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We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained sys-
tems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an
arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These
symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac
brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss
the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-
Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac
brackets and the correspondent Maxwell electromagnetic theory [B5656-282199)04804-3

PACS numbgs): 11.10.Kk, 11.15.Tk

[. INTRODUCTION null Dirac brackets are the elements of the sympletic matrix

[10-12. For gauge systems, this matrix is singular and has

Dual symmetries play a fundamental role in classical elecno inverse unless a gauge-fixing term is included. The FJ

tromagnetic theory as realized since the completion of itsnethod is very simple to use; nevertheless, it does not ex-
equations by Maxwell in the last century. In quantum theory plicitly give all non-null Dirac brackets in the sympletic ma-

however, these symmetries were not fully appreciated untitrix. Some of them are obtained only by use of the equations
the works of Montonen and Olivgl] and more recently of motion[13]. However, this problem may be circumvented

Seiberg and Wittefi2] in 3+ 1 dimensions and the study of if we consider some symmetry transformations in the fields.

Chern-SimongC9) theories[3] in 2+ 1 dimensions. Since In this work we show how to implement this idea by
these theories have gauge symmetries, they are naturallising first in Sec. Il an example in one dimension where a
constrained. particle is submitted to an arbitrary potential which depends

The study of constrained systems consists of a very interen a function which will represent the constraints of the
esting subject which has been intensively explored by usingnodel. It is possible to verify that the generators of the sym-
different technique$4], alternatively to the pioneering pro- metries are given in terms of the zero modes of the sympletic
cedure of Dirac[5]. In that original work, the constraints matrix. Then we implement symmetry transformations on
were classified into two categories which have differentthe Lagrangian of the system so that new non-null Dirac
physical meanings: first-class constraints related to gaugerackets emerge from the sympletic matrix. These ideas are
symmetries and second-class ones which represent a redwspecially important to discuss dual theories where Dirac
tion of the degrees of freedom. In addition to its applicabil-brackets involving gauge fields are expected to appear. How-
ity, the Dirac method presents some difficulties when onesver, as we are going to show in two different models these
studies systems presenting only second-class constraints abrhckets do not come from a canonical implementation of the
there one verifies the presence of symmetries despite treympletic method. We then show that introducing conve-
gauge fixation. This is what happens with 2D induced gravnient symmetry transformations, we can obtain the complete
ity where the SL(R) symmetry was not detected by con- set of Dirac brackets of the corresponding dual models. In
vential methods but by analyzing the anomaly equation bySec. 1l we apply this method to quantize the problem of a
Polyakov[6,7]. Later on, Barcelos-Netf8] using the Dirac charged oscillator in two space dimensions interacting with
and sympletic methods reobtained this result and also foundn electromagnetic field described by a CS term. A similar
a Virasoro hidden symmetry in the Polyakov 2D gravity. system has been investigated before using the Dirac method

From the canonical point of view, the study of symmetries[14] and it can be understood as an extension of the quantum
can be approached with the Faddeev-Jacld sympletic  mechanical model of Dunne, Jackiw, and Trugenbefig}.
procedurd9]. In this approach, the phase space is reduced iTwo of the present authors have also investigated this system
such a way that the Lagrangian depends on the first-ordgf.3] using the FJ method but in a noncanonical way, in the
velocities. The advantage of this linearization is that the nonsense that we have not included a field to play the role of the
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momentum of the CS field. This planar system is also inter- 0 -8 O
esting to use to explore the role of the canonical quantization ~o_| s 0 0
of a particle under the influence of a gauge field. Conse- p=1 “i ' 29
quently, it can be interpreted like a laboratory to the dimen- 0 0O oO

sional reduction approach in other more complicated models
[16]. In Sec. IV, we explore the ideas introduced in Sec. Il towhich is obviously singular, since dgt=0. Then, in this
quantize, from the canonical point of view, the Schwarz-Ser¢ase we cannot identifp(®) as the sympletic matrix. This
model[17]. The study of symmetry dualities reveals a con-feature reveals that the system under consideration is con-
flict between electric-magnetic duality symmetries and Lor-Strained10—12. A manner to circumvent this problem is to
entz invariance at the quantum level in the Maxwell theoryuse the constraints conveniently to change the coefficients
[18,19. In a very interesting way, Schwarz and Sen pro-a'(£§) in the first-order Lagrangiaf2.1) and consequently
posed a four-dimensional action by using two gauge potenebtain a rank-2 tensor which could be identified with the
tials, such that the duality symmetry is established in a loca$ympletic matrix.

