K%)]
Employing bare coupling16), the regularizedr function ] ]
of Eq. (10) can now be rewritten as The Ink) dependence in Eq26) is the proper low-energy
momentum dependence in two dimensifh6]. Expressions
(K A) =[N K A) — Tre(K,A)] 7L, (17) (18 and(26) are the renormalized functions obtained with

cut-off regularization fod=3 and 2, respectively. Now it is
where for a finiteA, 1. (k,A) is a convergent integral. As realized that the use of energy-dependent bare couflliig
A—soo )\El(k A) of Eq. (16) has the appropriate divergent IS essential for removing the ultraviolet divergences in the

behavior, which cancels the divergent part 45 of ‘> limit by cut-off regularization. _
In(k,A). As A—oo, one obtains the following renormal- The above-mentioned problem can also be tackled with

ized 7 function from Eqs(15), (16), and(17): _the help of d_imensional regulgrizati@hS]. In this procedure
integral (11) is evaluated to yield17]

i -1 1
TRL(k)—/lILT'IOO[)\L (k,A)_lRL(k,A)] —m. |RL(k!d)EPJ qd—ldqqZL(kZ_qZ)—l (27)
(18)
1 [(2L+d 2—-2L-d
In three dimensions, the low-energy scattering is usually pa- == EF 2 ( 2 )
rametrized by a few parameters as in the effective-range ex-
pansion. Hence it is natural to take X Re (—k?)(2L+d=2)2) (28)
Ao (K?)=—1/a2- 1+ bl 2K+ - (19  where Re denotes the real part. Inted@) is divergent for

d=2 and 3 and Eq(28) is the finite result valid for & (d
wherea, is the scattering length arg is a range parameter. +2L)<2. In dimensional regularization, E28) is inter-
These parameters are usually called physical scales as thpyeted to be an extrapolation of the convergent result for
measure the physical observables, such as a cross sectionsmall (d+2L) (<2) to the actual values ofd@2L)

Next, we considerd=2. Here the regularized integral (=2) for which the result is divergent. In odd dimensions
[ (K), in the largeA limit (A>k), becomeg6] the dimensionally regularized integr@8) is zero because it
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contains the real part of an imaginary quantity. However, for

dimensional regularization in even dimensions, EZB) is
used to extract the divergent partlgf, (k) as in Eq.(15) and
then renormalization can be performed.

For d= 3, the dimensionally regularized res(®8) is al-
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|iml—‘(6)%%—'y+0(6)+-~, (33

e—0

imRe (—k?) €] —1-2eInk+O(e?)+ - -,

e—0

(39

ready finite:
I (K)=0 (29) andI'(1+x)=xI'(x). In the limitd—2, e—0 and Eq.(32)

RL ’ is divergent. If we compare E¢32) with Eq. (24) we find
and in this case one does not need to introduce a new energitat the 1¢ pole in the dimensionally regularized integral

dependent bare coupling and from E@8) and (10) one  corresponds to the different divergences including a logarith-
immediately obtains mic divergence in the cut-off regularized integral. Equation

(32 contains the logarithm df — a dimensional variable.
Tru(K)=\, The scale of the logarithm is hidden in thee term and
. _ appears when the divergence is canceled with an appropriate
However, equivalence between the cut-off renormalized regpoice of bare couplinfiL8]. For performing renormalization

sult (18) and the dimensionally regularized res(80) is ob-  yith the dimensionally regularized resu2), one should
tained if the following energy-dependent bare coupling iSchoose the bare coupling as

used instead:

and Kg(k?)=x_K?". (30)

k2L
AL(K)=1/Aq (K?). (31 A k€)= —7[2—7 + k2N A g (k). (35
For d=2, the dimensionally regularized result still con- o ] .
tains infinities and a subtraction of these infinities is necesln the limit e—0, using Eqs(32) and(35) in
sary before obtaining a finite renormalized result. In this e 1 1
case, asl— 2, Eq.(28) can be rewritten afl8] TRL(k)_l'LnOD‘L (kie)=la(ke)] (36)
) I'(e) : - . .
limlg(k,€)=—k>| ——|Re(—k?) €] one obtains the finite renormalized res(#6), obtained by
e—0 2 cut-off regularization. Hence both regularization schemes
1 yield equivalent renormalized results.
=K% —Ink— 2|, (32
2e 2 B. The rank-two separable potential

wherey=0.577 ... is theEuler number and=(1-d/2). Next we consider the renormalization of rank-two sepa-
In writing Eq. (32), use has been made of the well-known rable potentia(2) for d= 3. In this case the on-shédl matrix

limits is given by[19]
|
u2(k)(IMy—A,,) +u2(K) (1IN g— Ay +2u(K) v (K)A,,
K(k2)=()( 2 ) +v(K) (1N uu)z()v()u’ 37
(1/)\2_AUU)(1/)\O_AUU)_AUU
|
where

