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We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained sys-
tems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an
arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These
symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac
brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss
the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-
Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac
brackets and the correspondent Maxwell electromagnetic theory limit.@S0556-2821~99!04804-3#

PACS number~s!: 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

Dual symmetries play a fundamental role in classical el
tromagnetic theory as realized since the completion of
equations by Maxwell in the last century. In quantum theo
however, these symmetries were not fully appreciated u
the works of Montonen and Olive@1# and more recently
Seiberg and Witten@2# in 311 dimensions and the study o
Chern-Simons~CS! theories@3# in 211 dimensions. Since
these theories have gauge symmetries, they are natu
constrained.

The study of constrained systems consists of a very in
esting subject which has been intensively explored by us
different techniques@4#, alternatively to the pioneering pro
cedure of Dirac@5#. In that original work, the constraint
were classified into two categories which have differe
physical meanings: first-class constraints related to ga
symmetries and second-class ones which represent a re
tion of the degrees of freedom. In addition to its applicab
ity, the Dirac method presents some difficulties when o
studies systems presenting only second-class constraints
there one verifies the presence of symmetries despite
gauge fixation. This is what happens with 2D induced gr
ity where the SL(2,R) symmetry was not detected by co
vential methods but by analyzing the anomaly equation
Polyakov@6,7#. Later on, Barcelos-Neto@8# using the Dirac
and sympletic methods reobtained this result and also fo
a Virasoro hidden symmetry in the Polyakov 2D gravity.

From the canonical point of view, the study of symmetr
can be approached with the Faddeev-Jackiw~FJ! sympletic
procedure@9#. In this approach, the phase space is reduce
such a way that the Lagrangian depends on the first-o
velocities. The advantage of this linearization is that the n
0556-2821/99/59~6!/065016~9!/$15.00 59 0650
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null Dirac brackets are the elements of the sympletic ma
@10–12#. For gauge systems, this matrix is singular and h
no inverse unless a gauge-fixing term is included. The
method is very simple to use; nevertheless, it does not
plicitly give all non-null Dirac brackets in the sympletic ma
trix. Some of them are obtained only by use of the equati
of motion @13#. However, this problem may be circumvente
if we consider some symmetry transformations in the fiel

In this work we show how to implement this idea b
using first in Sec. II an example in one dimension wher
particle is submitted to an arbitrary potential which depen
on a function which will represent the constraints of t
model. It is possible to verify that the generators of the sy
metries are given in terms of the zero modes of the sympl
matrix. Then we implement symmetry transformations
the Lagrangian of the system so that new non-null Di
brackets emerge from the sympletic matrix. These ideas
especially important to discuss dual theories where Di
brackets involving gauge fields are expected to appear. H
ever, as we are going to show in two different models th
brackets do not come from a canonical implementation of
sympletic method. We then show that introducing conv
nient symmetry transformations, we can obtain the comp
set of Dirac brackets of the corresponding dual models
Sec. III we apply this method to quantize the problem o
charged oscillator in two space dimensions interacting w
an electromagnetic field described by a CS term. A sim
system has been investigated before using the Dirac me
@14# and it can be understood as an extension of the quan
mechanical model of Dunne, Jackiw, and Trugenberger@15#.
Two of the present authors have also investigated this sys
@13# using the FJ method but in a noncanonical way, in
sense that we have not included a field to play the role of
©1999 The American Physical Society16-1
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momentum of the CS field. This planar system is also in
esting to use to explore the role of the canonical quantiza
of a particle under the influence of a gauge field. Con
quently, it can be interpreted like a laboratory to the dime
sional reduction approach in other more complicated mod
@16#. In Sec. IV, we explore the ideas introduced in Sec. II
quantize, from the canonical point of view, the Schwarz-S
model @17#. The study of symmetry dualities reveals a co
flict between electric-magnetic duality symmetries and L
entz invariance at the quantum level in the Maxwell theo
@18,19#. In a very interesting way, Schwarz and Sen p
posed a four-dimensional action by using two gauge po
tials, such that the duality symmetry is established in a lo
way. As a consequence, the equivalence between this a
native theory and Maxwell’s one is demonstrated. Here,
use the features discussed in Sec. II to obtain this equ
lence. For our convenience, we choose the Coulomb ga
in the treatment of both gauge theories discussed in Sec
and IV, so that a parallel of the sympletic structure betwe
that two different dual models can be easily traced. Conc
sions and final comments are presented in Sec. V.