way. As a consequence, the equivalence between this alter- In the present case, we can build up an eigenvalue equa-
native theory and Maxwell’s one is demonstrated. Here, weion with the matrixp(®) and eigenvectorsi(o) such that

use the features discussed in Sec. Il to obtain this equiva- -

lence. For our convenience, we choose the Coulomb gauge v{9p@ii=0, (2.6)

in the treatment of both gauge theories discussed in Secs. llI

and IV, so that a parallel of the sympletic structure betweer-rom the variational principle applied to Lagrangianl) we

that two different dual models can be easily traced. Conclufind the condition over the zero modes,

sions and final comments are presented in Sec. V.

0{0givO =) 2.7
Il. SYMMETRY TRANSFORM IN THE FADDEEV-JACKIW which generates the constraigt®). If we impose thaty®
APPROACH does not evolve in time, we arrive at
In order to show how the symmetry transformations are (0 (510 2.9
related to the zero modes of the sympletic matrix in the FJ X =00, :

approach we have made use of a simple case, where a paf sincey(?) is linear ing', we can incorporate this factor
ticle ha; been su.bmltted toa potentlal which depends oN o Lagrangian(2.1). This operation means to redefine the
constrained function. For a review of FJ method and app“_coefficientsa(o)(g) in the form
cations we refer to Ref$9-13. i
Let us start by considering the following Lagrangian: O£ —a® (&) + ndiy© 2.9
i i iX .
(0)— ¢ . . .
L =pigi+V(a.p.Q), 2D wherex is a Lagrange multiplier. Consequently the matrix

L _ p© becomes
where the potential is defined as

V(q,p,Q)=\Q(q,p)—W(q,p), (2.2 (B)i=5¢ ~ o8, (2.10

such that(}(q,p) represent the constraints, a Lagrange  After completing this, if def); is still vanishing, we must
multiplier, andW(q, p) the resultant potential. Following the repeat the above strategy until we find a nonsingular matrix.
steps of the sympletic method we must build a sympleticAs has been pointed out in the Refé0-17 for systems
matrix which contains the Dirac brackets. Hence, we begifwhich involve gauge fields it may occur that the matrix is

defining the matrix elemen{9-13 singular and the eigenvector$s™ do not lead to any new
constraints. In this case, in order to obtain an invertible ma-
n_ _ ﬁ_ ﬁ 23 trix, it is necessary to fix some gauge. Such a case will be
p=(pij)= o&  9&’ 23 giscussed in the following sections.

Going back to Eq.(2.5, we can see that Eq2.8) is
&=(q; ,p;) being the generalized coordinates amdhe co-  satisfied for the eigenvectasr(”’=(0,0,1). On the other
efficients of the velocities in the first-order Lagrangiaf?.  hand, from Eq(2.7) and the Lagrangiaf2.1), we get

Therefore we have, by inspecting®, thatay=p' and then O
J

AN =0
=Q(p,q), (2.11

sinceajp vanishes. Now, defining the vectdr=(q;,p; ,\) so thatQ(p,q) is the primary constraint of the theory. In
and calculating the respective coefficients, we obtain the masrder to include this constraint into the Lagrangian density
trix we can use a new Lagrange multipligrand take