[ ,— 1 5(K) ]+ K[ 1N g— 1 o(k) ]+ 2k?1 1(K)
[1N—1o(K) [ IMo— (k)] 15(k)

K(k?)=

AquPf g?dquA(q)G(q;k?), (39) (41)

In this case, divergent integrads,,, A,, , andA,, arel (k)

of Eqg. (11) with L=0, 1, and 2, respectively. These have
been treated by dimensional and cut-off regularizations in
Sec. Il A. Hence one can use the same regularization proce-
dure as employed there. However, in genexgland\, of

Eq. (42) are to be interpreted as cut-ofA§ dependent bare
coupling.

In order to work out the divergent terms explicitly we con- In this case first we perform dimensional regularization.
sider a specific casex(p)= 1y (p)=p?. This specialization From Eq.(29), we find that the dimensional regularization of
does not correspond to any real loss of generality. Othemntegralsl (k) for d=3 are all zero. Then, if we use the
choices ofu(p) andv(p) can be worked out similarly. With energy-dependent bare couplingd), from Eg.(41) we ob-
this choice thek matrix becomes tain the following finite regularized on-shefl matrix:

AUUEPf g’dqu(a)v(q)G(q;k?), (39

AUUEPf g?dqu?(q)G(q;k?). (40)
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K g( k2)=A601(k2)+A621(k2)k4, (42) C. A é-function potential and its derivatives
Now we consider potentigB) for d=3, which is the sum
of a & function and its second derivatives in configuration

space. This potential appears in the field theoretic reduction

where Ay '(k?)’s are polynomials irk? as in Eq.(19). The
renormalizedK matrix (42) will have the form of a polyno-

mial in k? at low energies.
Next we employ cut-off regularization in E¢41). If we
use Eq.(15), regularizedK matrix (41) becomes

of low-energy nucleon-nucleon potent[&,6,11,13. After a
straightforward calculation, the on-sheédl matrix for this
potential is given by

2
< (kz)_A+Bk2+Ck4 w3 K (k%)
R D+EK?*+Fk* 2K2IN o+ N N3+ 1 5(k) — 2K 4 (K) + K41 (k)
ING= 215 (K)o 15(K) = Nyl o (KIS = 1o(K) 1 o(K) |
A [B AE 2 a4
=5 + 5 F +.. (44) (50
wherel (k)'s are given by Eq(11). These integrals have
where been treated by dimensional and cut-off regularizations in
5 3 Sec. Il A. Hence one can use the same regularization proce-
A= i+ A_ B=_ A_ c="— (45) dure as employed there. Again; and\, of Eqg. (50) are to
N, 5 3’ o’ be interpreted as cut-offX) dependent bare coupling.
Here, first we perform dimensional regularization. From
1 A% A 4AS Eq. (29), we find that the dimensional regularization of inte-
D= te ot 4 Isl, (k) for d=3 are all zero. Then, if we use the energy-
Nohz  Bho Ay 45 gralsl( : gy
0%z 0 2 dependent bare coupling3l), from Eq.(41) one obtains the
A3 A4 A following finite regularized on-sheK matrix:
E=5———%5, andF=_—. (46)
3\, 3 \o Kr(k?)=A71(k®)+ A, (k?)K?, (51)

Equation(43) represents the exact solution and EH) is its
low-energy expansion. One performs renormalization subje
oo a0 SOUPITGE polynamial i a o energes
0 21 < . Next we empl t-off regularization in E¢50). Then
this case. These two conditions can be used to determine ﬂgﬁ © € employ cut-oft regularnzatio 60 N