II. SYMMETRY TRANSFORM IN THE FADDEEV-JACKIW
APPROACH

In order to show how the symmetry transformations
related to the zero modes of the sympletic matrix in the
approach we have made use of a simple case, where a
ticle has been submitted to a potential which depends o
constrained function. For a review of FJ method and ap
cations we refer to Refs.@9–13#.

Let us start by considering the following Lagrangian:

L ~0!5pi q̇i1V~q,p,V!, ~2.1!

where the potential is defined as

V~q,p,V!5lV~q,p!2W~q,p!, ~2.2!

such thatV(q,p) represent the constraints,l a Lagrange
multiplier, andW(q,p) the resultant potential. Following th
steps of the sympletic method we must build a symple
matrix which contains the Dirac brackets. Hence, we be
defining the matrix elements@9–13#

r̂[~r i j !5
]aj

]j i
2

]ai

]j j
, ~2.3!

j i[(qi ,pi) being the generalized coordinates andai the co-
efficients of the velocities in the first-order LagrangianL (0).
Therefore we have, by inspectingL (0), thataq

i [pi and then

rqp
i j 52

]aq
i

]pj
1

]ap
j

]qi
52d i j , ~2.4!

sinceap
j vanishes. Now, defining the vectorj i5(qi ,pi ,l)

and calculating the respective coefficients, we obtain the
trix
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r̂ ~0!5S 0 2d i j 0

d i j 0 0

0 0 0
D , ~2.5!

which is obviously singular, since detr̂(0)50. Then, in this
case we cannot identifyr̂ (0) as the sympletic matrix. This
feature reveals that the system under consideration is
strained@10–12#. A manner to circumvent this problem is t
use the constraints conveniently to change the coefficie
ai(j) in the first-order Lagrangian~2.1! and consequently
obtain a rank-2 tensor which could be identified with t
sympletic matrix.

In the present case, we can build up an eigenvalue eq
tion with the matrixr̂ (0) and eigenvectorsv i

(0) such that

v i
~0!r~0!i j 50. ~2.6!

From the variational principle applied to Lagrangian~2.1! we
find the condition over the zero modes,

v i
~0!] iV~0![x~0!, ~2.7!

which generates the constraintx (0). If we impose thatx (0)

does not evolve in time, we arrive at

ẋ~0!5~] ix
~0!!q̇i , ~2.8!

and sinceẋ (0) is linear in q̇i , we can incorporate this facto
into Lagrangian~2.1!. This operation means to redefine th
coefficientsai

(0)(j) in the form

ãi
~0!~j !→ai

~0!~j !1l] ix
~0!, ~2.9!

wherel is a Lagrange multiplier. Consequently the matr
r̂ (0) becomes

~ r̃ ! i j 5
]ã j

]j i
2

]ãi

]j j
. ~2.10!

After completing this, if det(r̃)ij is still vanishing, we must
repeat the above strategy until we find a nonsingular mat
As has been pointed out in the Refs.@10–12# for systems
which involve gauge fields it may occur that the matrix
singular and the eigenvectorsv i

(m) do not lead to any new
constraints. In this case, in order to obtain an invertible m
trix, it is necessary to fix some gauge. Such a case will
discussed in the following sections.

Going back to Eq.~2.5!, we can see that Eq.~2.8! is
satisfied for the eigenvectorv i

(0)5(0,0,1). On the other
hand, from Eq.~2.7! and the Lagrangian~2.1!, we get

x~0!5v i
~0!] iV~0!5vl

~0!
]V~0!

