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Higgs- and Goldstone-boson-mediated long range forces
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In certain mild extensions of the standard model, spin-independent long range forces can arise by exchange
of two very light pseudoscalar spin-0 bosons. In particular, we have in mind models in which these bosons do
not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a
1/r® behavior of the potential for the exchange of very light pseudoscalars and’ aldpendence if the
pseudoscalars are true massless Goldstone bosons.
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[. INTRODUCTION Should neutrinos be the only massless or very light par-
ticles in spectrum of the theory, then the Feinberg-Sucher
Most studies and investigations on long range forces haveesult would be the only possible exotic long range force,
always centered, for obvious reasons, around the electromatpgardless of the model. This is clear since all long range
netic and gravitational interaction. However, starting withforces(including the electromagnetic and gravitational inter-
the very early example of the Casimir-Polder long rangeaction arise as a consequence of an exchange of very light
force [1], over the Feinberg-Sucher for¢@] mediated by ~gquanta. However, as mentioned above, many extensions of
two neutrinos(see Fig. 1 and finally going to recent devel- the standard model also predict very light pseudoscalars.
opments in supersymmetry and superstrif@ there has Usually diagrams involving two such pseudoscalars will then
been continuous interest in effects and detection of exotiéesult in a spin-independent long range force between stan-
long range forcef4]. The actual applicability or relevance of dard fermions13,14. Recall that an exchange of a single
these forces is, of course, different from case to case. Fdyseudoscalar between fermions gives a spin-dependent result
instance, the Casimir-Polder force is, in principle, of electro-for the potentia[4]. Indeed, a covariant calculation with two
magnetic origin. It arises as a consequence of photon eX@seudoscalars exchange has been recently perforniddiin
change between polarizable neutral systems and the resultifigy the context of a generic theory where the coupling of the
potential has a 1/ dependence at long distances. Althoughpseudoscalagy to fermions is taken either agéysy or,

the Casimir-Polder force has been recently detected in giternatively, as the derivative Versioﬂﬂ@)JySyuw_ In the
laboratory experiment5], the neutrino mediatedi.e., in-  |atter casap can represent a generic Goldstone boson. In the
volving weak interaction coupling$-einberg-Sucher force is  first case the authors obtain a 3Hependence of the poten-
too weak to be of any significance in Earth-based experitia| whereas the double exchange of Goldstone bosons yields
ments. If at all, a suitable arena for this force would be ofg more drastic fall-off, viz. P. However, very often, i.e., in
astrophysical and/or cosmological dimensitsee for in- 3 wide class of models, these pseudoscalars do not couple to
stance in this respef6] and references ifi7]). The result of  standard fermiongoften not even to gauge bosorsn ac-
Feinberg and Sucher has been recently extended to also agunt of some symmetry argumertigge the Appendix where
count for the exchange of very light Dir¢8] and Majorana  gne such model is briefly sketchetowever they do always

[9] neutrinos. Temperature-dependent corrections includingaye a tree level coupling to Higgs-scalar particles of the
the eXChange of thermalized neutrinos at finite temperaturqheory_ |ndeed7 it is difficult to imagine a reasonable symme-

such as the relic cosmic neutrinos Bfl”_l mm, have  try argument which would forbid such couplings. We now
been calculated if10,7]. Finally let us mention that exten-

sions of the standard model can allow, in principle, for a
variety of different long range forcdgl], mediated, for in-
stance by very light or massless scalars or pseudoscalal
[11]. The former force acting between neutrinos themselves
has been discussed, e.g.,[t2]. The potential due to the
exchange of two pseudoscalar particibex diagramswas
computed in[13,14]. Furthermore, new exotic long range
forces can appear also in the context of gauge mediated SLy N N N
persymmetry breaking and in superstring theofigs The :

implications of a new long range force due to an exii@d) FIG. 1. One of the diagrams in the S.M. giving rise to the two
gauge group have been discussed recently by Fayd5in  neutrino force in four-Fermi effective theory.