i i (O)ZU.(O),;iv(O):U(O)
ij day  day s 24 X ! A
pqp 07pj 07qi ijo ( )
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LD =LOq_0+ 7Q(q,p) ; 5 I
- i % G
= P&+ 72(q.p)—W(g,p). (212 ol
~ \(1)_ -5 0 3 21
Hence, the new coefficients which contribute to the matrix (i)™= ! ap; (217
area,=p; anda),=(. Then, the iterated matrix*) reads 20 20/
0 5 oo
T g in such a way that, according to Eq8.6)—(2.9), we arrive
pr=| 9 0 oo | (2.13 R
. _ ! det(p;;) V'={0',Ql}, (2.19
Q! Q!
- ﬂ_qj - a_pj wheref;;=df;/dq;— df;/dq; . Now, sincef; is infinitesimal,

we can write

which means that dgt’={Q',()J}p5. Here, there are two

possibilities. The first is when dgt+#0 and the matrixp®) O'(ay,py+ ) =0'(q;,p) +
is invertible. The second one occurs when @8t0. This

case is more interesting, since the eigenvectors

a) K, (2.19
Wi/ =g -

0?2‘)
_ K
IPk/ ¢—g

0, (2.20

which implies that

Q. Q

Ui(1>:( _&_pi’ﬁ_qi'l) (2.14 (@01 e={0,Q1] 1+

can be identified as the generators of infinitesimal transfor-
mations. This feature will be quite explored in our analysis. o
Going back to the matrix given by Eq.13, we notice  since{Q',Q2/}=0 has been considered here. The above re-
the absence of the diagonal elements. This is apparentlyult reveals that the constraint algebra is preserved in front of
natural since by definitiop(™ is a rank-2 tensor, and in transformationg2.15. Consequently, the matri();; re-
general this tensor is antisymmetric. However, there arenains singular and the zero modes in this case become
cases where the system contains duality symmetry, as, for
example, in the Chern-Simons theor[@s4]. In order to in- 20 90 9

corporate these elements into the iterated maittk we can Ui(l): - a_p’a_q- - ﬁ—pkfk,l ' (2.29
suppose that some kind of symmetry transform can be ob- ) '
tained from the zero modeg™ . which implies that
Therefore, let us consider the following transformation in
the auxiliary coordinaté: (VB =(0,0{0), 1}, (2.22
of, giving a null vector by virtue of Eq(2.20. On the other
pi_’pi"'fi:gpi:&_q oq; (2.19 hand, the action of the zero modes on the equations of mo-
! tion yields
where f;=f,(q). Consequently, the modified Lagrangian L@ g [oL® o o
L© is given by () ——| ——| [=0=5{Q, 0} -{Q Wi},
&f, dt &gl

(2.23

) ~ ~ as a consequence of EqR.12 and(2.21). This means that
=(Pi+ )G+ AQ(q;,pi+F)—W(gi.pi+fi), (216 o new constraints can arise from the equations of motion.
From the above equation we can get
and by implementing the sympletic method here we obtain
the matrix (O, Wit =v VW, (2.24

LO=(pi+f)ai+V(g,pi+f)

and by virtue of Eq(2.20 we conclude that the zero modes

IThe transformation given by this equation has been suggested e orthogonal to the gradient of the potenWé/ indicating
order to make more simple the development of this section. Théhat they are generators of local displacements on the isopo-
final result obtained here can be checked via more general transfotential surface. Consequently, they generate the infinitesimal
mations as well. transformations; i.e., for some quantify(£) we must have
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IA* m g ) i
&, (225 L=51aMg (1) - eq(t)g ()]

5A"=(a—§ivi

—ef dzxAO(t,i)a(z—q)Jref d2xA(t,%)
e being an infinitesimal parameter. From Ed&.21) and
(2.25 we have

X 8(X—§)g'(t)+ 0f d?Xe,,, ,A*(1,X)"AP(t,X), (3.1)

i
5q=— ﬂgl ' (2.26 whereq;(t) is the particle coordinate with chargee on the

P plane (=1,2),A,(t,X) is the electromagnetic potentiak (
=0,1,2), andé is the Chern-Simons parameter. In order to
implement the sympletic method here we introduce the aux-

o0 a0 iliary coordinate p;(t) through the transformationg?
5pi:((9__¢9_ ")s|, (220  —2p-q—p? [10], and define an auxiliary fieldI;(t,X)
q P =¢€;AlI(t,X), so that we can write the above Lagrangian as