]l
50

[V~p,q!, ~2.11!

so thatV(p,q) is the primary constraint of the theory. I
order to include this constraint into the Lagrangian dens
we can use a new Lagrange multiplierh and take
6-2
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L ~1!5L ~0!uV501ḣV~q,p!

5pi q̇i1ḣV~q,p!2W~q,p!. ~2.12!

Hence, the new coefficients which contribute to the ma
areaq

i 5pi andah
i 5V. Then, the iterated matrixr̂ (1) reads

r̂ ~1!5S 0 2d i j
]V j

]qi

d i j 0
]V j

]pi

2
]V i

]qj
2

]V i

]pj
0

D , ~2.13!

which means that detr̂(1)[$Vi,Vj%PB. Here, there are two
possibilities. The first is when detr̂(1)Þ0 and the matrixr̂ (1)

is invertible. The second one occurs when detr̂(1)50. This
case is more interesting, since the eigenvectors

v i
~1!5S 2

]V

]pi
,
]V

]qi
,1D ~2.14!

can be identified as the generators of infinitesimal trans
mations. This feature will be quite explored in our analys

Going back to the matrix given by Eq.~2.13!, we notice
the absence of the diagonal elements. This is appare
natural since by definitionr̂ (m) is a rank-2 tensor, and in
general this tensor is antisymmetric. However, there
cases where the system contains duality symmetry, as
example, in the Chern-Simons theories@3,4#. In order to in-
corporate these elements into the iterated matrixr̂ (1), we can
suppose that some kind of symmetry transform can be
tained from the zero modesv i

(m) .
Therefore, let us consider the following transformation

the auxiliary coordinate:1

pi→pi1 f i⇒dpi5
] f i

]qj
dqj , ~2.15!

where f i5 f i(q). Consequently, the modified Lagrangia
L̃ (0) is given by

L̃ ~0!5~pi1 f i !q̇i1Ṽ~qi ,pi1 f i !

5~pi1 f i !q̇i1lṼ~qi ,pi1 f i !2W̃~qi ,pi1 f i !, ~2.16!

and by implementing the sympletic method here we obt
the matrix

1The transformation given by this equation has been suggeste
order to make more simple the development of this section.
final result obtained here can be checked via more general tran
mations as well.
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~ r̃ i j !
~1!5S f i j d i j

]V j

]qi

2d i j 0
]V j

]pi

2
]V i

]qj
2

]V i

]pj
0

D ~2.17!

in such a way that, according to Eqs.~2.6!–~2.9!, we arrive
at

det~ r̃ i j !
~1!5$Ṽ i ,Ṽ j%, ~2.18!

wheref i j [] f j /]qi2] f i /]qj . Now, sincef j is infinitesimal,
we can write

Ṽ i~qj ,pj1 f j !5Ṽ i~qj ,pj !1S ]Ṽ i

]pk
D

f 50

f k, ~2.19!

which implies that

$Ṽ i ,Ṽ j%PB5$V i ,V j%F11S ]Ṽ i

]pk
D

f 50

f kG
[0, ~2.20!

since$V i ,V j%50 has been considered here. The above
sult reveals that the constraint algebra is preserved in fron
transformations~2.15!. Consequently, the matrix (r̃ (1)) i j re-
mains singular and the zero modes in this case become

v i
~1!5S 2

]Ṽ i

]pj
,
]Ṽ i

]qj
2

]Ṽ i

]pk
f k,1D , ~2.21!

which implies that

v i
~1!r̃ i j

~1!5~0,0,$Ṽ i ,Ṽ j%!, ~2.22!

giving a null vector by virtue of Eq.~2.20!. On the other
hand, the action of the zero modes on the equations of
tion yields

v i
~1!F ]L ~1!

]j i

2
d

dt S ]L ~1!

