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Dimensional versus cut-off renormalization and the nucleon-nucleon interaction
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The role of dimensional regularization is discussed and compared with that of cut-off regularization in some
quantum mechanical problems with ultraviolet divergence in two and three dimensions with special emphasis
on the nucleon-nucleon interaction. Both types of renormalizations are performed for attractive divergent one-
and two-term separable potentials, a divergent tensor potential, and the sum of a delta function and its
derivatives. We allow energy-dependent couplings, and determine the form that these couplings should take if
equivalence between the two regularization schemes is to be enforced. We also perform renormalization of an
attractive separable potential superposed on an analytic divergent potential.@S0556-2813~98!07310-5#

PACS number~s!: 21.30.2x, 03.65.Nk, 11.10.Gh, 13.75.Cs
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I. INTRODUCTION

Ultraviolet divergences appear in exact as well as per
bative treatments of the nonrelativistic quantum mechan
two-body problem in momentum space interacting via tw
body potentials with certain singular behavior at short d
tances@1–13# in two and three space dimensions. Simi
divergences appear in perturbative quantum field theory
are usually treated by renormalization techniques@14,15#.
There are several variants of renormalization that emp
different types of regularizations, such as the cut-off, a
dimensional regularizations. Unless there is some symm
violation in performing regularization, in perturbative fie
theory, both regularization schemes are expected to lea
the same renormalized result at low energies. The clo
related technique of discretization on the lattice in such fi
theoretic problems also should lead to equivalent results.
actly as in quantum field theory, the ultraviolet divergenc
in quantum mechanics can be treated by renormalizat
Three schemes have been used for the purpose: cut-off r
larization @1–3,5–7,10,11#, dimensional regularization
@6,9,11#, and discretization on the lattice@4#. For the simplest
d-function potential all three approaches lead to the ident
result.

Recently, cut-off@1,5–7,10,11# and dimensional@6,10,11#
regularizations have been successfully used by several w
ers in quantum mechanical problems inS and higher partial
waves in the context of nucleon-nucleon interaction. A
though both regularization schemes have been success
used for the purpose of renormalization in quantum mech
cal problems with ultraviolet divergence, their equivalen
cannot be demonstrated except in the simplest problem
this work we consider several problems with ultraviolet
vergence, allow energy-dependent bare couplings, and
the forms that these couplings must take in order to ob
equivalence between the two regularization schemes.

We consider four potentials for illustration. The simple
is the minimal potential in a general partial wave conside
recently @1#. In momentum space this potential posses
only the threshold behavior and is given by the followi
one-term separable form:
PRC 580556-2813/98/58~4!/1913~8!/$15.00
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V~p,q!5pLlLqL, ~1!

with L the angular momentum. ForL50, this potential is the
usual d-function potential. As the Lippmann-Schwinge
equation has the same generic form in all partial waves,
ultraviolet divergence of this potential becomes stronger
stronger asL increases. Next we consider a two-term sep
rable potential of the form

V~p,q!5l0u~p!u~q!1l2v~p!v~q!, ~2!

whereu(p) andv(p) are each divergent form factors of th
type pL, considered in the first potential. We also consid
the potential@5,6,10,11#

V~p,q!5l11l2~p21q2!. ~3!

Potential~3! is the sum of ad function and its second de
rivatives. This potential is interesting as it appears as a p
in the low-energy nucleon-nucleon potential derived fro
effective field theory and has received attention recen
@11,13#. Finally, we consider the following minimal tenso
nucleon-nucleon potential possessing ultraviolet divergen

uVLL8~p,q!u[S V00~p,q! V02~p,q!

V20~p,q! V22~p,q!
D 5S l0 l1q2

l1p2 l2p2q2D ,

~4!

wherel0 and l2p2q2 are divergentS and D wave parts of
the nucleon-nucleon potential~1!. In Eq. ~4! the angular mo-
mentum labelsL andL8 are explicitly shown. The term in-
volving l1 provides theS-D coupling. Whenl150, theS
andD waves decouple and we essentially have potential~1!.
The functionsp2 andq2 are the threshold factors forL52.

The nucleon-nucleon potential derived from a chiral L
grangian formulation of effective field theory contains usu
finite-range potentials superposed on divergent poten
containing delta function and derivatives~gradients! and can
be written as@5,6,10,11#

V~p,q!5Vf~p,q!1l11l2~p21q2!1l3p2q2

1l4~p41q4!1•••, ~5!
1913 © 1998 The American Physical Society
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whereVf(p,q) represents the usual finite-range parts of
potential. The configuration-space derivatives of thed func-
tion appear as powers of momenta in momentum space.
tential ~3! is just a part of Eq.~5!. Though one can renorma
ize the divergent parts separately, it is not clear tha
potential, such as Eq.~5!, containing a divergent and a finite
range part can be successfully renormalized. Though a
eral answer to this question involving local finite-range p
tentials may involve a complicated numerical calculatio
scheme, we would like to address this point in a much s
pler context, where we take the finite-range part to be
attractive separable potential frequently used to simulate
nucleon-nucleon interaction. We perform an analysis
show that when a divergent potential of the forml or lp2q2

is summed to an attractive separable potential, the renor
ized scatteringK or t matrix leads to physically plausibl
results for the nucleon-nucleon system at low energies.

