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A REFINEMENT OF THE GAUSS-LUCAS THEOREM
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(Communicated by Albert Baernstein II)

Abstract. The classical Gauss-Lucas Theorem states that all the critical
points (zeros of the derivative) of a nonconstant polynomial p lie in the convex
hull Ξ of the zeros of p. It is proved that, actually, a subdomain of Ξ contains
the critical points of p.

1. Introduction and statement of results

Let

p(z) =
m∏
j=1

(z − zj)
kj ,

m∑
j=1

kj = n,(1)

be a polynomial of degree n whose zeros z1, · · · , zm are distinct and have multiplici-
ties k1, · · · , km, respectively. Denote by Ξ the convex hull of z1, · · · , zm. The Gauss-
Lucas Theorem asserts that all the critical points of p lie in Ξ, and, furthermore,
if the zeros of p are not collinear, no critical point of p lies on the boundary of Ξ
unless it is a multiple zero of p. This classical result was implied in a note of Gauss
dated 1836, and it was stated explicitly and proved by Lucas [1] in 1874. Many
proofs of this theorem have been given, but most of them duplicate Lucas’ idea. It
is based on a theorem of Gauss which provides a nice physical interpretation of the
nontrivial critical points of a polynomial (the critical points which are not zeros
of the polynomial) as the equilibrium points in a certain force field. The field is
generated by particles placed at the zeros of the polynomial, the particles having
masses equal to the multiplicity of the zeros and attracting with a force inversely
proportional to the distance from the particle. We refer to Marden’s book [2] for
more information about Gauss-Lucas Theorem.

As Marden [3, p.268] pointed out, it is clear that the nontrivial critical points
cannot be too close to any one zero, since the force due to the particle at the zero
would be relatively large. A partial quantitative result, which provides an explicit
form of the latter intuitive argument, is the following consequence of Exercise 4 on
p. 92 of [2], which itself follows from Walsh’s two-circle theorem [5]:
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Theorem 1. For any zero zj of p, let Mj := minl6=j |zl − zj |, j = 1, · · · ,m. Then
p has no nontrivial critical point in

m⋃
j=1

{
z : |z − zj | < kj

n
Mj

}
.

We prove a further refinement of the Gauss-Lucas Theorem. Namely, we show
that all the nontrivial critical points of a polynomial lie in a subdomain of the convex
hull of the zeros of the polynomial, which does not contain certain neighbourhoods
of the zeros. These neighbourhoods are larger than that specified in Theorem 1.
Moreover, the main result allows certain neighbourhoods of the boundary of Ξ
which are free of critical points of p to be determined.

In what follows we suppose that p is defined by (1). With every zero zj with
multiplicity kj we associate a closed circular region Gj in the complex plane which
contains the points kj/n and 1. Then, for each l 6= j, Ωjl denotes the following
affine transform of Gj :

Ωjl := zj + (zl − zj)Gj .

Then we define

Ωj :=
⋃
l6=j

Ωjl.

The main result is:

Theorem 2. For every zero zj of p, let the region Ωj be defined as above. Then
every critical point of p which does not coincide with zj lies in Ωj. Moreover, if
Ωj , j = 1, · · · ,m, are all the regions associated with the distinct zeros of p, then
every nontrivial critical point of p lies in

Ω(p) :=

m⋂
j=1

Ωj .

A consequence of the main result follows. In order to formulate it we need the
notation

Ω0
jl :=

{
z : |z −

(
n− kj

2n
zj +

n+ kj
2n

zl

)
| ≤ n− kj

2n
|zl − zj |

}
.

Corollary 1. Every critical point of p which does not coincide with zj lies in Ω0
j :=⋃

l6=j Ω0
jl. Moreover, every nontrivial critical point of p lies in Ω0(p) :=

⋂m
j=1 Ω0

j .

Note that the results are precise in the sense that there are polynomials for which
all the nontrivial critical points lie on the boundaries of the corresponding regions.
These polynomials are

pnk(z) = zk(z − 1)n−k, 1 ≤ k ≤ n− 1.