]j̇ i
D G505ḣ$Ṽ i ,Ṽ j%2$Ṽ i ,W̃j%,

~2.23!

as a consequence of Eqs.~2.12! and ~2.21!. This means that
no new constraints can arise from the equations of mot
From the above equation we can get

$Ṽ i ,W̃j%5v i
~1!] i W̃, ~2.24!

and by virtue of Eq.~2.20! we conclude that the zero mode
are orthogonal to the gradient of the potentialW̃, indicating
that they are generators of local displacements on the iso
tential surface. Consequently, they generate the infinitesi
transformations; i.e., for some quantityA(j) we must have

in
e

or-
6-3
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dAa5S ]Aa

]j i
v i D «, ~2.25!

« being an infinitesimal parameter. From Eqs.~2.21! and
~2.25! we have

dqi52
]Ṽ i

]pl
« l , ~2.26!

dpi5S ]Ṽ i

]ql
2

]Ṽ i

]pl
f il D « l , ~2.27!

dh5«, ~2.28!

which permit us to show that the LagrangianL̃ (1) becomes

L̃ ~1!5L ~1!1dL ~1!

5L ~1!1
d

dt
~pidqi1dhṼ i !«, ~2.29!

which does not change the original equation of motio
Therefore, the introduction of symmetry transforms into t
original LagrangianL (0) leads to some elements of the sym
pletic matrix, which are the Dirac brackets. Notice that t
result has been obtained without loss of the formal struc
of the constraint algebra and the equations of motion. In
following sections we present explicitly examples in fie
theory where these ideas will be explored in some depth

III. OSCILLATOR INTERACTING
WITH A CHERN-SIMONS TERM

Let us now consider the problem of charged particles s
jected to a harmonic oscillator potential moving in two d
mensions and interacting with an electromagnetic field
scribed by a Chern-Simons term. This problem was insp
by the Dunne-Jackiw-Trugenberger model@15# and has been
considered before@14,13# in different situations. Here we
want to apply the canonical form of the sympletic meth
which will lead us to the Dirac brackets but some of the
will be missing as we discussed in the previous section. T
we use a convenient transformation to get the comp
brackets set. So we start with the Lagrangian2

2Our conventions here aree0125e01251 andgmn5diag(211).
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2
@ q̇i~ t !q̇i~ t !2v2qi~ t !qi~ t !#

2eE d2xA0~ t,xW !d~xW2qW !1eE d2xAi~ t,xW !

3d~xW2qW !q̇i~ t !1uE d2xemnrAm~ t,xW !]nAr~ t,xW !, ~3.1!

whereqi(t) is the particle coordinate with charge2e on the
plane (i 51,2),Am(t,xW ) is the electromagnetic potential (m
50,1,2), andu is the Chern-Simons parameter. In order
implement the sympletic method here we introduce the a
iliary coordinate pi(t) through the transformationq̇2

→2p•q2p2 @10#, and define an auxiliary fieldP i(t,xW )
5e i j A

j (t,xW ), so that we can write the above Lagrangian

L ~0!5@mpi~ t !2eAi~ t,qW !#q̇i~ t !

2uE d2xP i~ t,xW !Ȧi~ t,xW !2V~0!, ~3.2!

where Ai(t,qW )5*d2xAi(t,xW )d(xW2qW ), and the potential is
given by

V~0!5
m

2
@pi~ t !pi~ t !1v2qi~ t !qi~ t !#

1eA0~ t,qW !12uE d2x] iP i~ t,xW !A0~ t,xW !. ~3.3!

Since this Lagrangian is linear on the velocities, we can id
tify the sympletic coefficients

aqi ~ t !
~0! 5mpi~ t !2eAi~ t,qW !, ~3.4!

aAi ~ t,xW !
~0! 52uP i~ t,xW !, ~3.5!

while the others are vanishing, which lead us to the ma
elements

rqi pj

~0! 52md i j , ~3.6!

rqiAj

~0! 5ed i j d~yW2qW !, ~3.7!

rAiAj

~0! 50, ~3.8!

rAiP j

~0! 5ud i j d~xW2yW !. ~3.9!