The plan of our work is as follows. We perform renorma
ization of potentials~1!, ~2!, ~3!, and~4!, in Secs. II A, II B,
II C, and II D, respectively, using both dimensional and c
off regularizations. In Sec. II A we consider the scatteri
problem in both two and three dimensions. Potentials~2!,
~3!, and ~4! are mostly of interest in nuclear physics a
hence we shall be limited to only the three-dimensional c
in Secs. II B, II C, and II D. In Sec. III we present results f
the renormalization of a divergent potential of the forml or
lp2q2 added to an attractive separable potential. Finally
Sec. IV a brief summary of the present work is presente

II. REGULARIZATION AND RENORMALIZATION

The partial-wave Lippmann-Schwinger equation for theK
matrix KL(p,q,k2), at center-of-mass energyk2, is given, in
dimensiond, by

KL~p,k,k2!5VL~p,k!1PE qd21dqVL~p,q!

3G~q;k2!KL~q,k,k2!, ~6!

with the free Green’s functionG(q;k2)5(k22q2)21, in
units \52m51, wherem is the reduced mass;P in Eq. ~6!
denotes principal value prescription for the integral and
momentum-space integration limits are from 0 to`. The
~on-shell! scattering amplitudetL(k) is defined by

1

tL~k!
5

1

KL~k2!
1 i

p

2
kd22, ~7!

whereKL(k2)[KL(k,k,k2)52(2/p)(tandL /k) with dL the
phase shift. All scattering observables can be calculated
ing tL(k). Though we are considering a general dimens
d, we shall be limited in the present work tod52 and 3.
Most of our results can be generalized to higher dimensio
The condition of unitarity is given by

Im tL~k!52
p

2
kd22utL~k!u2, ~8!

where Im denotes the imaginary part. Here we emplo
K-matrix description of scattering. Then the renormalizat
algebra will involve only real quantities and we do not ha
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to worry about unitarity, which can be imposed later via E
~7!. This is the simplest procedure to follow, as all renorm
ization schemes preserve unitarity.

A. The minimal potential

Minimal potential ~1! has been renormalized by cut-o
regularization in three dimensions in@1# using thet-matrix
approach. Here we present a brief account of that work w
appropriate generalization to theK-matrix approach in both
two and three dimensions. We also perform dimensio
regularization with this potential and discuss its consiste
with cut-off regularization. For minimal potential~1!, the K
matrix of Eq.~6! permits the following analytic solution:

KL~p8,p,k2!5p8LtL~k!pL, ~9!

with the t function defined by

tL~k!5@lL
212I L~k!#21 ~10!

I L~k!5PE qd21dqq2LG~q;k2!. ~11!

Integral I L(k) of Eq. ~11! possesses ultraviolet divergenc
As thet function completely determines theK matrix and as
the divergent terms are contained in it, we consider
renormalization of this function.

Because of the ultraviolet divergence in Eq.~11!, some
regularization is needed to give meaning to it. We use
following regularized Green’s function with a sharp cutof

GR~q,L;k2!5~k22q2!21Q~L2q!, ~12!

with Q(x)50 for x,0 and 51 for x.0. In Eq. ~12!, L
(@k) is a large but finite quantity. In the end, the limitL
→` has to be taken. Finite results for physical magnitud
asL→`, are obtained only if the couplinglL is understood
to be the so-called bare couplinglL(k,L).

In order to proceed with the choice of the bare coupli
we have to consider a specific value of dimensiond. First,
we considerd53. The choice of the bare coupling can b
found by inspection of the following regularized form of E
~11!:

I RL~k,L![PE q2dqq2LGR~q,L;k2! ~13!

52F (
j 50

L
k2~L2 j !L2 j 11

2 j 11
1

k2L11

2
lnUL2k

L1kUG .

~14!

In the largeL (@k) limit, the logarithmic term in Eq.~14!
tends to zero and

lim
L→`

I RL~k,L!52(
j 50

L
k2~L2 j !L2 j 11

2 j 11
. ~15!