N’ N N’

P < mk

0556-2821/99/5&)/0750097)/$15.00 59 075009-1 ©1999 The American Physical Society



F. FERRER AND M. NOWAKOWSKI PHYSICAL REVIEW D59 075009

f f f I Feynman amplitude in momentum spdts latter strategy
T T is only applicable in general when there is no lower order
,,Lfl /l N long range force and relativistic corrections are negligible
J/ \ 7 < my ! \ According to the rules of the dispersion theoretical
a la —— a! 1 a .
\ K ' : method we must compute the following Laplace transform
TNt '\ // (we restrict here ourselves to central forces which depend
/'/l\ /%‘\ only on the distance=|r| between the two particlgs
f f f f .
—i (=
FIG. 2. Pseudoscalar mediated long range force without direct V(r)= mLmzdt[M]t exp(—ir), (2.1
a

fermion coupling.

where the integration variabtestands for the usual Mandel-
assume that the scalars themselves couple to standard fermz, .\ v ariable which equals the four-momentum transfer

_ons,_whicr_l is the case in most models. If so, then the diagra@quared,qz. Here, [M], denotes the discontinuity of the
n Fig. 2 dlsplay_s a very nice analogy to _the diagram res’ponl:eynman amplituddi.e., the absorptive part of the same
sible for the Femberg-Sgcher foresee Fig. 1 Indeed,.we . across the cut in the redlaxis and is best computed by
haV(_a rep_Iaced only fermions by bosons Whe_n comparing F'g(aking advantage of the analyticity and generalized unitarity
1 with Fig. 2. Of course, one expects a differentlepen- J)roperties leading to the Cutkosky rulgi].

dence of the potential arising from the two diagrams due 10| o4 ;5 now consider the case of some generic interaction
different dimensionality of the coupling constants. If theterms of the form

pseudoscalars have both couplings, to the fermions as well as

to the Higgs scalars, the result [df4] and our paper should — ,

then be added. Since the coupling of the Higgs scalar to Lint= 0, fiH, Lin=9,,,2aH, (2.2
fermions is usually proportional to the mass of the fermion, . . )

one may suspect that the box-diagrams using the direc¥heref are standard fermions] is the heavy Higgs scalar
pseudoscalar-fermion coupling are more important. In genWith massmy andais the very light pseudoscalar with mass
eral this is model dependent, but we can safely state here thBt.- We can essentially neglect here possible quartic cou-
the pseudoscalar fermion coupling constant is also “experiPlings of the formH?a® as self-energy corrections due to this
mentally” restricted by arguments of energy loss in starsquartic coupling would only eventually give rise to contact
where one assumes that the bulk of energy of the star igteractions.

carried away by the standard mechanism in form of photons It is convenient to define global coupling constants as
and neutrino$16].

If we assume that the pseudoscalar is a Goldstone boson, 9 91aa 900 9an
a connection to th&J(1) forces considered ifil5] can be G=—7——, G'=—7F—, 2.3
possibly made as the latter display a “Goldstone-like” be- My My

havior as theJ(1) coupling approaches zefa5].
The paper is organized as follows. In Sec. Il we calculate
using dispersion theoretical methofls7], the long range

which capture the constants of the four vertices and the two
Higgs propagators in Fig. 2. For future reference we draw the
force due to the diagram in Fig. 2 where we assume that thEfader's attention to 2the fact that we have expanded the
coupling between the Higgs scaléd) and the very light 199S propagators im” and kept only the zeroth order of
pseudoscalafa) is linear and of the formHaa. We also this expansion; this then gives théI in the denomlnators_of
briefly touch upon some issues concerning a possible tenf? @nd G’ in Eq. (2.3). The full matrix element of the dia-
perature dependence of the potential. In the subsequent s¢@m in Fig. 2 is given by

tion we change the linear coupling to a derivative version of

the formH(d,a)(9*a). In Sec. IV we discuss the particular M=-2iGG'Tu(ppu(p)u(ppu(py)]. (2.4
case of Goldstone bosons exchange. In Sec. V we summarize
our results. The one-loop integral is represented abovel hyi.e.,

