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Interaction of Hawking radiation and a static electric charge
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We investigate whether the equality found for the response of static scalar sources intefiactiith
Hawking radiation in Schwarzschild spacetiraad (i) with the Fulling-Davies-Unruh thermal bath in the
Rindler wedgds maintained in the case of electric charges. We find a finite result in the Schwarzschild case,
which is computed exactly, in contrast with the divergent result associated with the infrared catastrophe in the
Rindler case, i.e., in the case of uniformly accelerated charges in Minkowski spacetime. Thus the equality
found for scalar sources does not hold for electric chafg&3556-282(198)00620-]

PACS numbdrs): 04.70.Dy, 04.62+v, 41.20.Cv

It is well known that the equivalence principle played asense that it corresponds to the quantum state for a black
crucial role in the development of general relativity. It con- hole formed by gravitational collapse, this equality might be
tinues to be tested with great succg¢4$ Recently many pointing to some underlying equivalence principle. Thus, it
authors have asked the question whether or not a quantuis interesting to see whether or not this equality holds for
version of the equivalence principle could be formulatedother fields.

(see, e.g., Ref2]). The main problem in accomplishing this  In this paper we investigate the response of a static elec-
task stems from the fact that states in quantum mechanics améc charge in Schwarzschild spacetime interacting with pho-
defined globally while the equivalence principle involvestons of Hawking radiatiowith the Unruh vacuum We find
only local quantities. Hence, only those phenomena whiclihat the response rate is finite. This immediately implies that
are characterized by frequencies much higher than the spaciere is no equality analogous to that found in the scalar case
time curvature are expected to show some equivalence fdyecause the corresponding rate in Rindler spacetime is infra-
flat and curved spacetime$or example, Hawking radiation red divergent. We present the exact response rate for the
can be derived by requiring that physics near the black holelectric charge instead of merely showing that it is infrared
horizon be the same as that in Minkowski spacetime in thdinite since it is a physically meaningful quantity which one
infinite frequency limit) Thus, there is n@& priori reason to  could measure in principle. We first proceed to the quantiza-
expect any equivalence for low-frequency quantum phenonmtion of the Maxwell field in the exterior region of Schwarzs-
ena in flat and curved spacetimes. Very recently, however, achild spacetime in some detail. Then we present the response
interesting equality was found for the response of scalarate and discuss it. We use natural uritsi=G=kg=1
sourceg3]. Namely, the response rate of a static point sourceand signature £ — — —) throughout this paper.
g in Schwarzschild spacetim@vith the Unruh vacuumis The line element for the exterior region of Schwarzschild
equal to the response rate of the same static source in Rindlspacetime i(>2M) is given by
spacetimgwith the Minkowski vacuum which is
ds?=fdt*—f 1dr2—r2d6?—r3sirfod ¢?,
2
Re=—s, (1)  where f(r)=1—-2M/r. We will be interested in a static
4m charge with the current density of the form#

. =(j!(r,6,¢),0,0,0). However, direct use of this current den-
provided that both sources have the same proper acceleratlgﬂy would Iead to indefinite resul{]. For this reason, we

a. (We recall that a static source in Rindler spacetime is . L . N
; ) . ) “start with an oscillating dipole satisfying current conserva-
nothing but a uniformly accelerated source in Minkowski

i it=Q-
spacetime. The response of structureless static sources igon, Vu#=0:

entirely due to the emission and absorption otefo G it
o HIE ' . . i*=(j'i".0,0, (2

frequency particles.” Thus, this equality clearly involves low
frequencies. \/choft

The choice of the quantum vacuum is crucial for this ;t_ S(r—ra)—8(r—L)18(6— 0 8(b—
equality [4]. For instance, it would not be valid if we re- r2siné, Lo o)~ & 1l 0) oS o).
placed the Unruh vacuum by the Hartle-Hawking vacuum.
However, since the Unruh vacuum is more physical in theand
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_ \J2qEsinEt (balmy_ | dag,(2)
r:m(@(r—ro)@(—rﬂ%)&@—90)5(¢—¢0)- Bt Vol T3
(z—1) :
Here,®(x)=1 if x>0 and®(x) =0 if x<<0. At the end, we + Z+1) a2 (2) |Yim(6,)e ",

take the limit,L—« and E—O0, to obtain a structureless
static point charge atr(6,¢)=(rq, 6y, ¢$o). The normaliza- (z+1)2
tion of the current has been chosen so that the time average B(nhedm - Al (2)Y (6, p)e e,

of the squared charge /¢ ,j "2 equalsqg®. (A similar ' (z-1)
normalization was chosen for the scalar cpse. and
In order to quantize the Maxwell field, we use the stan-
dard Lagrangian density with a covariant gauge-fixing term: 2f
_ _ 7 phlelm
Ow= : B, .
1 v 1 u )
L=— \/jg ZFMVF + Z(V AL Here,z=r/M —1, theY,,(6,¢) are the usual spherical har-