All terms in Eq. ~15! diverge asL→`. Except forL50,
these divergent terms are momentum~k! dependent.
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For obtaining a finite renormalizedt function, the cou-
pling lL should be understood to be the so-called bare c
pling lL(k,L). In Ref. @1# the following energy-dependen
bare coupling was used:

lL
21~k,L!52(

i 50

L
k2~L2 i !L2i 11

2i 11
1L0L~k2!, ~16!

where functionL0L(k2) can be used to introduce the phys
cal scale~s! of the system and characterizes the strength
the interaction. The quantity 1/L0L(k2) could be termed the
renormalized strength or coupling of the interaction. We
taking the bare coupling to be energy dependent. In
present nonrelativistic context this is not of concern, as
bare coupling is not an observable. We shall see that
renormalizedK matrix obtained after renormalization from
this bare coupling has the desired analytic properties ink2.
We shall see that this energy dependence is necessar
order to obtain equivalent results from cut-off and dime
sional regularizations.

However, there are reasons to argue against the us
energy-dependent bare couplings. In field theory they co
spond to counterterms that violate time reversal invarian
and also destroy the usual Hermitian structure of
quantum-mechanical potential generating theS matrix. In
spite of these, we shall use energy-dependent bare coup
in this study, as that seems to be a means for obtain
equivalent results from cut-off and dimensional renormali
tion as the ultraviolet divergence is energy dependent in
case. The renormalized physical result should be indep
dent of the regularization schemes employed. ForL.0, be-
cause of the additional freedom provided by the ener
dependent couplings, we can obtain equivalent results f
the two different regularization schemes.

Employing bare coupling~16!, the regularizedt function
of Eq. ~10! can now be rewritten as

tRL~k,L!5@lL
21~k,L!2I RL~k,L!#21, ~17!

where for a finiteL, I RL(k,L) is a convergent integral. As
L→`, lL

21(k,L) of Eq. ~16! has the appropriate divergen
behavior, which cancels the divergent part Eq.~15! of
I RL(k,L). As L→`, one obtains the following renorma
ized t function from Eqs.~15!, ~16!, and~17!:

tRL~k!5 lim
L→`

@lL
21~k,L!2I RL~k,L!#215

1

L0L~k2!
.

~18!

In three dimensions, the low-energy scattering is usually
rametrized by a few parameters as in the effective-range
pansion. Hence it is natural to take

L0L~k2!521/aL
2L111bL

122Lk21•••, ~19!

whereaL is the scattering length andbL is a range parameter
These parameters are usually called physical scales as
measure the physical observables, such as a cross sect

Next, we considerd52. Here the regularized integra
I L(k), in the largeL limit ( L@k), becomes@6#
u-
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I RL~k,L![PE qdqq2LGR~q,L;k2! ~20!

52F2 ln
k

L G , L50 ~21!

52FL2

2
2k2ln

k

LG , L51 ~22!

52FL4

4
1

k2L2

2
2k4ln

k

LG , L52, ~23!

so that for a generalL we have

I RL~k,L!52(
j 51

L
k2~L2 j !L2 j

2 j
1k2Lln

k

L
. ~24!

In order to obtain a finite renormalizedt function, the cou-
pling lL should be understood to be the so-called bare c
pling defined, for example, by

lL
21~k,L!52(

j 51

L
k2~L2 j !L2 j

2 j
1k2Lln

L0L~k2!

L
, ~25!

where the functionL0L(k2) can again be used to introduc
the physical scale~s! of the system and characterizes t
strength of the interaction as in the case withd53. If we use
Eqs.~24! and ~25! in Eq. ~17! the following renormalizedt
function is obtained in the limitL→`:

tRL~k!52
1

k2Lln@k/L0L~k2!#
. ~26!

The ln(k) dependence in Eq.~26! is the proper low-energy
momentum dependence in two dimensions@16#. Expressions
~18! and~26! are the renormalizedt functions obtained with
cut-off regularization ford53 and 2, respectively. Now it is
realized that the use of energy-dependent bare coupling~16!
is essential for removing the ultraviolet divergences in
L→` limit by cut-off regularization.

The above-mentioned problem can also be tackled w
the help of dimensional regularization@15#. In this procedure
integral ~11! is evaluated to yield@17#

I RL~k,d![PE qd21dqq2L~k22q2!21 ~27!

52
1

2
GS 2L1d

2 DGS 222L2d

2 D
3Re@~2k2!~2L1d22!/2#, ~28!

where Re denotes the real part. Integral~27! is divergent for
d52 and 3 and Eq.~28! is the finite result valid for 0,(d
12L),2. In dimensional regularization, Eq.~28! is inter-
preted to be an extrapolation of the convergent result
small (d12L) (,2) to the actual values of (d12L)
(>2) for which the result is divergent. In odd dimensio
the dimensionally regularized integral~28! is zero because i
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contains the real part of an imaginary quantity. However,
dimensional regularization in even dimensions, Eq.~28! is
used to extract the divergent part ofI RL(k) as in Eq.~15! and
then renormalization can be performed.