d*k i i

Il. LONG RANGE FORCES DUE TO = oy — ,
PSEUDOSCALAR-PSEUDOSCALAR-SCALAR (2m)" k*=mitie K2—mi+ie
NONDERIVATIVE COUPLINGS

The dispersion theoretical technique of calculating long k=k—q, gq=p;—p;=p;—Pz2, 9°=t.
range forces in quantum field theory is reviewed in detail in (2.9
[17]. This method is especially suitable to cope with higher o )
order diagrams and relativistic effects and its implementatioyVe assume also the nonrelativistic limit in which we have
to compute the neutrino pair exchange force is straightforu(p;)u(py) =u(ps)u(p,)=1. Using the prescriptions aris-
ward [2]. The results agree with the computations done ining from generalized unitarity, which amount to the replace-
[18] by performing the Fourier transform of the associatedment,
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1

mH—ZWi 5(k2—m§)0(k0),
a

(2.6

we obtain for the discontinuity

— 1 d4k 2 2 12 2 0 1.0
[T1= 5 53] ok ok -mdy o) ok

1 4my

~8nr t

(2.7

Obviously we havd M],=—2i GG'[I']; which has to be

inserted into Eq(2.1) to compute the final expression of the

potential:
v GG’ foo g /1 amé N
ry=-— t — ——exp(—tr
(") 3273 Jam? r &N )
GG'm,
=—WK1(2mar), (2.8)
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where n(T) is the particle distribution function with the
chemical potential already set to zero. As noted explicitly in
[10], the propagatof2.1)) is sufficient to calculate the prob-
lem at hand.

We will restrict ourselves to Boltzmann distributions

n(T)=exd (—E/T], (2.12

in which Ey is the energy. To calculate the potential itself we
use now the method of Fourier transforming the momentum
amplitude, i.e.,

d3
Vﬂ0=f(2?

77_3

exp(iQr)M+(Q)
1 (- .
_mJO dQ QM(Q)sinQr,  (2.13

where in the static limit we havg=(0,Q) and in the second
equality we have define@=|Q| andr=|r|. The second
expression in Eq(2.13 holds for potentials which depend
only on r. As before, we can write effectivelyM =
—2iGG'T'; such thatl'; is the one loop integral involving
two “cross” products of two propagators, one the standard
vacuum part and the other thermal part, viz.,

whereK; is a modified Bessel function. To show that Eqg.
(2.8), for a very small mass,, yields indeed a long range
potential, let us take the limin,— 0 in Eq.(2.8) (equivalent

d*k
to rm,<1). For the leading order of the expansion we get = f (27)42' 7 8(k*—=mZ)n(T)

1
! X + . (2149
V(r)z—m. (2.9 (k+q)2=m;  (k—g)?—m;
For comparison we quote below the Feinberg-Sucher resu]r;T can be further evaluated to be
for massless neutrindg]
4i (= dkK
= exp( — Vk2+m2/T)
Vet G29,9, 210 T (@2m*)o k+m2 i
F 4773I‘5 ’ 1 1
Xf_leW_Qz, (2.19

whereGg is the Fermi andy, andg,, weak vector coupling
constants. Note that, in contrast to E8.9), the Feinberg-
Sucher force(2.10 is repulsive. This difference between where nowk=k|. Recalling thatM=—2iGG'T't and in-
these two forces is due to an extra minus sign for the fermiosserting this into Eq(2.13 and subsequently performing the
loop in Eq.(2.10. integration first ovelQ and then over we get

We would like to touch at this point briefly upon finite
temperature corrections to Eq2.8) and(2.9). In doing so

we will follow malnly_ (10] an_d [7] 'FO Wh'Ch_ v_ve refer the we depart for a moment from the dispersion theoretical method
reader for more details on this subject. At finite temperature,q yse, following10] and[7], the traditional Fourier transform to

T the spin-0 boson propagat6i(k) takes the form compute theT-dependent effects. In such a situation we need only
the real part of the amplitude correctly given by using Ej11)

(see Ref.[10]), which is the -1 component of the full
2-dimensional matrix propagator used in the real time approach to

——2iws(k2—m2)n(T), (2.11)
le finite temperature field theofyi9].