monics andl =1. The operatof]; is the Laplace-Beltrami

The corresponding equations of motion in the Feynmaererator for the scalar field. Thg, (z) are solutions of the

gauge @=1) are differential equation

V,V'A,= L T PP
NVYA,=0. 3 gz (- g |10+ D)=
We write positive-frequency solutions to E&) with respect , (ZF 1)3 N
to the Killing field 4, in the form —Mf0®——=19,,=0. 5
(z—1)
AN el fah ol g gleTiot >0, Theq,,(z) satisfy the boundary coditiog,;(z) ~e™*?z as

z—x, On the other hand, the;,(z) satisfy q;,(z)~(z

where we leth=— for the modes incoming from the past ~ 1) #M® asz—1. Thel =0 solutions here can be shown to
event horizon anc=« for those incoming from the past P& Pure gauge. _ _
null infinity. The | andm are the angular momentum quan-  1n€ other physical modes, which we call the physical
tum numbers. The label is for the four polarizations. The Modes Il, can be written in the form

pure gauge modes with=G are the modes which can be A(n,ll,w,l,m):(o oA w.lm) A(n,ll,m,l,m))

written asA("!'™W=v  for some scalar field>(x) and m e e ’

satisfy Lorenz conditionV#A(¢“ "™ =0. The physical wherel>1 and A" Mo (741)ql, (2) YI™ (6, p)e i,
modes withA =1 or Il satisfy the Lorenz condition, and are
not pure gauge. Finally the nonphysical modes withNP
do not satisfy the Lorenz condition. The Maxwell field op-
erator can be expanded in terms of annihilation and creatioper
operators associated with these modes as

j=0.¢. The Y{™(9,4) are the divergence-free vector
spherical harmonicésee, e.g., Ref.6]).

The normalization factors for the functioq§,(z) are de-
mined from the canonical commutation relations of the
fields by requiring suitable commutation relations for the an-
nihilation and creation operators. It is convenient in this con-

Aﬂ(x)z E Jmdw[a(i)A(i)(X)+azri>A(i)*(X)] text to define the generalized Klein-Gordon inner product,
nAl,m JO u m '
(A(i),A(j))Ef dEMW“[A“),A(”], (6)
where () represents{,\,o,l,m). We follow the Gupta- z

Bleuler procedure generalized to curved spacetime. Thus, wtt)e w ; 4o andA®)  where the int i
impose the conditioV#Al"”)|phyg=0, whereA(") is the eween any two modes,” andA,”, where the integration

- . ] is performed on some Cauchy surfate Here,
positive-frequency part of the operatér,, on the Hilbert
space of the physical states. o i . ' o

For the sake of brevity, we will just write down the physi- WHAD A = — (AD* Dwr— A (Dvxy - (7)

cal modes. Their derivation will be presented elsewhere. The -9
modes we call the physical modes | can be written as with Gy 05/0[V,LAV]|AM:AU)= SN
"
v B i 1 -
Air,l,w,l,m):w3/2(BEn,I,w,I,m)_at\l,’Bﬁn,l,w,l,m) fg# (V AB)]AM:AL)' It F:an be shown that the field equa
tions ensure conservation of the curréi, and that the
=0V, =3V, —3,V), 4 inner product6) is independent of the choice of the Cauchy
surface as a consequendsee, e.g., Ref.7]). Moreover,
where the inner product(6) is gauge invariant for physicadland
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pure gaugemodes. As has been pointed out elsewt&ie pem 9(zo—1)? [dQ ()
the canonical commutation relations among fields and their m _ 0 170
conjugate momenta lead to those of the annihilation and cre- 1 27MI(I+ Diro)l dz
ation operators given schematically as$a; ,asjg] _ 2 . ]
:[a’ri 'aTi 1=0 and[a, ’azrj)]:(M—l)(i)(j), whereM 00 whereT=27mf"4(rg) §(0) is the total proper time and where
E(A((i)),A%))). The pure gauge and nonphysical modes can béOZrO/M —1. One can sum over the angular momentum
chosen to be orthogonal to the physical modes with respeé’tuantum numberk andm by using the formula

to the inner product6). Thus, by requiring the usual com-
mutation relations for annihilation and creation operators,