For d53, the dimensionally regularized result~28! is al-
ready finite:

I RL~k!50, ~29!

and in this case one does not need to introduce a new ene
dependent bare coupling and from Eqs.~9! and ~10! one
immediately obtains

tRL~k!5lL , and KRL~k2!5lLk2L. ~30!

However, equivalence between the cut-off renormalized
sult ~18! and the dimensionally regularized result~30! is ob-
tained if the following energy-dependent bare coupling
used instead:

lL~k!51/L0L~k2!. ~31!

For d52, the dimensionally regularized result still co
tains infinities and a subtraction of these infinities is nec
sary before obtaining a finite renormalized result. In t
case, asd→2, Eq. ~28! can be rewritten as@18#

lim
e→0

I RL~k,e!52k2LFG~e!

2 GRe@~2k2!2e#

52k2LF 1

2e
2 ln k2

g

2G , ~32!

whereg50.577 . . . is theEuler number ande5(12d/2).
In writing Eq. ~32!, use has been made of the well-know
limits
n-

h

r

gy-

-

s

s-
s

lim
e→0

G~e!→
1

e
2g1O~e!1•••, ~33!

lim
e→0

Re@~2k2!2e#→122e ln k1O~e2!1•••, ~34!

andG(11x)5xG(x). In the limit d→2, e→0 and Eq.~32!
is divergent. If we compare Eq.~32! with Eq. ~24! we find
that the 1/e pole in the dimensionally regularized integr
corresponds to the different divergences including a logar
mic divergence in the cut-off regularized integral. Equati
~32! contains the logarithm ofk — a dimensional variable
The scale of the logarithm is hidden in the 1/e term and
appears when the divergence is canceled with an approp
choice of bare coupling@18#. For performing renormalization
with the dimensionally regularized result~32!, one should
choose the bare coupling as

lL
21~k,e!52

k2L

2 F1

e
2gG1k2Lln L0L~k2!. ~35!

In the limit e→0, using Eqs.~32! and ~35! in

tRL~k!5 lim
e→0

@lL
21~k,e!2I 2L~k,e!#21 ~36!

one obtains the finite renormalized result~26!, obtained by
cut-off regularization. Hence both regularization schem
yield equivalent renormalized results.

B. The rank-two separable potential

Next we consider the renormalization of rank-two sep
rable potential~2! for d53. In this case the on-shellK matrix
is given by@19#
K~k2!5
u2~k!~1/l22Avv!1v2~k!~1/l02Auu!12u~k!v~k!Auv

~1/l22Avv!~1/l02Auu!2Auv
2

, ~37!
ve
in

oce-

n.
of
e

where

Auu[PE q2dqu2~q!G~q;k2!, ~38!

Auv[PE q2dqu~q!v~q!G~q;k2!, ~39!

Avv[PE q2dqv2~q!G~q;k2!. ~40!

In order to work out the divergent terms explicitly we co
sider a specific case:u(p)51,v(p)5p2. This specialization
does not correspond to any real loss of generality. Ot
choices ofu(p) andv(p) can be worked out similarly. With
this choice theK matrix becomes
er

K~k2!5
@1/l22I 2~k!#1k4@1/l02I 0~k!#12k2I 1~k!

@1/l22I 2~k!#@1/l02I 0~k!#2I 1
2~k!

.

~41!

In this case, divergent integralsAuu , Auv , andAvv areI L(k)
of Eq. ~11! with L50, 1, and 2, respectively. These ha
been treated by dimensional and cut-off regularizations
Sec. II A. Hence one can use the same regularization pr
dure as employed there. However, in general,l0 andl2 of
Eq. ~41! are to be interpreted as cut-off (L) dependent bare
coupling.

In this case first we perform dimensional regularizatio
From Eq.~29!, we find that the dimensional regularization
integrals I L(k) for d53 are all zero. Then, if we use th
energy-dependent bare couplings~31!, from Eq.~41! we ob-
tain the following finite regularized on-shellK matrix:
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KR~k2!5L00
21~k2!1L02

21~k2!k4, ~42!

whereL0L
21(k2)’s are polynomials ink2 as in Eq.~19!. The

renormalizedK matrix ~42! will have the form of a polyno-
mial in k2 at low energies.

Next we employ cut-off regularization in Eq.~41!. If we
use Eq.~15!, regularizedK matrix ~41! becomes

KR~k2!5
A1Bk21Ck4

D1Ek21Fk4
~43!

5
A

D
1S B

D
2

AE

D2 D k21•••, ~44!

where

A5
1

l2
1

L5

5
, B52

L3

3
, C5

1

l0
, ~45!