S (2.29 LO=[mp(H)—eA(td)]d (1)

—0J d?xIT;(t, %) Al (t,%X) — V@, (3.2
which permit us to show that the Lagrangigf? becomes

where A;(t,d) = fd?xA;(t,X) (X—§), and the potential is
given by
TO= LDy s D

w, 9 o VO =ZIp 0P () + 070, (04 (1]
=L@+ o (p3a+ onlde, (2.29 5 LPi(HP' () + 0 ai(Da(

+eA0(t,d)+20f d2xa'TT;(t,X) Ag(t,%). (3.3
which does not change the original equation of motion.
Therefore, the introduction of symmetry transforms into the ) o - )
original LagrangiarL (%) leads to some elements of the sym- Slnce this Lagrgnglan is _Ilnear on the velocities, we can iden-
pletic matrix, which are the Dirac brackets. Notice that thistify the sympletic coefficients

result has been obtained without loss of the formal structure

of the constraint algebra and the equations of motion. In the aifftf mpi(t)—eA(t,q), (3.9
following sections we present explicitly examples in field '

theory where these ideas will be explored in some depth.

0=~ OILi(1,%), (3.9

IIl. OSCILLATOR INTERACTING while the others are vanishing, which lead us to the matrix
WITH A CHERN-SIMONS TERM elements

Let us now consider the problem of charged particles sub- ©)
jected to a harmonic oscillator potential moving in two di- Pap;= ~ M, (3.6)
mensions and interacting with an electromagnetic field de-
scribed by a Chern-Simons term. This problem was inspired

by the Dunne-Jackiw-Trugenberger mofteh] and has been Pg?z\j:wij o(y—4a), 3.7
considered befor¢14,13 in different situations. Here we

want to apply the canonical form of the sympletic method 0 g 38
which will lead us to the Dirac brackets but some of them Paa =% 3.8
will be missing as we discussed in the previous section. Then

we use a convenient transformation to get the complete Pk%jzﬁﬁiﬁ(f—y)- 3.9

brackets set. So we start with the Lagrangian

Defining the sympletic vector to be given by“
20ur conventions here arg;,= €°*>=1 andg”’=diag(— ++). =(4,p,A,I1,A;) we have the matrix
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0 —-mg;  e§;a(y—q) 0 0
ma;; 0 0 0 0
pQ=| —esj8(y-d 0 0 65;8x-y) 0|, (3.10
0 0 — 05 0(X—Y) 0 0
0 0 0 0 0
which is obviously singular. The zero modes come from the equation
AR _
m265(i— G)+260'T1;, (3.1)

which implies the primary constraing®=es(X—q)+2604'11; (Gauss lay. Using this constraint we can build up the
Lagrangian

LO=LO4+\xO, (3.12
where\ is a Lagrange multiplier, and now the potential reads
VD=0 _m i 2 i
=V yo-0= 7 [Pi(P'(D) + @ ai(t)d'(1)]. 313

The new non-null velocity coefficient is given b;&l)—)((o)—ecS()? §)+264'TI,, so that we have new matrix elements
pg;—o andp(l) 209, 8(X—Yy), which lead us to the matriky®=(q,5,A,I1,\)]

0 —ms;  eg;8(y—Aa) 0 0

p(a]g: _e5ll5(y)_q)) 0 0 06||6()2_y)) 0 ’ (314)
0 0 —08;8X-Y) 0 209;6(X—Y)
0 0 0 —2600;6(X—Y) 0

which is still singular. The zero modes will not lead to any new constraints, and so we have to choose a gauge, which will be
the Coulomb one‘i-,&:O), and we include it in the Lagrangian via another Lagrange multipfier

L@O=LD43V.A

=LO+ Ay O+ 5V. A+ VD
~[mA() - AT -0 | XL EDA(L)
+A[ea(X—0)+ 20711+ 7V - A+ 2 [p,(OP(D+w gD (D], (319

which implies the additional coefficiemt”=V - A, and the new elementyy), = J' 5(X—y). The sympletic tensor can then be
identified with the matrixy®=(q,p,A,II,\,7),