Indeed, since z1 = 0 and z2 = 1, then Ω1 and Ω2 are any closed circular domains
which contain k/n and 0, and k/n and 1, respectively. Note that the only nontrivial
critical point of pnk is ξ = k/n. An application of Theorem 2 with regions Ω1 and
Ω2 which touch at k/n yields the precise location of ξ. The discs Ω0

1 = Ω0
12 ={

z : |z − n+k
2n | ≤ n−k

2n

}
and Ω0

2 = Ω0
21 :=

{
z : |z − k

2n | ≤ k
2n

}
which appear in

Corollary 1 are examples of such regions. Having in mind that M1 = M2 = 1,
we see that the discs

{
z : |z| < k

n

}
and

{
z : |z − 1| < n−k

n

}
are the largest ones
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possible in Theorem 1, namely, they are the largest discs centered at 0 and 1,
respectively, which do not contain nontrivial critical points of pnk.

2. Proofs

The basic tool in the proof of Theorem 2 is a result of Szegő [4] which is sometimes
called Szegő’s Composite Theorem. Let the polynomials A and B be defined by

A(z) =
n∑

j=0

(
n
j

)
ajz

j

and

B(z) =

n∑
j=0

(
n
j

)
bjz

j.

Then the polynomial

C(z) =

n∑
j=0

(
n
j

)
ajbjz

j

is called the composite of A and B.

Theorem 3. (Szegő’s Composite Theorem) Let all the zeros of A lie in the closed
circular region D. Then every zero η of C can be represented in the form

η = −w βµ,

where w is a point in D and βµ is a zero of B.

Two simple technical lemmas follow.

Lemma 1. For any positive integers n ≥ 2 and k, 1 ≤ k ≤ n− 1, we have

n−k∑
ν=0

k + ν

n

(
n− k
ν

)
zν = (z + 1)n−k−1(z + k/n).(2)

Proof. The coefficient of zν on the right-hand side of (2) is equal to

k

n

(
n− k − 1

ν

)
+

(
n− k − 1
ν − 1

)
=

1

n

(n− k − 1)!

ν!(n− k − ν)!
(nν + k(n− k − ν))

=
k + ν

n

(
n− k
ν

)
.

Let n ≥ 2 and k, 1 ≤ k ≤ n− 1, and let the polynomial P of degree n be of the
form

P (z) = (z − a)k
n−k∏
ν=1

(z − ζν).

Then

P ′(z) = n(z − a)k−1
n−k∏
ν=1

(z − ξν).

The elementary symmetric functions of the variables α1, · · · , αn−k are denoted by
σ0 ≡ 1, σ1(α1, · · · , αn−k), · · · , σn−k(α1, · · · , αn−k).
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Lemma 2. Let the polynomial P and its derivative P ′ be defined as above. Then,
for every ν, 0 ≤ ν ≤ n− k, the identities

σν(a− ξ1, · · · , a− ξn−k) =
n− ν

n
σν(a− ζ1, · · · , a− ζn−k)(3)

hold.

Proof. Let Q(z) :=
∏n−k

ν=1 (z − ζν). Then P (z) = (z − a)kQ(z) and for every l, 0 ≤
l ≤ n− k, we have

P (k+l)(z) =

k+l∑
j=0

(
k + l
j

)[
(z − a)k

](j)
Q(k+l−j)(z).

Since
[
(z − a)k

](j)
|z=a

= k!δkj , where δkj is the Kronecker delta, then

P (k+l)(a) =
(k + l)!

l!
Q(l)(a).

On the other hand, the identities Q(l)(z) = l! σn−k−l(z − ζ1, · · · , z − ζn−k) hold.
Hence

P (k+l)(a) = (k + l)! σn−k−l(a− ζ1, · · · , a− ζn−k).(4)

Similarly, denoting R(z) :=
∏n−k

ν=1 (z − ξν), we get

P (k+l)(z) = n

k+l−1∑
j=0

(
k + l − 1

j

)[
(z − a)k

](j)
R(k+l−1−j)(z),

which yields

P (k+l)(a) = n
(k + l− 1)!

l!
R(l)(a).