Defining the sympletic vector to be given byya

5(qW ,pW ,AW ,PW ,A0) we have the matrix
6-4
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rab
~0!5S 0 2md i j ed i j d~yW2qW ! 0 0

md i j 0 0 0 0

2ed i j d~yW2qW ! 0 0 ud i j d~xW2yW ! 0

0 0 2ud i j d~xW2yW ! 0 0

0 0 0 0 0

D , ~3.10!

which is obviously singular. The zero modes come from the equation

]V~0!

]A0~ t,xW !
5ed~xW2qW !12u] iP i , ~3.11!

which implies the primary constraintx (0)5ed(xW2qW )12u] iP i ~Gauss law!. Using this constraint we can build up the
Lagrangian

L ~1!5L ~0!1l̇x~0!, ~3.12!

wherel is a Lagrange multiplier, and now the potential reads

V~1!5V~0!ux~0!505
m

2
@pi~ t !pi~ t !1v2qi~ t !qi~ t !#. ~3.13!

The new non-null velocity coefficient is given byal
(1)5x (0)5ed(xW2qW )12u] iP i , so that we have new matrix elements

rAil
(1) 50 andrP jl

(1) 52u] jd(xW2yW ), which lead us to the matrix@ya5(qW ,pW ,AW ,PW ,l)#

rab
~1!5S 0 2md i j ed i j d~yW2qW ! 0 0

md i j 0 0 0 0

2ed i j d~yW2qW ! 0 0 ud i j d~xW2yW ! 0

0 0 2ud i j d~xW2yW ! 0 2u] id~xW2yW !

0 0 0 22u] jd~xW2yW ! 0

D , ~3.14!

which is still singular. The zero modes will not lead to any new constraints, and so we have to choose a gauge, which w
the Coulomb one (¹W •AW 50), and we include it in the Lagrangian via another Lagrange multiplierh:

L ~2!5L ~1!1ḣ¹W •AW

5L ~0!1l̇x~0!1ḣ¹W •AW 1V~1!

5@mpi~ t !2eAi~ t,qW !#q̇i~ t !2uE d2xP i~ t,xW !Ȧi~ t,xW !

1l̇@ed~xW2qW !12u] iP i #1ḣ¹W •AW 1
m

2
@pi~ t !pi~ t !1v2qi~ t !qi~ t !#, ~3.15!

which implies the additional coefficientah
(2)5¹W •AW , and the new elementrAih

(2) 5] id(xW2yW ). The sympletic tensor can then be

identified with the matrix,ya5(qW ,pW ,AW ,PW ,l,h),

rab
~2!5S 0 2md i j ed i j d~yW2qW ! 0 0 0

md i j 0 0 0 0 0

2ed i j d~yW2qW ! 0 0 ud i j d~xW2yW ! 0 ] id~xW2yW !

0 0 2ud i j d~xW2yW ! 0 2u] id~xW2yW ! 0

0 0 0 22u] jd~xW2yW ! 0 0

0 0 2] jd~xW2yW ! 0 0 0

D , ~3.16!

which is not singular and can be inverted to give
065016-5
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~r~2!!ab5

¨

0
1

m
d i j 0 0 0 0

2
1

m
d i j 0 0 2

e

mu
Di j d~xW2qW ! 0 2

e

m

] i

¹2 d~xW2qW !

0 0 0 2
1

u
Di j d~xW2yW ! 0 2

] i

¹2 d~xW2yW !

0
e

mu
Di j d~xW2qW !

1

u
Di j d~xW2yW ! 0 2

1

2u

] i

¹2 d~xW2yW ! 0

0 0 0
1

2u

] i

¹2 d~xW2yW ! 0 2
1

2

1

¹2 d~xW2yW !

0
e

m

] j

¹2 d~xW2qW !
] j

¹2 d~xW2yW ! 0
1

2

1

¹2 d~xW2yW ! 0

©

,

~3.17!
c
id

te

sor
ob-
ere

ds.
where Di j 5d i j 2] i] j /¹2. From this result we can write
down the following Dirac brackets of the theory:

$qi ,pj%5
1

m
d i j , ~3.18!