1
S0~ ez ie
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GG' 1 (» kdk _ LI =g. H(d*a)(d,a). (3.1
Vi== g 32| Gz 2o VkZ+m2/T)sin(2kr) Nt Staa g
a

To simplify things, we will also start right from the begin-

GG' 1 Tm, m, ning considering massless pseudoscalarstead of taking
=== Kl(—\/1+ (2rT)2) . the limitm,— 0 at the end of the calculatipriVe define also
2151 J1+(2rT)? T overall couplings in analogy to E¢2.3):
(2.19 ~ -
=~ ngngaa =~ ng’f’gHaa
Equation (2.16) is the finite temperature correction to Eq. G= Tz G’ET (3.2
H H

(2.9). It is instructive at this stage to examine different limits
of Eq.(2.16). First, let us consider the casg—0 as done in

S ; As in the preceding section we start with the dispersion the-
Eq. (2.9 for the vacuum contribution. We get the simple P g P

oretical definition of the potential, i.e., EQ.1) where we

result denote now the matrix element byt given by
% eer1 T 2.1 M=-2iGG'-T
=" 23 r Trame 219 SRR
4 . .
Using the last limit(i.e., m,—0) we can also investigate the f:f dk i i k-K)?2 (3.3
ranger>T 1. In this range(2.17 can be expanded to give (2m)*Kk? k? '
V(1) = — G’ 2.18 where as befor&=q—k. The rest of the calculation follows
T 8mrs” essentially on the same lines as in Sec. Il. First we have to

. . calculate the discontinuityAM],=[T'], and insert the result
At these distances, long compared to the inverse tempergsiq Eq.(2.1). For the discontinuity we obtain

ture, we can add now to the vacuum p&i9) Eq. (2.18 to
arrive at the complete answer for the potential

[T]= e’ f d*ka(k2) 8(k2)k k
- 3 GG’ " (2m)? wty
Vtot(r)_VT(r)"'V(r)—_l_SW. (2.19 . )
g“q” =1 1 t
This last result is particularly interesting when we compare it (2m)? 2|3 4 32w

with the corresponding result in the context of the two neu- i _ )
trino force, calculated at zero and finite temperafife In ~ With q“=t as usual. Calculating the integral transform of this
the neutrino case the total sum consisting of the vacuum paftiscontinuity remains. To distinguish the potential from the
and the finite temperature contributifice., an equation cor- results in the preceding section we will call the potential due
responding to Eq(2.19] switches the sign of the force in the O two~ pseudoscalar exchange arising from the interaction
ranger>T !, a repulsive force becomes attractive in the(3.1), V. For the latter we get

presence of relic neutrinds’]. This is a quite interesting

result which sheds new light on the Feinberg-Sucher force. GG’ “d Rnye= 156G’
The reason why a similar reversal does not take place in the == 12823 Jo texp(— virt=— 837
two boson force[cf. Eq. (2.19] (i.e., why this attractive (3.5

force does not become repulsive when we add temperature
correction$ is due to the fact that the relative sign betweenlf we compare this expression with the potential9) it be-
the vacuum part of the propagator and the thermal part isomes clear that it is thg*=t? dependence dfl'], which
plus in the boson propagatfcf. Eq. (2.11)] whereas it is  gives here the steep fall-off proportional ta 4/In Eq. (2.9)
minus for fermiong 19]. the corresponding integrand, i.gl;]; was simply a constant
Although the temperature of the very light pseudoscalargfor m,=0) giving rise to a milder ¥# dependence.

at the present epoch, provided of course these pseudoscalarsin principle, one could now also calculate temperature-
exist, is model dependent, it should be compardatdeast dependent effects as we have done in Sec. Il. We will, how-
in the order of magnitudeto the temperature of relic axions ever, not dwell further on this subject here and instead ad-
[20] or Majorons[21]. dress in the next section the interesting question of the

potential due to the exchange of two Goldstone bosons.