D5
1

l0l2
1

L5

5l0
1

L

l2
1

4L6

45
,

E5
L3

3l0
2

L4

3
, and F5

L

l0
. ~46!

Equation~43! represents the exact solution and Eq.~44! is its
low-energy expansion. One performs renormalization sub
to conditionsk→0 andL→`. As there are two couplings
l0 and l2 , two renormalization conditions can be used
this case. These two conditions can be used to determine
constant term and the coefficient of thek2 term in Eq.~44!.
Thus one introduces two renormalized parameters via

l0
R5 lim

L→`

A

D
, l2

R5 lim
L→`

S B

D
2

AE

D2 D ~47!

so that the renormalizedK matrix becomes

KR~k2!5l0
R1l2

Rk21•••, ~48!

which is the result of cut-off renormalization at low energi
up to terms linear ink2. Equations~47! define the bare cou
plings in the limitL→`, although it is not possible to write
closed-form expressions for them in this case.

In this case it is possible to guarantee the equivalenc
theK matrices~42! and~43!. For this purpose, it is necessa
to take advantage of the energy-dependence of the bare
plings to ensure

L00
21~k2!1L02

21~k2!k45 lim
L→`

A1Bk21Ck4

D1Ek21Fk4
, ~49!

where some care must be taken since bare couplingsl0 and
l2 depend onL. One can also enforce equivalence by wr
ing l0 and l2 as energy-dependent functions ofL00 and
L02. A suitable choice of bare couplings will give th
equivalence of the two results.
ct

the

of

ou-

C. A d-function potential and its derivatives

Now we consider potential~3! for d53, which is the sum
of a d function and its second derivatives in configurati
space. This potential appears in the field theoretic reduc
of low-energy nucleon-nucleon potential@5,6,11,13#. After a
straightforward calculation, the on-shellK matrix for this
potential is given by

K~k2!

5
2k2/l21l1 /l2

21I 2~k!22k2I 1~k!1k4I 0~k!

1/l2
222I 1~k!/l21I 1

2~k!2l1I 0~k!/l2
22I 0~k!I 2~k!

,

~50!

where I L(k)’s are given by Eq.~11!. These integrals have
been treated by dimensional and cut-off regularizations
Sec. II A. Hence one can use the same regularization pr
dure as employed there. Again,l1 andl2 of Eq. ~50! are to
be interpreted as cut-off (L) dependent bare coupling.

Here, first we perform dimensional regularization. Fro
Eq. ~29!, we find that the dimensional regularization of int
gralsI L(k) for d53 are all zero. Then, if we use the energ
dependent bare couplings~31!, from Eq.~41! one obtains the
following finite regularized on-shellK matrix:

KR~k2!5L1
21~k2!1L2

21~k2!k2, ~51!

whereL1
21(k2) andL2

21(k2) are polynomials ink2 as in Eq.
~19!. Hence the renormalizedK matrix ~51! has the form of a
polynomial ink2 at low energies.

Next we employ cut-off regularization in Eq.~50!. Then
the quantitiesI 0(k), I 2(k), andI 4(k) are, respectively, given
by Eq.~15! with L50, 1, and 2, and we obtain from Eq.~50!

KR~k2!5
A1Bk2

D1Ek2
~52!

5
A

D
1S B

D
2

AE

D2 D k21•••, ~53!

where

A5
l1

l2
2

2
L5

5
, B5

L3

3
1

2

l2
, ~54!

D5
1

l2
2

1
2L3

3l2
1

l1L

l2
2

2
4L6

45
, and E5

2L

l2
1

L4

3
.

~55!

Equation~52! represents the exact solution and Eq.~53! is its
low-energy expansion. Now as in Sec. II B one could int
duce two renormalized parameters via Eq.~47! and obtain a
cut-off renormalizedK matrix at low energies as in Eq.~48!.
The cut-off renormalizedK matrix can be consistent with th
dimensionally renormalized one~51!, if one exploits the
flexibility introduced by the energy-dependent bare co
plings to ensure
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L1
21~k2!1L2

21~k2!k25 lim
L→`

A1Bk2

D1Ek2
, ~56!

where again some care must be taken since bare coup
l0 andl2 depend onL.

D. The tensor potential

Finally, we consider the renormalization of the tensor p
tential ~4! in three dimensions. TheK matrix elements in this
case satisfy the following set of coupled equations:

KLL8~p,k,k2!5VLL8~p,k!1P (
L950,2

E q2dqVLL9~p,q!

3G~q;k2!KL9L8~q,k,k2!. ~57!

From Eqs.~4! and ~57! it is realized that theK matrix ele-
ments have the following form:

uKLL8~p,q,k2!u[S K00~p,q,k2! K02~p,q,k2!