$pi ,P j%52
e

mu
Di j d~xW2qW !, ~3.19!

$pi ,h%52
e

m

] i

¹2 d~xW2qW !, ~3.20!

$Ai ,P j%52
1

u
Di j d~xW2yW !, ~3.21!

$Ai ,h%52
] i

¹2 d~xW2yW !, ~3.22!

$P i ,l%52
1

2u

] i

¹2 d~xW2yW !, ~3.23!

$l,h%52
1

2

1

¹2 d~xW2yW !. ~3.24!

However, as was anticipated in Sec. II, some non-null bra
ets are missing. To overcome this situation let us cons
the transformation

P i~ t,xW !→P i8~ t,xW !2e i j A
j~ t,xW ! ~3.25!

on the Lagrangian of the system. So following the same s
as shown above we find a LagrangianL (2)8 which is identical
to L (2) except for the substitutions
06501
k-
er

ps

2uE d2xP i~ t,xW !Ȧi~ t,xW !→2uE d2xP i8~ t,xW !Ȧi~ t,xW !

1uE d2xe i j A
j~ t,xW !Ȧi~ t,xW !

and

2ul̇] iP i~ t,xW !→2ul̇] iP i8~ t,xW !22ul̇e i j ]
iAj~ t,xW !,

so that we find the coefficients

a~2!8
Ai ~ t,xW !52uP i8~ t,xW !1ue i j A

j~ t,xW !, ~3.26!

a~2!8
l5ed~xW2qW !12u] iP i8~ t,xW !22ue i j ]

iAj~ t,xW !
~3.27!

and the matrix elements

r~2!8
Ai ~ t,xW !Aj ~ t,yW !522ue i j d~xW2yW !, ~3.28!

r~2!8
Ai ~ t,xW !l~ t,yW !52ue i j ]

jd~xW2yW !. ~3.29!

These new elements imply another sympletic ten
which can also be inverted. From this inverse we can re
tain the above Dirac brackets and also others which w
missing before in our treatment,

$Ai ,Aj%52
1

2u
e i j d~xW2yW !, ~3.30!

$Ai ,l%5
1

2u
e i j ]

j¹22d~xW2yW !. ~3.31!

At this point we can identifyl̇ with A0 so that we have
the quantized theory expressed in terms of the usual fiel
6-6
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IV. SCHWARZ-SEN DUAL MODEL

Let us begin by introducing the basic idea of the Schwa
Sen dual model@17#. The proposal is to treat the problem
the conflict between electric-magnetic duality and manif
Lorentz invariance of the Maxwell theory. We mention, f
instance, that by using the Hamiltonian formalism it can
shown that a nonlocal action emerges when one imposes
manifest Lorentz invariance and tries to implement the du
ity symmetry @18#. In order to circumvent this difficulty
Schwarz and Sen proposed the introduction of one m
gauge potential into the theory.

In this sense, the model is described by an action
contains two gauge potentialsAm

a (1<a<2 and 0<m<3)
and is given by3

S52
1

2 E d4x~Ba,ieabEb,i1Ba,iBa,i !, ~4.1!

where Ea,i52Fa,0i , while Ba,i52(1/2)e i jkF jk
a , and Fmn

a

5]mAn
a2]nAm

a . This action is separately invariant under l
cal gauge transformations

dAa,05ca; eAa,i52] iLa ~4.2!

and duality transformations

Aa,m→eabA
b,m. ~4.3!

In terms of the gauge potentials, the corresponding Lagra
ian density is given by

L5
1

2
e i jk~] jAk

a!eab~Ȧi
b!

2
1

2
e i jk~] jAk

a!eab~] iA0
b!2

1

4
Fa, jkF jk

a . ~4.4!

Now, the above Lagrangian density is of first order in tim
derivative. In order to implement the sympletic method
can define an auxiliary field to make more simple the sub
quent calculations. Hence, let us consider the field

Pa,i5eabe
i jk~] jAk

b!