0 ~-ms;  ed;8(y—d) 0 0 0
ms; 0 0 0 0 0
@_ —ed;8(y—a) 0 0 05 6(X—Y) 0 3 6(X—Y)
Pap™ 0 0 —65,8%-Y) 0 209,5(X—Y) 0 ’ (3.19
0 0 0 ~260,8(%—Y) 0 0
0 0 —98%-Y) 0 0 0

which is not singular and can be inverted to give
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1
0 — &jj 0 0 0 0
m
1 e e d
4 0 0 — 5 Dijo(X=0) 0 vz dx=ad)
1 o J o
0 0 0 Tngjg(X_y) 0 V2 5()( Y)
(2)yaB—
(p') o ! o 14 :
0 gL dX=a)  5Djjo(X—y) 0 ~ 55 72 0X=Y) 0
‘ 11
0 0 0 5 72 0X—Y) 0 — 5 g20X~Y)
ed I 11 . .
0 —g20X-d0) Gzo(X-y) 0 5 729(X=Y) 0
(3.17
|
where Dj; = 6;;— 39, /V2. From this result we can write 5 TR i
down the following Dirac brackets of the theory: - 9f dXII; (1, X) AN (1, X) — — Hf d=xII{ (t,X)A'(t,X)
{a.py}= 0, (318 #0 e MDA
and
CMIl=——D:. 5(X—§ 1 - y . o
{pi I3} g Dii 9= a), (3.19 20N TT(1,%)— 20N TT/ (1,%) — 20h ;AL (1,%),
(9 so that we find the coefficients
{pi.np=— 5z 8(3-0), (320 , |
a? piez=— 0L (t,X) + 0€;Al(1,X),  (3.26
(A1} =— D 8(X—y), (3.20) a®', =eds(X—G)+2604'T1{ (%) — 20€;d' A(t,%)
(3.27
El R and the matrix elements
(AL 7= — gz 0(X-Y), (3.22
p'? A(LDA (1Y) = —20€;5(X—Y), (3.28
1 i
{Hi 7)\}: - ﬁ Wﬁ(x_y)! (323) p(Z) Ai(ty);))\(t'y)ZZHGijo"J 5()_()_9) (329}
11 These new elements imply another sympletic tensor
N gt=—= =5 8(X—Y). (3.24  Wwhich can also be inverted. From this inverse we can reob-
2V tain the above Dirac brackets and also others which were

missing before in our treatment,
However, as was anticipated in Sec. Il, some non-null brack-

ets are missing. To overcome this situation let us consider 1 ..
the transformation {ALA =~ 55 €0(X—Y), (3.30
IL;(t,%)— I1{ (t,%) — &; Al (t,%) (3.29 1 o
' {A N} = 556V 28(X-9). (3.3

on the Lagrangian of the system. So following the same steps

as shown above we find a Lagrangla®” which is identical
to L(?) except for the substitutions

At this point we can identifyA with A, so that we have
the quantized theory expressed in terms of the usual fields.
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IV. SCHWARZ-SEN DUAL MODEL developments of Sec. ll, itis easy to verify that the sympletic

i 0 is sj - -
Let us begin by introducing the basic idea of the Schwarz—matr'x correspondent t6 ' 7 is singular. The zero-mode vec

Sen dual mod€dl17]. The proposal is to treat the problem of tor in this case will ba;(°)=(0,0p§f;)) and the use of Egs.
the conflict between electric-magnetic duality and manifest2.6)—(2.8) will give origin to the constraint
Lorentz invariance of the Maxwell theory. We mention, for .
instance, that by using the Hamiltonian formalism it can be x=V-11#=0, (4.7
shown that a nonlocal action emerges when one imposes the _ ) _ .
manifest Lorentz invariance and tries to implement the dual¥Which can be incorporated into the new Lagrangian density
ity symmetry [18]. In order to circumvent this difficulty Vi @ Lagrange multiplier. Consequently, we have
Schwarz and Sen proposed the introduction of one more
gauge potential into the theory.