On using the identities R(l)(z) = l! σn−k−l(z − ξ1, · · · , z − ξn−k) we obtain

P (k+l)(a) = n(k + l − 1)!σn−k−l(a− ξ1, · · · , a− ξn−k).(5)

Now (4) and (5) yield

σn−k−l(a− ξ1, · · · , a− ξn−k) =
k + l

n
σn−k−l(a− ζ1, · · · , a− ζn−k),

which is equivalent to (3).

Proof of Theorem 2. Denote by ζ1, · · · , ζn−k the zeros of p which are different from
zj. Then

p(z) = (z − zj)
kj

n−kj∏
ν=1

(z − ζν).

The polynomial f of degree n − kj with leading coefficient one, whose zeros are
zj − ζν , ν = 1, · · · , n− kj , has the form

f(z) =

n−kj∑
ν=0

(−1)n−kj−νσn−kj−ν(zj − ζ1, · · · , zj − ζn−kj )z
ν .
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Let

g(z) :=

n−kj∑
ν=0

kj + ν

n

(
n− kj
ν

)
zν .

It follows from Lemma 1 that g(z) = (z + 1)n−kj−1(z + kj/n).
The polynomial h, which is the composite of g and f , is equal to

h(z) =

n−kj∑
ν=0

(−1)n−kj−νσn−kj−ν(zj − ζ1, · · · , zj − ζn−kj )
kj + ν

n
zν.

By Lemma 2 we have

σn−kj−ν(zj − ξ1, · · · , zj − ξn−kj ) =
kj + ν

n
σn−kj−ν(zj − ζ1, · · · , zj − ζn−kj ),

where ξ1, · · · , ξn−k are the critical points of p which do not coincide with zj . Hence

h(z) =

n−kj∑
ν=0

(−1)n−kj−νσn−kj−ν(zj − ξ1, · · · , zj − ξn−kj )z
ν

=

n−kj∏
ν=1

(z − zj + ξν).

It follows from Theorem 3 that for every ν, 1 ≤ ν ≤ n − kj , we can represent
zj − ξν in the form

zj − ξν = −w (zj − ζµ),

where µ, 1 ≤ µ ≤ n− kj , is an index and w is a point which belongs to a circular
region which contains the zeros −kj/n and −1 of g. Hence −w ∈ Gj . Therefore
for every critical point ξν which does not coincide with zj we have

ξν ∈
⋃
l6=j

(zj + (zl − zj)Gj) ≡ Ωj .

This proves the first statement of the theorem. The second statement is an imme-
diate consequence of the first one.

Proof of Corollary 1. For every j, 1 ≤ j ≤ m, we choose Gj to be the disc with
diameter [kj/n, 1],

Gj :=

{
z : |z − n+ kj

2n
| ≤ n− kj

2n

}
.

Then for every l 6= j

zj + (zl − zj)Gj =

{
z : |z −

(
n− kj

2n
zj +

n+ kj
2n

zl

)
| ≤ n− kj

2n
|zl − zj |

}
= Ω0

jl,

and the statement of Corollary 1 follows immediately from Theorem 2.

Finally we show how Theorem 1 follows from Theorem 2.
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Proof of Theorem 1. It has to be proved that p has no nontrivial critical point

in any of the discs
{
z : |z − zj | < kj

n |zl − zj |
}
, l 6= j. One way to do this is

to observe that Ω0
j ∩

{
z : |z − zj| < kj

n Mj

}
= ∅. Another way is to choose the

regions Gj in Theorem 2 to be the half-planes {z : Re z ≥ kj/n}. It is easy to see
that for this choice of Gj we have⋃

l6=j

(zj + (zl − zj)Gj)

⋂{
z : |z − zj| < kj

n
Mj

}
= ∅.

References
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