
PHYSICAL REVIEW D, VOLUME 58, 084027
Interaction of Hawking radiation and a static electric charge
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We investigate whether the equality found for the response of static scalar sources interacting~i! with
Hawking radiation in Schwarzschild spacetimeand ~ii ! with the Fulling-Davies-Unruh thermal bath in the
Rindler wedgeis maintained in the case of electric charges. We find a finite result in the Schwarzschild case,
which is computed exactly, in contrast with the divergent result associated with the infrared catastrophe in the
Rindler case, i.e., in the case of uniformly accelerated charges in Minkowski spacetime. Thus the equality
found for scalar sources does not hold for electric charges.@S0556-2821~98!00620-1#

PACS number~s!: 04.70.Dy, 04.62.1v, 41.20.Cv
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It is well known that the equivalence principle played
crucial role in the development of general relativity. It co
tinues to be tested with great success@1#. Recently many
authors have asked the question whether or not a quan
version of the equivalence principle could be formulat
~see, e.g., Ref.@2#!. The main problem in accomplishing th
task stems from the fact that states in quantum mechanic
defined globally while the equivalence principle involv
only local quantities. Hence, only those phenomena wh
are characterized by frequencies much higher than the sp
time curvature are expected to show some equivalence
flat and curved spacetimes.~For example, Hawking radiation
can be derived by requiring that physics near the black h
horizon be the same as that in Minkowski spacetime in
infinite frequency limit.! Thus, there is noa priori reason to
expect any equivalence for low-frequency quantum phen
ena in flat and curved spacetimes. Very recently, however
interesting equality was found for the response of sca
sources@3#. Namely, the response rate of a static point sou
q in Schwarzschild spacetime~with the Unruh vacuum! is
equal to the response rate of the same static source in Rin
spacetime~with the Minkowski vacuum!, which is

RS5
q2a

4p2
, ~1!

provided that both sources have the same proper acceler
a. ~We recall that a static source in Rindler spacetime
nothing but a uniformly accelerated source in Minkows
spacetime.! The response of structureless static source
entirely due to the emission and absorption of ‘‘zero-
frequency particles.’’ Thus, this equality clearly involves lo
frequencies.

The choice of the quantum vacuum is crucial for th
equality @4#. For instance, it would not be valid if we re
placed the Unruh vacuum by the Hartle-Hawking vacuu
However, since the Unruh vacuum is more physical in
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sense that it corresponds to the quantum state for a b
hole formed by gravitational collapse, this equality might
pointing to some underlying equivalence principle. Thus
is interesting to see whether or not this equality holds
other fields.

In this paper we investigate the response of a static e
tric charge in Schwarzschild spacetime interacting with p
tons of Hawking radiation~with the Unruh vacuum!. We find
that the response rate is finite. This immediately implies t
there is no equality analogous to that found in the scalar c
because the corresponding rate in Rindler spacetime is in
red divergent. We present the exact response rate for
electric charge instead of merely showing that it is infrar
finite since it is a physically meaningful quantity which on
could measure in principle. We first proceed to the quanti
tion of the Maxwell field in the exterior region of Schwarz
child spacetime in some detail. Then we present the respo
rate and discuss it. We use natural unitsc5\5G5kB51
and signature (1222) throughout this paper.

The line element for the exterior region of Schwarzsch
spacetime (r .2M ) is given by

ds25 f dt22 f 21dr22r 2du22r 2sin2udf2,

where f (r )5122M /r . We will be interested in a static
charge with the current density of the formj m

5( j t(r ,u,f),0,0,0). However, direct use of this current de
sity would lead to indefinite results@5#. For this reason, we
start with an oscillating dipole satisfying current conserv
tion, ¹m j m50:

j m5~ j t, j r ,0,0!, ~2!

j t5
A2qcosEt

r 2 sinu0

@d~r 2r 0!2d~r 2L !#d~u2u0!d~f2f0!,

and
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j r5
A2qE sinEt

r 2 sinu0

Q~r 2r 0!Q~2r 1L !d~u2u0!d~f2f0!.

Here,Q(x)51 if x.0 andQ(x)50 if x,0. At the end, we
take the limit, L→` and E→0, to obtain a structureles
static point charge at (r ,u,f)5(r 0 ,u0 ,f0). The normaliza-
tion of the current has been chosen so that the time ave
of the squared charge, (*dSm j m)2, equalsq2. ~A similar
normalization was chosen for the scalar case.!

In order to quantize the Maxwell field, we use the sta
dard Lagrangian density with a covariant gauge-fixing te

L52A2gF1

4
FmnFmn1

1

2a
~¹mAm!2G .

The corresponding equations of motion in the Feynm
gauge (a51) are

¹n¹nAm50. ~3!