In this sense, the model is described by an action that 1. - . o
contains two gauge potentiafs] (1<a<2 and O<u<3) = EHa-AaH\V-Ha— - I12.118, 4.8
and is given by

LO=L£O _o+AV-Ti2

N[

which leads to another singular matrix

S=— Ef d4X(Ba’iEabEb’i + Ba,iBa,i) (4 1)
2 ! ' 0 -8 O
where E*'= —F20, while B*'=—(1/2)e"*F%, and F3, (Pi=| i 0 | spd(X—Y), (4.9
=4d,A5—d,A% . This action is separately invariant under lo- 0 4 0

cal gauge transformations
. _ ‘ where the sympletic vector has component®
SA*O=yf,  eA*'=—3'A® (42 =(A2112\). On the other hand, the use of Eg.7) implies

. . that
and duality transformations

v pa— Vv, =0, 4.1
AR _ EabAb”u. (43) Upa U\ ( Q

) ) and no new constraints are generated. Here, we remark that
In terms of the gauge potentials, the corresponding Lagrangpe apove relation can be used to derive the well-known
ian density is given by gauge symmetry

1 . R = :
ﬁzzfljk(ﬁjAﬁ)fab(A?) SA?=V\, OI12=0, SAj=N\. (4.1

1 1 Hence, in this step it is necessary to impose a gauge fixing. If
- —e”k(ajAE)eab(&iAg)— _|:a,ik|:?k_ (4.9  we adopt the Coulomb gauge, as was done in the previous
2 4 section, the new Lagrangian density becomes

Now, the above Lagrangian density is of first order in timeﬁ(z>:£(1)| -4 %7(V~5\a)
derivative. In order to implement the sympletic method we V-AI=0

can define an auxiliary field to make more simple the subse- 1., 0 . aa L PO S,
quent calculations. Hence, let us consider the field =S HEATH MV + (V- AT — S5, (4.19
0= ijk b . . .
%= eape™(9;A%) and the sympletic matrix, given by
—Tja— AD
=[1%=¢,4,VXA®, (4.5 0o - 5”, 0 _ aiX
and the Lagrangian densiftg.4) becomes s 0 =4 Lo
Pi=| o & o Sapd(%=Y), (413
1. - 1. 1. . i
L= SI% A= ST VAG— STI%11° g 0 0
1. - 0 can be inverted to give
= 5Hﬁ~Aa—v< ), (4.6)
0 — SanDj 0 gV
where VO=1172. VAZ+ ($)IT2- 112 Therefore, the sym- 21 abDij 0 gV 0
pletic vector will be given ag®= (A2 11 A3%). From the (Pab)ij ™= 0 -V 0 V-2
A B
30ur conventions are!?=1=— €% and 1<i,j k<3. X 8(X—Y), (4.19
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where Dij=5ij+(9§‘¢9ij*2. The sympletic vector now is

1 - - S -
> o —_r(Aa_v,a_rtya’ by . 172’
£2=(A3TI3 )\, 7); therefore, from the above matrix we get Lop=5[(AT=Va =117+ €5,V X A%) - 11

X 24X

N\ —(VXA)2— (A2—Vad) e, VX APy sa_p. (4.29)
5ij+;v2i)5(x—y), (4.15 ap VAo

{A%(X),T1°(Y)}p=— Bap

Identifying &®=A2, we getE®=—A%+VAZ2, and conse-
which agrees with the result in Rdfl9] obtained from the quently the gauge-fixed Lagrangian density becomes
Dirac procedure. It is important to notice that the matrix
(4.14 presents only one bracket, since by virtue of the dual

symmetry it must contain diagonal elements like

{A%(X),AP(y)}p . This feature can be interpreted by consid-
ering the bracket4.15 as a dynamical one. The part of the
sympletic matrix (4.14 related to symmetries cannot be
identified directly. However, this term can be generated bya
means of a convenient symmetry transformation.