K20~p,q,k2! K22~p,q,k2!
D

5S t0 t1q2

t1p2 t2p2q2D , ~58!
o

ba
gs

-

where the energy-dependent functionst ’s are defined by

S t0 t1

t1 t2
D 5S l0 l1

l1 l2
D

1S l0 l1

l1 l2
D S I 0~k! 0

0 I 2~k!
D S t0 t1

t1 t2
D ,

~59!

with I 0(k) and I 2(k) given by Eq.~11!.
Equation~59! can be rewritten as

S 12l0I 0~k! 2l1I 2~k!

2l1I 0~k! 12l2I 2~k!
D S t0 t1

t1 t2
D 5S l0 l1

l1 l2
D .

~60!

The following solution of Eq.~60! can be obtained afte
straightforward algebra:
S t0 t1

t1 t2
D 5

1

DS l01~l1
22l0l2!I 2~k! l1

l1 l21~l1
22l0l2!I 0~k!

D , ~61!
are
ne

lid

ults
where

D[@12l0I 0~k!#@12l2I 2~k!#2l1
2I 0~k!I 2~k! ~62!

is the determinant of the first matrix on the left-hand side
Eq. ~60!. If we use a dimensionally regularized result~29! for
integralsI 0(k) andI 2(k) in Eqs.~61! and~62!, we obtain the
following dimensionally regularizedt function:

S tR0 tR1

tR1 tR2
D 5S L0

21~k2! L1
21~k2!

L1
21~k2! L2

21~k2!
D , ~63!

where we have employed the usual energy-dependent
couplings.

Next we employ cut-off regularization to Eq.~61!. If we
use the cut-off regularized result~15! for integrals I L(k),
each oft0 , t1 , andt2 will have a form similar to the right-
hand side of Eq.~43! and one can make an expansion ink2

as in Eq.~44!. Using explicit forms of cut-off regularized
integralsI L(k), the regularizedt0 , t1, andt2 can be written
as

tR05J@l02~l1
22l0l2!L5/5#1O~k2!1•••, ~64!

tR15Jl11O~k2!1•••, ~65!

tR25J@l22~l1
22l0l2!L#1O~k2!1•••, ~66!
f

re

where

J5@11l0L1l2L5/52~l1
22l0l2!L6/5#21. ~67!

In this case there are three couplings in potential~4!: l0 , l1 ,
and l2 . These couplings are to be interpreted as the b
couplings for regularization and renormalization. Now if o
introduces three renormalized couplingslR0 , lR1, andlR2
through

lim
L→`

J@l02~l1
22l0l2!L5/5#5lR0 , ~68!

lim
L→`

Jl15lR1 , ~69!

lim
L→`

J@l22~l1
22l0l2!L#5lR2 , ~70!

one obtains the following energy-independent solution va
in the extreme low-energy limit:

S tR0 tR1

tR1 tR2
D 5S lR0 lR1

lR1 lR2
D . ~71!

Again it is possible to establish equivalence between res
~63! and ~71!.
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III. NUMERICAL STUDY

The renormalization of the sum of a finite-range and
divergent potential is of considerable interest in the cont
of effective-field-theoretic nucleon-nucleon interacti
@7,9,11,12#. Such a sum of divergent and finite-range pote
tials appears in a field-theoretic description of low-ene
nucleon-nucleon interaction as in Eq.~5! @11,13#. It is not
even clear whether such potentials could be renormal
successfully. We address this point in the following, whe
the finite-range potential is taken to be a separable one
general discussion with a complicated finite-range poten
will only add to numerical complication. We perform reno
malization when a finite-range attractive separable poten
Vf(p,q)5l1u(p)u(q) with u(p)5@a2/(a21p2)#2, is
added to a divergent potential,Vd(p,q). Among divergent
potentials we specifically considerVd(p,q)5l2 or
Vd(p,q)5l2p2q2, which appears in Eq.~5!.

The K matrix for finite-range separable potentialVf(p,q)
is

K~k2!5
u2~k!

1/l12Auu
, ~72!

with Auu given by Eq.~38!. PotentialVf(p,q) is taken to
model anS-wave spin-triplet nucleon-nucleon interactio
We employ nuclear units:\2/2m541.47 MeV fm2, where
2m is the nucleon mass and takea251 fm22. We assume
that Vf(p,q) supports a bound deuteron and produces
experimental scattering lengtha[pK(k2)/255.42 fm. This
fixes the value of coupling to bel1[l0524.9737 fm.

We consider the sum of divergent potentialVd(p,q), and
the separable potential,Vf(p,q), given by Eq. ~3! with
v(p)51 or v(p)5p2 and u(p) defined above. The forma
solution for theK matrix with this potential is given by Eq
~37!, where the only divergent integral isAvv . In order to
obtain a regularizedK matrix, we introduce a bare couplin
in Eq. ~37! in place ofl2 such that 1/l2

R[(1/l22Avv) is a
finite quantity, wherel2

R is the renormalized coupling whic
is taken to be energy independent. Then one obtains the
lowing regularizedK matrix:

KR~k2!