[PW a5eab¹3AW b, ~4.5!

and the Lagrangian density~4.4! becomes

L ~0!5
1

2
PW a

•AẆ a2
1

2
PW a

•¹A0
a2

1

2
PW a

•PW a

[
1

2
PW a

•AẆ a2V~0!, ~4.6!

where V(0)5 1
2 PW a

•¹A0
a1( 1

2)PW
a
•PW a. Therefore, the sym-

pletic vector will be given asjW (0)5(AW a,PW a,A0
a). From the

3Our conventions aree125152e21 and 1< i , j ,k<3.
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developments of Sec. II, it is easy to verify that the symple
matrix correspondent toL (0) is singular. The zero-mode vec
tor in this case will bev (0)5(0,0,vA0

(0)) and the use of Eqs

~2.6!–~2.8! will give origin to the constraint

x5¹•PW a50, ~4.7!

which can be incorporated into the new Lagrangian den
via a Lagrange multiplier. Consequently, we have

L ~1!5L ~0!ux501l̇¹•PW a

5
1

2
PW a

•AẆ a1l̇¹•PW a2
1

2
PW a

•PW a, ~4.8!

which leads to another singular matrix

~rab
~1!! i j 5S 0 2d i j 0

d i j 0 2] i
x

0 ] j
x 0

D dabd~xW2yW !, ~4.9!

where the sympletic vector has componentsj (1)

5(AW a,PW a,l). On the other hand, the use of Eq.~2.7! implies
that

vW AW a2¹vl50, ~4.10!

and no new constraints are generated. Here, we remark
the above relation can be used to derive the well-kno
gauge symmetry

dAW a5¹l, dPW a50, dA0
a5l̇. ~4.11!

Hence, in this step it is necessary to impose a gauge fixin
we adopt the Coulomb gauge, as was done in the prev
section, the new Lagrangian density becomes

L ~2!5L ~1!u¹•AW a501ḣ~¹•AW a!

5
1

2
PW a

•AẆ a1l̇~¹•PW a!1ḣ~¹•AW a!2
1

2
PW a

•PW a, ~4.12!

and the sympletic matrix, given by

~rab
~2!! i j 5S 0 2d i j 0 2] i

x

d i j 0 2] i
x 0

0 ] j
x 0 0

] j
x 0 0 0

D dabd~xW2yW !, ~4.13!

can be inverted to give

~rab
~2!! i j

215S 0 2dabDi j 0 ] i
x¹22

dabDi j 0 ] i
x¹22 0

0 2] j
x¹22 0 ¹22

2] j
x¹22 0 2¹22 0

D
3d~xW2yW !, ~4.14!
6-7
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where Di j 5d i j 1] i
x] j

x¹22. The sympletic vector now is

j (2)5(AW a,PW a,l,h); therefore, from the above matrix we g

$AW a~xW !,PW b~yW !%D52dabS d i j 1
] i

x] j
x

¹2 D d~xW2yW !, ~4.15!

which agrees with the result in Ref.@19# obtained from the
Dirac procedure. It is important to notice that the mat
~4.14! presents only one bracket, since by virtue of the d
symmetry it must contain diagonal elements li

$AW a(xW ),AW b(yW )%D . This feature can be interpreted by cons
ering the bracket~4.15! as a dynamical one. The part of th
sympletic matrix ~4.14! related to symmetries cannot b
identified directly. However, this term can be generated
means of a convenient symmetry transformation.

In order to implement this, let us consider the followin
transformation into the Lagrangian density~4.6!:

PW a→PW a82eab¹3AW b, ~4.16!

so that we rewrite it as

L ~0!851
1

2
~PW a82eab¹3AW b!•~AẆ a2¹A0

a!

2
1

2
~PW a82eab¹3AW b!2. ~4.17!

Now, by using Eqs.~2.6! and ~2.7!, it is easy to verify the
presence of the constraint

x85¹•PW a8 ~4.18!

and, consequently,

L ~1!85L ~0!8ux8501ȧ~¹•PW a8!. ~4.19!