In order to implement this, let us consider the following

1. -
Lop=75(—EA=TI% + €,y X A?)  TI¥

1 R
—E(VXA"")Z—&EGF (4.25

nd the gauge-fixing term can be written as

transformation into the Lagrangian density6):

1212 — €,V X AP, (4.16
so that we rewrite it as
(0)' 1 Jar AD -"a a
L =+§(H —€,pVXA®) - (A2=VA])
1 Tar A b\ 2
_E(H — €.,V X A")“, (4.17

Now, by using Egs(2.6) and (2.7), it is easy to verify the
presence of the constraint

x' =V (4.18
and, consequently,

LD =L o+ a(V-TIY). (4.19

1.
SLor=5(EX+T1%) 511%
1 =a Jar AD
= 5 (E*+T1%) 8( 5V X A”)

1 - - -
=-5VX (E2+112")- 8(e,pAP) + surface terms,

(4.26

where we used Ed4.23.

Before going on, it is important to make some remarks.
First of all, we mention that from Ed4.25) it is easy to infer
that the Dirac bracket between the gauge fields in this case is
given by

{A3(X),A°(Y)}p= €V 2V X S(X—Y),  (4.27)

which gives rise to a nonlocal commutation relation for the

A? field. This relation was obtained here within the context
of the sympletic methodology starting from the use of the

The singular matrix corresponding to the above Lagrangiasymmetry transform given by E¢4.16.

density is given by

fabfijkﬁk — Oandjj 0
(GL)ij=| %abdij 0 = 8and; | S(X—Y).
0 Sand] 0
(4.20
Then, from Eq.(2.7) we obtain the zero modes
J,&a=Vvaa, Jﬁazvx(&'abl})'&b), (42])
which confirm the two expected symmetries
SA2=Va?® (gauge, (4.22)
ST =V X (e,,AP)  (dual), (4.23

Another interesting feature is that from the use of Eq.
(4.16 and of the gauge-fixed Lagrangian dengi#y25 we
can show the equivalence between the Schwarz-Sen model
and Maxwell theory. From Eq(4.21), we notice that the

variations overe,,A® lead to
VX (I1%' +E?)=0, (4.28

and since at this stage the Gauss law can be used, we con-
clude that
ST = — SE2=V X (€4pA). (4.29

Going back to Eq(4.30, takinga=1, b=2, we have

1 . . L.
EéFHEMZE(El-El—Bl-Bl), (4.30

and no new constraints are generated. Therefore, we cifich is the Maxwell Lagrangian density. From the Gauss
adopt a gauge fixing. Choosing again the Coulomb gauge wéw V-11?"=0 and Eq.(4.28 we find that the vectou®

arrive at

=[1?'+ E=0 implies thatV - E2=0. It is important to notice
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that thel1®' () field is not the canonical momentum of the ~ Here, we explore this strategy in three different situa-
electromagnetic theory but it represents here an auxiliarjions: first, for the case where a particle is submitted to a
field in order to implement the Faddeev-Jackiw method.  “constrained potential.” After we discuss the case of an os-
cillator in two space dimensions coupled to a Chern-Simons

V. COMMENTS AND CONCLUSIONS gauge field and finally the Schwarz-Sen dual model for

which our main goal was to obtain the corresponding Dirac

|r_1 this_ work, we study the _role of the symmetry transfor- p4ckets and how to describe its equivalence with the Max-
mations in the Faddeev-Jackiw approach. We verify that the ., theory. In this point the zero modes played a very im-

generators of such a transformation can be represented gbrtant role
terms of the zero-mode vectors of the singular presympleti '
matrix. Since the inverse of the sympletic matrix contains

elements which define the Dirac brackets of the constrained

system, it is natural to ask what happens when some brackets

do not appear in this inverse matrix. In our interpretation,

these elements are associated with some kind of symmetry The authors acknowledge partial financial support from
transform which, on the other hand, are generated by zerd-onselho Nacional de Desenvolvimento Ciéoti e Tecno-
mode vectors. Hence, after a convenient symmetry transfotogico, CNPq, Brazil. A.S.D also acknowledges partial fi-
mation we can complete the set of the fundamental brackewancial support from Fundae de Aruparo aPesquisa do
of the models in question. Estado de SaPaulo, FAPESP.
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