. . e quantitied o(k), 1,(k), andl (k) are, respectively, given
constant tgrm and the coefficient qf thé term in Eq.(44). by Eq.(15) with L=0, 1, and 2, and we obtain from EG0)
Thus one introduces two renormalized parameters via

whereA ; *(k?) andA, *(k?) are polynomials irk? as in Eq.
C(t19). Hence the renormalizad matrix (51) has the form of a

A+BK
. . [B AE Kgr(k?) = (52)
A= lim=, Ai=lm|=—-— (47) R D+ EK2
0 A*}OOD 2 A—ow D D2
i i A [B AE
so that the renormalizeld matrix becomes AR Bl SN (53)
D D p2
Kr(k?)=A§+ABK2+ .. - (48)
o o _ where
which is the result of cut-off renormalization at low energies
up to terms linear irk?. Equations(47) define the bare cou- 5 3
X ) e o ; ) AN A A 2
plings in the limitA —, although it is not possible to write A=——— B=—+— (54)
. - . 2 57 3 N\
closed-form expressions for them in this case. N5
In this case it is possible to guarantee the equivalence of
theK matrices(42) and(43). For this purpose, it is necessary 1 2A% MA 4AS 2N A%
to take advantage of the energy-dependence of the bare cou- D= —+ + - , and E=—+—.
plings to ensure N 3N 2\ 45 A 3
(55)
A+Bk2+Ck* : : .
Agol(kz) + Agzl(kz)k“: lim (49 Equation(52) represents the exact solution and Ex§) is its

Ao D+EKE+FK* low-energy expansion. Now as in Sec. Il B one could intro-
duce two renormalized parameters via Etj/) and obtain a
where some care must be taken since bare couphggsd  cut-off renormalized matrix at low energies as in E¢8).

N, depend om\. One can also enforce equivalence by writ- The cut-off renormalize& matrix can be consistent with the
ing Ay and \, as energy-dependent functions &f, and  dimensionally renormalized onél), if one exploits the
Ag,. A suitable choice of bare couplings will give the flexibility introduced by the energy-dependent bare cou-

equivalence of the two results. plings to ensure
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2
A7 (K?)+ AL H(k2)K2= lim

A—o

(56)

Ek?’

where again some care must be taken since bare couplings

Ao andX\, depend om\.

D. The tensor potential

Finally, we consider the renormalization of the tensor po-

tential (4) in three dimensions. Thi€é matrix elements in this
case satisfy the following set of coupled equations:

Ko (p,k k) =V (pk)+P X | g?dgVii(p,q)
L"=0,2

X G(a;k®) K (a,k,K2). (57)
From Egs.(4) and (57) it is realized that the&k matrix ele-
ments have the following form:
Koo(P,a,k?) Koz(p.q.kz))
Kao(P,a,k?)  Kaa(p,a,k?)
( To 719 )
myp? ,

2p%q?

|KLL’(p!qvk2)|E<
(58)

To 71| 1
T1 T _D )\l

where

D=[1—Nolo(K)I[1— N2l 2(K)]=Nlo(K) 1 2(k) (62
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where the energy-dependent functiots are defined by

0 Ty Ao M
1) (A A
Ao Aqg)[lo(K) 0 o T1
e o /e n)
(59
with 15(k) andl,(k) given by Eq.(11).
Equation(59) can be rewritten as
1=Nolo(k)  =Ngla(K) | (70 71} (Ao Ay
—Nalo(K)  1=Nolo(K)/\ 7 ) \Ng A
(60)

The following solution of Eq.(60) can be obtained after
straightforward algebra:

M (61)
: 61
Mot (AT=Noh2)lo(K)
[
where
J=[1+NgA+NA55—(N3—Nghx)AS/5]7L. (67

is the determinant of the first matrix on the left-hand side of|n this case there are three couplings in poteriiaig, \;

Eq. (60). If we use a dimensionally regularized resi29) for
integralsl o(k) andl (k) in Egs.(61) and(62), we obtain the
following dimensionally regularizee function:

( TRO TRl) _ ( Aal(kz) AIl(kz)
TR1 B

A Aty ©

TR2

and \,. These couplings are to be interpreted as the bare
couplings for regularization and renormalization. Now if one
introduces three renormalized couplingsy, Ari, andAg,
through

where we have employed the usual energy-dependent bare

couplings.