The singular matrix corresponding to the above Lagrang
density is given by

~Gab
~1!! i j 5S eabe i jk]k 2dabd i j 0

dabd i j 0 2dab] i
x

0 dab] j
x 0

D d~xW2yW !.

~4.20!

Then, from Eq.~2.7! we obtain the zero modes

vW AW a5¹vaa, vW PW a5¹3~eabvW AW b!, ~4.21!

which confirm the two expected symmetries

dAW a5¹aa ~gauge!, ~4.22!

dPW a85¹3~eabA
b! ~dual!, ~4.23!

and no new constraints are generated. Therefore, we
adopt a gauge fixing. Choosing again the Coulomb gauge
arrive at
06501
l
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LGF5
1

2
@~AẆ a2¹ȧa2PW a81eab¹3AW b!•PW a8

2~¹3AW a!22~Ȧa2¹ȧa!eab¹3AW b#¹•AW a50 . ~4.24!

Identifying ȧa[A0
a , we get EW a52Ȧa1¹A0

a , and conse-
quently the gauge-fixed Lagrangian density becomes

LGF8 5
1

2
~2EW a2PW a81eab¹3AW b!•PW a8

2
1

2
~¹3AW a!22dLGF ~4.25!

and the gauge-fixing term can be written as

dLGF5
1

2
~EW a1PW a8!dPW a8

5
1

2
~EW a1PW a8!d~eab¹3AW b!

52
1

2
¹3~EW a1PW a8!•d~eabAW

b!1surface terms,

~4.26!

where we used Eq.~4.23!.
Before going on, it is important to make some remar

First of all, we mention that from Eq.~4.25! it is easy to infer
that the Dirac bracket between the gauge fields in this cas
given by

$AW a~xW !,AW b~yW !%D5eab¹
22¹3d~xW2yW !, ~4.27!

which gives rise to a nonlocal commutation relation for t
AW a field. This relation was obtained here within the conte
of the sympletic methodology starting from the use of t
symmetry transform given by Eq.~4.16!.

Another interesting feature is that from the use of E
~4.16! and of the gauge-fixed Lagrangian density~4.25! we
can show the equivalence between the Schwarz-Sen m
and Maxwell theory. From Eq.~4.21!, we notice that the
variations overeabAW

b lead to

¹3~PW a81EW a!50, ~4.28!

and since at this stage the Gauss law can be used, we
clude that

dPW a852dEW a5¹3~eabAW
b!. ~4.29!

Going back to Eq.~4.30!, takinga51, b52, we have

LGF8 →LM5
1

2
~EW 1

•EW 12BW 1
•BW 1!, ~4.30!

which is the Maxwell Lagrangian density. From the Gau
law ¹•PW a850 and Eq.~4.28! we find that the vectoruW a

5PW a81EW [0 implies that¹•EW a50. It is important to notice
6-8
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that thePW a8(xW ) field is not the canonical momentum of th
electromagnetic theory but it represents here an auxil
field in order to implement the Faddeev-Jackiw method.

V. COMMENTS AND CONCLUSIONS

In this work, we study the role of the symmetry transfo
mations in the Faddeev-Jackiw approach. We verify that
generators of such a transformation can be represente
terms of the zero-mode vectors of the singular presympl
matrix. Since the inverse of the sympletic matrix conta
elements which define the Dirac brackets of the constrai
system, it is natural to ask what happens when some brac
do not appear in this inverse matrix. In our interpretatio
these elements are associated with some kind of symm
transform which, on the other hand, are generated by z
mode vectors. Hence, after a convenient symmetry trans
mation we can complete the set of the fundamental brac
of the models in question.
,
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Here, we explore this strategy in three different situ
tions: first, for the case where a particle is submitted to
‘‘constrained potential.’’ After we discuss the case of an o
cillator in two space dimensions coupled to a Chern-Sim
gauge field and finally the Schwarz-Sen dual model
which our main goal was to obtain the corresponding Di
brackets and how to describe its equivalence with the M
well theory. In this point the zero modes played a very i
portant role.
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