We write positive-frequency solutions to Eq.~3! with respect
to the Killing field ] t in the form

Am
~n,l,v,l ,m!5zm

~n,l,v,l ,m!~r ,u,f!e2 ivt, v.0,

where we letn5→ for the modes incoming from the pa
event horizon andn5← for those incoming from the pas
null infinity. The l andm are the angular momentum qua
tum numbers. The labell is for the four polarizations. The
pure gauge modes withl5G are the modes which can b
written asAm

(n,G,v,l ,m)5¹mF for some scalar fieldF(x) and
satisfy Lorenz condition,¹mAm

(n,G,v,l ,m)50. The physical
modes withl5I or II satisfy the Lorenz condition, and ar
not pure gauge. Finally the nonphysical modes withl5NP
do not satisfy the Lorenz condition. The Maxwell field o
erator can be expanded in terms of annihilation and crea
operators associated with these modes as

Âm~x!5 (
n,l,l ,m

E
0

`

dv@a~ i !Am
~ i !~x!1a~ i !

† Am
~ i !* ~x!#,

where (i ) represents (n,l,v,l ,m). We follow the Gupta-
Bleuler procedure generalized to curved spacetime. Thus
impose the condition¹mÂm

(1)uphys&50, whereÂm
(1) is the

positive-frequency part of the operatorÂm , on the Hilbert
space of the physical states.

For the sake of brevity, we will just write down the phys
cal modes. Their derivation will be presented elsewhere.
modes we call the physical modes I can be written as

Am
~n,I,v,l ,m!5v3/2~Bt

~n,I,v,l ,m!2] tC,Br
~n,I,v,l ,m!

2] rC,2]uC,2]fC!, ~4!

where
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Bt
~n,I,v,l ,m!5

i

MvF ~z21!
dqv l

n ~z!

dz

1
~z21!

~z11!
qv l

n ~z!GYlm~u,f!e2 ivt,

Br
~n,I,v,l ,m!5

~z11!2

~z21!
qv l

n ~z!Ylm~u,f!e2 ivt,

and

hsC52
2 f

r
Br

~n,I,v,l ,m! .

Here,z[r /M21, theYlm(u,f) are the usual spherical ha
monics andl>1. The operatorhs is the Laplace-Beltrami
operator for the scalar field. Theqv l

n (z) are solutions of the
differential equation

d

dzF ~12z2!
dqv l

n

dz G1F l ~ l 11!2
2

z11

2M2v2
~z11!3

~z21! Gqv l
n 50. ~5!

Theqv l
→(z) satisfy the boundary coditionqv l

→(z);eiM vz/z as
z→`. On the other hand, theqv l

←(z) satisfy qv l
←(z);(z

21)22iM v asz→1. Thel 50 solutions here can be shown
be pure gauge.

The other physical modes, which we call the physic
modes II, can be written in the form

Am
~n,II,v,l ,m!5~0,0,Au

~n,II,v,l ,m! ,Af
~n,II,v,l ,m!!,

where l>1 andAj
(n,II,v,l ,m)}(z11)qv l

n (z)Yj
( lm)(u,f)e2 ivt,

j 5u,f. The Yj
( lm)(u,f) are the divergence-free vecto

spherical harmonics~see, e.g., Ref.@6#!.
The normalization factors for the functionsqv l

n (z) are de-
termined from the canonical commutation relations of t
fields by requiring suitable commutation relations for the a
nihilation and creation operators. It is convenient in this co
text to define the generalized Klein-Gordon inner produc

~A~ i !,A~ j !![E
S
dSmWm@A~ i !,A~ j !#, ~6!

between any two modesAm
( i ) andAm

( j ) , where the integration
is performed on some Cauchy surfaceS. Here,

Wm@A~ i !,A~ j !#[
i

A2g
~An

~ i !* p~ j !mn2An
~ j !p~ i !mn* !, ~7!

with p ( i )mn[]L/]@¹mAn#uAm5A
m
( i )52A2g@Fmn

1gmn(¹bAb)#Am5A
m
( i ). It can be shown that the field equa

tions ensure conservation of the current~7!, and that the
inner product~6! is independent of the choice of the Cauc
surfaceS as a consequence~see, e.g., Ref.@7#!. Moreover,
the inner product~6! is gauge invariant for physical~and
7-2
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pure gauge! modes. As has been pointed out elsewhere@8#,
the canonical commutation relations among fields and t
conjugate momenta lead to those of the annihilation and
ation operators given schematically as@a( i ) ,a( j )#
5@a( i )

† ,a( j )
† #50 and@a( i ) ,a( j )

† #5(M 21)( i )( j ) , whereM ( i )( j )

[(A( i ),A( j )). The pure gauge and nonphysical modes can
chosen to be orthogonal to the physical modes with res
to the inner product~6!. Thus, by requiring the usual com
mutation relations for annihilation and creation operators

@a~n,l,v,l ,m! ,a
~n8,l8,v8,l 8,m8!

†
#5dnn8dll8d l l 8dmm8d~v2v8!

with l, l8 corresponding to the physical modes I and II, w
are led to the following normalization condition:

~A~n,l,v,l ,m!,A~n8,l8,v8,l 8,m8!!5dnn8dll8d l l 8dmm8d~v2v8!.
~8!

The classical electric charge interacts with the Maxw
field via the interaction Lagrangian density

Lint5A2g jmAm .