5
u2~k!~1/l2

R!1v2~k!~1/l12Auu!12u~k!v~k!Auv

~1/l2
R!~1/l12Auu!2Auv

2
,

~73!

which is appropriate for both cut-off and dimensional reg
larizations. Of course, in dimensional regularization,Avv
50 and l2

R5l2 , if energy-independent bare coupling
used. If we demand that regularizedK matrix ~73! should
yield identical phase-shift or scattering length as that p
duced by potentialVf(p,q), we find thatl2

R5l250, which
sets the divergent potential equal to zero. In order that
~73! still models theS-wave nucleon-nucleon tripletK matrix
in the presence of a nonzero divergent potential, either
strengthl1 or the parametera of the separable potentia
should be changed once the divergent potential is includ
We keep the parametera51 fm22 unchanged and conside
two possibilities for the couplingl1 of Vf(p,q) in the pres-
a
xt

-
y

d
e
A

al

l,

e

ol-

-

-

q.

e

d.

ence of the divergent potentials:l151.1l0525.4711 fm
and l150.9l0524.4763 fm. In order that the renorma
izedK matrix ~73! leads to the scattering length 5.42 fm, o
should havel2

R50.0729 fm~0.0296 fm! for l151.1l0 , and
l2

R520.0934 fm (20.0362 fm) for l150.9l0 with the
form-factor of divergent potentialv(p)51 (p2). In the case
where the strength of the attractive separable interac
Vf(p,q) is increased~decreased!, the renormalized strength
of the divergent potential should be repulsive~attractive! in
order to reproduce the experimental scattering length 5
fm. This is reflected by the sign of the renormalized stren
l2

R of the divergent potential in both cases.
The phase shifts of different schemes are shown in Fig

where we plot phase shifts for potentialVf(p,q) ~solid line!
and the two sets of renormalized phase shifts in the prese
of the divergent potentialsl2 ~dashed-dotted line! and
l2p2q2 ~dashed line! for l151.1l0 andl150.9l0 . The two
lines below~above! the solid line correspond tol151.1l0
(0.9l0).

In the presence of ultraviolet divergences, any renorm
ization scheme should lead to physically plausible resul
low energies, with energies much lower than the cuto
Hence the two versions of renormalizedK matrices ~73!
should be similar toK matrix ~72! at low energies. From Fig
1 we find that this is indeed the case. An examination oK
matrix ~72! reveals that it tends to zero ask2→`, which is
physically expected from scattering equation~6!. However,
K matrix ~73! tends to l2

R (l2
Rk4) as k2→` for v(p)

51 (p2). Hence at high energies the renormalizedK matrix
has physically unacceptable behavior. However, Eq.~73!
yields very reasonable result at low energies, which de
the domain of validity of renormalization. In the presence
the divergent potential a new parametrization of the inter
tion is needed to fit the experimental observables. In orde
fit the phase shifts to higher energies, specially in the pr
ence of stronger ultraviolet divergence, the quantity 1/l2

R

[(1/l22Avv) has to be taken to bek2 dependent with sev-
eral parameters.

FIG. 1. Phase shifts at different center-of-mass energies for~a!
separable potentialVf(p,q) ~solid line! with coupling l0

524.9737 fm, ~b! potential Vf(p,q)1l2 ~dashed-dotted line!,
and ~c! potentialVf(p,q)1l2p2q2 ~dashed line!. The phase shifts
~b! and ~c! refer to renormalizedK matrices. Of the two curves in
sets~b! and ~c! the upper~lower! one refers to separable potenti
couplingl150.9l0 (1.1l0).
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IV. SUMMARY

We have renormalized theK matrices obtained with po
tentials~1!, ~2!, ~3!, and~4! by cut-off and dimensional regu
larizations. The solution of the dynamical problem in the
cases involves ultraviolet divergences. For these potentia
three dimensions, all dimensionally regularized divergent
tegrals over Green’s functions are identically zero. Both c
off and dimensional regularization schemes lead to equ
lent renormalized results for potentials~1!, ~2!, and~3!, only
if general energy-dependent bare couplings are emplo
For tensor potential~4!, both regularizations in three dimen
sions also lead to equivalentK matrices. We also performe
renormalization when the potential is the sum of a separa
and an analytic divergent potential. For the divergent pa
we took one of the following two potentials:l andlp2q2.
,

t,

A

ys

ys

n,
e
in
-
t-
a-

d.

le
ts

The renormalized result is taken to simulate theS-wave spin-
triplet nucleon-nucleon potential. We find that in both cas
the low-energy renormalized phase shifts are physic
plausible. The present analytical and numerical studies d
onstrate that regularization and renormalization are effic
tools for treating divergent potentials in nonrelativistic qua
tum mechanics.
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Amparo àPesquisa do Estado de Sa˜o Paulo, Financiadora de
Estudos e Projetos of Brazil, and the John Simon Gugg
heim Memorial Foundation for partial financial support.
nt,
G.

s.