2
} 1Yim( 60, #0)|%,

8

21+1[dQ(2)
L 10+1)| dz

2 2Qu(2)
(22— 1)%

|
[a(n,)\,w,l,m) ’azn’,)\’,w’,l’,m’)] = 5nn’ 5)\)\’ 5II ! 5mm’ 5((0— w’)
whose derivation will be given elsewhere. The resulting total
with A, A" corresponding to the physical modes | and Il, weemission rate is
are led to the following normalization condition:

em 2
(A(n’)\’w’l’m),A(n,’)\,’w,'l,'m,)):5nn,5)\)\,5”/5mm,5(0)_w,). PT :&(ZO)Q]-(;A_O_:L)’
(8) 4

The classical electric charge interacts with the Maxwellwhere a(ro)=Mro %f ~¥%(r) is the proper acceleration of
field via the interaction Lagrangian density the charge. Similarly, the particle absorption rate with fixed
angular momentum is

‘Cint: \ _gJ'uA,u, .
+ oo 1
Recall that the thermal bath of photons come entirely from  P225= lim lim f dol A2 1 ml? R
the past event horizon in the Unruh vacuum. Therefore, we L—+»E—0J0 er—1

need to consider only the modes witk- —. Note also that b o

only the physical modes | are excited by the currédt Where|v4?f,|,w,|,m)|:|A?T,|,w,|,m)| by unitarity. As a result,
because),= A, =0 for the physical modes II, once the non- the total response rate of the charge is

physical modes are appropriately chosen.

The particle emission probability with fixed angular mo- v_ pem Pabs_ g?a(rg) ro
mentum for a static charge atq, 6y, ¢o) immersed in the R= Tt = 2.2 Q M_l . (12)
Hawking radiation with temperaturg@ = 1/(87M) is
. By recalling that
PE™= lim IimJ dol APy 2| 1 ], .
L—+»E—0/0 e 1 Qi(z2)=zIn—-1
(9) 1 1 ’
where it is easy to see that the response rét4) diverges as
the charge approaches the horizon and vanishesr|jKe
A = —>,I,w,|,miJ’d4x‘/— i“(x)A ,(x)]0 as rog—. Near the horizon we find RY
Crotm=( | 9] x(010) ~[g2a(ro)/2mw2]In[4Ma(ro)]. One can show using the result

of Ref. [5] that, for a charge with constant acceleratim
Minkowski spacetime, the infrared divergence in the total
%esponse rate is given bygta/272)In(xta) if one intro-
duces an infrared cut-oft for the momentum transverse to
the direction of acceleration. Comparison of these two for-
mulas shows that the finite size of the black hole acts as an
infrared cut-off.

We have derived the response rate of a static electric
charge outside a Schwarzschild black hole interacting with
i Hawking radiation in the Unruh vacuum. It differs from the

—— 2M _ z—1 dQ(2) result obtained for a scalar source, Efj), by a factor of

qu (Z) QI(Z) | ’ (10) .

Jal(1+ 1)l (I+1) dz 2Q4(ro/M—1). In the scalar case, it was found that the

response rates of static point sources in Schwarzschild space-

where theQ,(z) are the Legendre functions of the secondtime (with the Unruh vacuumand in Rindler spacetime
kind. [Gauge invariance of the inner prody6} allows us to  (with the Minkowski vacuumare equal provided that these
useB™! @M in place of A(™" '™ in determining the nor- point sources have the same proper acceleration. Obviously
malization factor] By substituting Eq.(10) in Eqg. (9) and this equality does not hold in the vector case since the re-
using the differential equation satisfied Qy(z), we find sponse rate of a static charge in Rindler spacetime with the

is the(Boulware vacuum emission amplitude of a photon, in
the lowest order of perturbation theory. Note that in the stati
charge limit,L—o andE—0, the current will interact only
with zero-energy modes. Hence, we need only the function
0o/ (2), which are thew—0 limit of the solutionsg,(z) to
Eq. (5). The normalization factor determined by E&) can

be calculated by the procedure used in the scalar (&Hse
Thus, we find
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Minkowski vacuum, which is nothing but a uniformly accel-  Finally, we note that our results are in agreement with the
erated charge in Minkowski spacetime, is infrared divergentvidely accepted conclusion in classical electrodynamics that

as we know. static charges in gravitational fields do not radigt&—13.

To check our procedure of defining the modes in sphericathis is so because the zero-frequency modes which couple to
polar coordinates and normalizing them through &), we  the static charge considered here do not carry energy and,

have used it to calculate the response rate of the dii®le consequently, cannot be identified with classical radiation.
immersed in a background thermal bath in Minkowski space-
time. We numerically verified that it reproduces the standard _ o _
result[9]. This would also be an interesting test for the pro- L.C. and G.M. would like to acknowledge partial financial

cedure used in the quantization of the Maxwell field insupport from CAPES through the PICDT program and Con-

Schwarzschild spacetime with the gaulye=0 recently dis- selho Nacional de Desenvolvimento Cidico e Tecno-

cussed in Ref[10]. logico, respectively.
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