Recall that the thermal bath of photons come entirely fr
the past event horizon in the Unruh vacuum. Therefore,
need to consider only the modes withn5→. Note also that
only the physical modes I are excited by the current~2!,
becauseAt5Ar50 for the physical modes II, once the no
physical modes are appropriately chosen.

The particle emission probability with fixed angular m
mentum for a static charge at (r 0 ,u0 ,f0) immersed in the
Hawking radiation with temperatureb2151/(8pM ) is

P lm
em5 lim

L→1`

lim
E→0

E
0

1`

dvuA ~→,I,v,l ,m!
em u2F11

1

evb21
G ,

~9!

where

A ~→,I,v,l ,m!
em 5^→,I,v,l ,mu i E d4xA2g jm~x!Âm~x!u0&

is the~Boulware! vacuum emission amplitude of a photon,
the lowest order of perturbation theory. Note that in the sta
charge limit,L→` andE→0, the current will interact only
with zero-energy modes. Hence, we need only the functi
q0l
→(z), which are thev→0 limit of the solutionsqv l

→(z) to
Eq. ~5!. The normalization factor determined by Eq.~8! can
be calculated by the procedure used in the scalar case@3#.
Thus, we find

q0l
→~z!5

2M

Ap l ~ l 11!
FQl~z!2

z21

l ~ l 11!

dQl~z!

dz G , ~10!

where theQl(z) are the Legendre functions of the seco
kind. @Gauge invariance of the inner product~6! allows us to
useB(n,I,v,l ,m) in place ofA(n,I,v,l ,m) in determining the nor-
malization factor.# By substituting Eq.~10! in Eq. ~9! and
using the differential equation satisfied byQl(z), we find
08402
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P lm
em

T
5

q2~z021!2

2pMl ~ l 11! f 1/2~r 0!
FdQl~z0!

dz0
G2

uYlm~u0 ,f0!u2,

whereT52p f 1/2(r 0)d(0) is the total proper time and wher
z05r 0 /M21. One can sum over the angular momentu
quantum numbersl andm by using the formula

(
l 51

`
2l 11

l ~ l 11!FdQl~z!

dz G2

5
2Q1~z!

~z221!2
,

whose derivation will be given elsewhere. The resulting to
emission rate is

P em

T
5

q2a~r 0!

4p2
Q1S r 0

M
21D ,

where a(r 0)5Mr 0
22f 21/2(r 0) is the proper acceleration o

the charge. Similarly, the particle absorption rate with fix
angular momentum is

P lm
abs5 lim

L→1`

lim
E→0

E
0

1`

dvuA ~→,I,v,l ,m!
abs u2

1

evb21
,

whereuA (→,I,v,l ,m)
abs u5uA (→,I,v,l ,m)

em u by unitarity. As a result,
the total response rate of the charge is

RV[
P em

T
1
P abs

T
5

q2a~r 0!

2p2
Q1S r 0

M
21D . ~11!

By recalling that

Q1~z!5
z

2
ln

z11

z21
21,

it is easy to see that the response rate~11! diverges as
the charge approaches the horizon and vanishes liker 0

24

as r 0→`. Near the horizon we find RV

'@q2a(r 0)/2p2# ln@4Ma(r0)#. One can show using the resu
of Ref. @5# that, for a charge with constant accelerationa in
Minkowski spacetime, the infrared divergence in the to
response rate is given by (q2a/2p2)ln(k21a) if one intro-
duces an infrared cut-offk for the momentum transverse t
the direction of acceleration. Comparison of these two f
mulas shows that the finite size of the black hole acts as
infrared cut-off.

We have derived the response rate of a static elec
charge outside a Schwarzschild black hole interacting w
Hawking radiation in the Unruh vacuum. It differs from th
result obtained for a scalar source, Eq.~1!, by a factor of
2Q1(r 0 /M21). In the scalar case, it was found that t
response rates of static point sources in Schwarzschild sp
time ~with the Unruh vacuum! and in Rindler spacetime
~with the Minkowski vacuum! are equal provided that thes
point sources have the same proper acceleration. Obvio
this equality does not hold in the vector case since the
sponse rate of a static charge in Rindler spacetime with
7-3
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Minkowski vacuum, which is nothing but a uniformly acce
erated charge in Minkowski spacetime, is infrared diverg
as we know.

To check our procedure of defining the modes in spher
polar coordinates and normalizing them through Eq.~6!, we
have used it to calculate the response rate of the dipole~2!
immersed in a background thermal bath in Minkowski spa
time. We numerically verified that it reproduces the stand
result@9#. This would also be an interesting test for the pr
cedure used in the quantization of the Maxwell field
Schwarzschild spacetime with the gaugeA050 recently dis-
cussed in Ref.@10#.
,
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Finally, we note that our results are in agreement with
widely accepted conclusion in classical electrodynamics
static charges in gravitational fields do not radiate@11–13#.
This is so because the zero-frequency modes which coup
the static charge considered here do not carry energy
consequently, cannot be identified with classical radiation
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