Next we employ cut-off regularization to E¢61). If we
use the cut-off regularized result5) for integralsl| (k),
each ofry, 7, andr, will have a form similar to the right-
hand side of Eq(43) and one can make an expansiorki
as in Eq.(44). Using explicit forms of cut-off regularized
integralsl (k), the regularized,, 7;, andr, can be written
as

TrRo=JI[No— (N\{=Noh) A¥/5]+ O(K*)+ - -,  (64)
TRi=JIN +O(K?) + - - -, (65)
TrRo=J[Na= (NI~ NA) AT+ O(KD) +- -+, (66)

lim J[)\O_()\i_)\o)\z)AS/s]:)\Ro, (68)
A—
||m ‘J)\lz)\Rli (69)
A—o
lim I[N o— (M= Noh2) AT=N\go, (70)

A—oo

one obtains the following energy-independent solution valid
in the extreme low-energy limit:

7\R1)

Ago/’

( TRO 3 ( ARo
TR1 AR1
Again it is possible to establish equivalence between results
(63) and(71).

TR1 (71)

TR2
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Ill. NUMERICAL STUDY F+ 1 - 1 - 1 - 1T ' 1

The renormalization of the sum of a finite-range and a 3r 7
divergent potential is of considerable interest in the context —_ .
of effective-field-theoretic nucleon-nucleon interaction ks ]
[7,9,11,12. Such a sum of divergent and finite-range poten- 8 2 i
tials appears in a field-theoretic description of low-energy £ | ]
nucleon-nucleon interaction as in EG) [11,13. It is not & I ]
even clear whether such potentials could be renormalized e 1r =
successfully. We address this point in the following, where S I ]
the finite-range potential is taken to be a separable one. A e = —--= T
general discussion with a complicated finite-range potential ok sT=————
will only add to numerical complication. We perform renor- i | | | \\I~\\;
malization when a finite-range attractive separable potential, ' ' ' ' '
Vi(p.)=Aiu(p)u(a) with u(p)=[a?(a’+p) P, is T ceyteny
added to a divergent potentialy(p,q). Among divergent
potentials we specifically considerVy(p,q)=\, or FIG. 1. Phase shifts at different center-of-mass energie&for
V4(p,q) =\,p?g?, which appears in Eq5). separable potentialV¢(p,q) (solid line with coupling A

The K matrix for finite-range separable potentigl(p,q)  =—4.9737 fm, (b) potential V¢(p,q)+\, (dashed-dotted line
is and(c) potentialV{(p,q) + \,p?q? (dashed ling The phase shifts

(b) and(c) refer to renormalized matrices. Of the two curves in
5 u?(k) sets(b) and(c) the upper(lower) one refers to separable potential
K(k?)= m, (72) couplingh;=0.9\¢ (1.1\p).

- ; - - ence of the divergent potentials;=1.1\y=—5.4711 fm
with A,y given by Eq.(38). PotentialVy(p,q) is taken to and A;=0.9\g=—4.4763 fm. In order that the renormal-

model anSwave spin-triplet nucleon-nucleon interaction. ; ; .
We employ nuclear unitsi2/2m=41.47 MeV fn?, where ized K matrix (73) leads to the scattering length 5.42 fm, one

R_ _
2m is the nucleon mass and také=1 fm 2. We assume should have.;=0.0729 fm(0.0296 ) for A= 1.1z, and

A3=—-0.0934 fm (-0.0362 fm) for\;=0.9\o with the
that Vy(p,q) supports a bound deuteron and produces th?ozrm-factor of diver(gent potentizzj(p)=i (p?). ?n the case

. . 2 _ -
Eﬁgsrtlme ec;?bzcgtggggnfg?gﬁbg l;()l\( ):/2_—45;;2371‘rr]1.mTh|s where the strength of the attractive separable interaction
We consider the sum of diverglyentopotenﬁQ,I(p a énd V:(p,q) is increaseddecreasex the renormalized strength

the separable potentiaV,(p.q), given by E (’3) ,With of the divergent potential should be repulsiattractive in