,

g

@1# S. K. Adhikari and A. Ghosh, J. Phys. A30, 6553~1997!.
@2# S. K. Adhikari and T. Frederico, Phys. Rev. Lett.74, 4572

~1995!; S. K. Adhikari, T. Frederico, and I. D. Goldman,ibid.
74, 487~1995!; C. F. de Araujo, Jr., L. Tomio, S. K. Adhikari
and T. Frederico, J. Phys. A30, 4687~1997!.

@3# R. Jackiw, inM. A. B. Beg Memorial Volume, edited by A. Ali
and P. Hoodbhoy~World Scientific, Singapore, 1991!, pp. 25–
42; C. Manuel and R. Tarrach, Phys. Lett. B328, 113 ~1994!;
L. R. Mead and J. Godines, Am. J. Phys.59, 935 ~1991!; M.
A. B. Beg and R. C. Furlong, Phys. Rev. D31, 1370~1985!; T.
J. Fields, K. S. Gupta, and J. P. Vary, Mod. Phys. Lett. A11,
2233 ~1996!; G. Amelino-Camelia, Phys. Lett. B326, 282
~1994!; Phys. Rev. D51, 2000 ~1995!; T. D. Cohen, Phys.
Rev. C55, 67 ~1997!; H. El Hattab and J. Polonyi, preprin
hep-th/9711061.

@4# S. K. Adhikari, T. Frederico, and R. M. Marinho, J. Phys.
29, 7157~1996!.

@5# D. R. Phillips, S. R. Beane, and T. D. Cohen, Nucl. Ph
A632, 445 ~1998!.

@6# D. R. Phillips, S. R. Beane, and T. D. Cohen, Ann. Ph
~N.Y.! 263, 255 ~1998!.

@7# K. A. Scaldeferri, D. R. Phillips, C. W. Kao, and T. D. Cohe
Phys. Rev. C56, 679 ~1997!.

@8# M. Luke and A. V. Manohar, Phys. Rev. D55, 4129~1997!; P.
Bedaque and U. van Kolck, Phys. Lett. B428, 221 ~1998!; D.
B. Kaplan, Nucl. Phys.B494, 471~1997!; D. B. Kaplan, M. J.
Savage, and M. B. Wise, preprint, nucl-th/9801034.

@9# G. P. Lepage, preprint, nucl-th/9706029.
.

.

@10# K. G. Richardson, M. C. Birse, and J. A. McGovern, prepri
hep-ph/9708435; M. C. Birse, J. A. McGovern, and K.
Richardson, preprint, hep-ph/9807302; hep-ph/9808398.

@11# D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phy
B478, 629 ~1996!.

@12# C. Ordone´z, L. Ray, and U. van Kolck, Phys. Rev. C53, 2086
~1996!.

@13# S. Weinberg, Nucl. Phys.B363, 3 ~1991!; Phys. Lett. B251,
288 ~1990!; Physica A96, 327 ~1979!; E. Witten, Nucl. Phys.
B122, 109 ~1977!.

@14# K. G. Wilson and J. Kogut, Phys. Rep., Phys. Lett.12C, 78
~1974!; L. H. Ryder,Quantum Field Theory~Cambridge Uni-
versity Press, Cambridge, 1985!; P. Ramond,Field Theory: A
Modern Primer~Benjamin/Cummings, Reading, MA, 1981!;
S. Weinberg,The Quantum Theory of Fields~Cambridge Uni-
versity Press, New York, 1995!.

@15# C. G. Bollini and J. J. Giambiagi, Phys. Lett.40B, 566~1972!;
Nuovo Cimento B12, 20 ~1972!; G. ’t Hooft and M. Veltman,
Nucl. Phys.B44, 189 ~1972!.

@16# S. K. Adhikari, Am. J. Phys.54, 362 ~1986!; S. K. Adhikari,
W. G. Gibson, and T. K. Lim, J. Chem. Phys.85, 5580~1986!.

@17# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic, New York, 1965!, p. 292, equation
3.241.4.

@18# M. E. Peskin and D. V. Schroeder,An Introduction to Quan-
tum Field Theory~Addison-Wesley, Reading, 1995!, p. 250.

@19# R. D. Amado, inElementary Particle Physics and Scatterin
Theory, edited by M. Chretien and S. S. Schweber~Gordon
and Breach, New York, 1970!, Vol. 2, p. 40.