- P p_ P ip.4), 9 y =a. order to reproduce the experimental scattering length 5.42
U(p)._ 1 oru(p)=p gnd g(p) Qefmed gbqve. _The formal fm. This is reflected by the sign of the renormalized strength
solution for theK matrix with this potential is given by Eq. AR of the divergent potential in both cases
f)3b7t)a'1ir\1N gerfgfjrl]aeriggg g:\é?rrige\r/]\}el?r:?rgorglllj :Z”g' blgrg rg :J;I?n g The phase shifts of different schemes are shown in Fig. 1,

' where we plot phase shifts for potent\(p,q) (solid line)

. . R= _ .
n _Eq. (37) n place Ofﬁz. such that MZ._(M‘Z A_“”) 'S & " and the two sets of renormalized phase shifts in the presence
finite quantity, where\; is the renormalized coupling which ¢ the divergent potentials\, (dashed-dotted line and

is taken to be energy independent. Then one obtains the fo L,p2q? (dashed lingfor \;=1.1, and\,=0.9\,. The two
lowing regularizeck matrix: lines below(above the solid line correspond th;=1.1\,

KR(kZ) (09)\0)
In the presence of ultraviolet divergences, any renormal-
U2(K) (IAR) +02(K) (11— Ayy) +2u(K)v (K) Ay, ization scheme should lead to physically plausible result at
= R > , low energies, with energies much lower than the cutoff.
(I (LN = Ay — Ay, Hence the two versions of renormalized matrices (73)

(73)  should be similar t& matrix (72) at low energies. From Fig.

1 we find that this is indeed the case. An examinatioK of
which is appropriate for both cut-off and dimensional regu-matrix (72) reveals that it tends to zero &8— o, which is
larizations. Of course, in dimensional regularizatid,, physically expected from scattering equati@). However,
=0 and A\5=X\,, if energy-independent bare coupling is K matrix (73 tends to A5 (AFk*) as k?—w for v(p)
used. If we demand that regulariz&d matrix (73) should =1 (p?). Hence at high energies the renormalizednatrix
yield identical phase-shift or scattering length as that prohas physically unacceptable behavior. However, &)
duced by potentiaV/¢(p,q), we find that)\§=)\2=0, which  yields very reasonable result at low energies, which define
sets the divergent potential equal to zero. In order that Eqhe domain of validity of renormalization. In the presence of
(73 still models theS-wave nucleon-nucleon triplét matrix ~ the divergent potential a new parametrization of the interac-
in the presence of a nonzero divergent potential, either th&éon is needed to fit the experimental observables. In order to
strength\; or the parameter of the separable potential fit the phase shifts to higher energies, specially in the pres-
should be changed once the divergent potential is includednce of stronger ultraviolet divergence, the quantitﬁll
We keep the parameter=1 fm~2 unchanged and consider =(1/x,—A,,) has to be taken to b dependent with sev-
two possibilities for the coupling; of V¢(p,q) in the pres- eral parameters.
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IV. SUMMARY The renormalized result is taken to simulate 8wave spin-

triplet nucleon-nucleon potential. We find that in both cases
; . ; the low-energy renormalized phase shifts are physically
tentials(1), (2), (3), and(4) by cut-off and dimensional regu- e.plausible. The present analytical and numerical studies dem-

larizations. The solution of the dynamical problem in thes ‘onstrate that regularization and renormalization are efficient

cases |_nvolve_s uItraV|oI_et d|v§rgences. For _these _potentlal_s fhols for treating divergent potentials in nonrelativistic quan-
three dimensions, all dimensionally regularized divergent in-

tegrals over Green'’s functions are identically zero. Both cut—tum mechanics.
off and dimensional regularization schemes lead to equiva-
lent renormalized results for potentidl®, (2), and(3), only

if general energy-dependent bare couplings are employed. We thank Dr. Rabin Banerjee and Dr. Marcelo de M.
For tensor potentiald), both regularizations in three dimen- Leite for informative discussions and the Conselho Nacional
sions also lead to equivaleKt matrices. We also performed de Desenvolvimento Cieffito e Tecnolgico, Fundago de
renormalization when the potential is the sum of a separabl@mparo aPesquisa do Estado deédSRaulo, Financiadora de
and an analytic divergent potential. For the divergent part&€studos e Projetos of Brazil, and the John Simon Guggen-
we took one of the following two potentiala: and A p%g2. heim Memorial Foundation for partial financial support.

We have renormalized thi€ matrices obtained with po-
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