Ill. THE CASE OF DERIVATIVE COUPLINGS
IV. LONG RANGE FORCES

In this section we will also compute the dispersion force DUE TO PHYSICAL GOLDSTONE BOSONS

arising from Fig. 2, considering however a different coupling

scheme between the heavy Higgs scalars and the light pseu- In the two preceding sections we have calculated in a
doscalars. For the relevant Lagrangian interaction we takeather model-independent way the potential due to two pseu-
now [22] doscalar exchange according to Fig. 2 and using two differ-
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ent interaction Lagrangiang?.2) and (3.1). Here we would

like to address the situation when the pseudoscalar is a true (GG Ier1Iprir IpasIprag

(@)= X

(i.e., strictly masslegsGoldstone boson. Majoron p.p—Hs (G2—m2)(q>—m3,)

In the literature one can find numerous papers where for )
Goldstone bosons either the linear schef®®) is used or Ggmemg,

L : - - =———sirfgcoshtart B

the derivative one as in E@3.1), very often with the insis- 2
tence that, for Goldstone bosons, the derivative coupling is 5
the correct one. 1 1 4

We will examine the two Goldstone bosons potential not X F_ E q (4.3

H S

in a general model, but using as an example the singlet Ma-

joron model[23], briefly sketched in the Appendix. The Ma- gjnce the relevant integrand in the form[#f],|,, o [cf. Eq.
joron J (we change the notation her,~J) is a true Gold- . 5 a
2.8)] does not give any furtheg® dependenctit is a con-

stone boson due to spontaneous breaking of the lepto 4.0 )
number. The two different couplings discussed above havd anj, the g"=t" term from Eq.(4.3 is the only one to be

been derived explicitly in the appendix. Equati cor- mtegra_ted over. This, of course, resemblles tffedepen-
responds to the Fl)inea); schemeva\)/hereas (Ig@) t?ﬁ:e de- dence in Eq(3.4). Indeed, the final expression for the poten-

rivative one. Also note that, apart from the explicit form of tial reads

the couplings, we can use from now on the results from the 1562m.m 1 112
two preceding sections. _ Vyyn=— —Tsir20)tartg —-=

Since in the singlet Majoron model the physical spectrum 16737 mg  mg
consists of twcheavyscalarsH and S and themasslesd/a- (4.9

joron J, instead of one diagram as in Fig. 2, we have four

distinct amplitudes corresponding to the four possible comand has remarkably the samelependence as E@.5.
binations of the heavy scalars, i.e., to the exchange Letus now repeat the steps from above for the derivative

HH,SSHS, andSH. coupling schem¢3.1) discussed in the general setting in Sec.

Let us first investigate in detail the linear coupling schemd!l and given specifically for the singlet Majoron case in Eq.
(A6) which would then fall in the general domain of Sec. II. (A8). The equation corresponding to E@.3) reads in this
All we have to do now is to use the res(®.8) and replace ~Scenario as follows:
the general coupling G’ by the concrete example from the

Appendix. As mentioned before, we have to sum over the 9509519559535

different possibilities of heavy scalar exchanges, i.e. ((~3(~3’)Ma,0mn(q2 = 2 N 5
P : P.p'=H,s (Q°—Mp)(q°—mg,)
g g ' g g ' sz ml 1 1 2
(GG o™ 2 — 55— (4D =~ si20tartg| — — 5| +---
Y P,P'=H,S umP' 2 mH mS
Although the coupling of Higgs scalars is not always strictly =(GG") (g%2=0), 4.5

Majoron

proportional to the fermion masdor instance, in case of
nucleons it also depends on the gluon content of the nuclg:e., a nonzero result of the expansion here is already possible
ons we will use here, as an example, the couplingiond  at the lowest order. Inserting this into E®.5) we confirm,

S to fundamental fermions. In the singlet Majoron modelhowever, the result4.4). This is mainly due to the fact that
they are given byg, =—i(V2Gg)"m; cost and g =  (GG')  (q?) has the same? dependence &4'];.

. . Hff _ . Sff_ Majoron
—i(\2Gg)¥m; sin6. The coupling constants among the  The equivalence of the two coupling schemes, E4S)

spin-0 bosons can be read off from EAG). Taking all this  and (A8), in calculating the potential due to Majorons ex-

into account we obtain change is a particular example of a more general theorem
, _ which states that physical results cannot depend on the cho-
(GG )Majoron_ 0. (4.2 sen parametrization of the field24]. Recall that Eq.(A6)

) ) ) follows directly from choosing the representatidi2)
ThlS, of course, does not Imply that the potentlal due to thQNhereas Eq(AS) is a conseguence of the representation
exchange of two Majorons is zero. It means, however, that ita7).
is not of the simple 1# dependence as indicated in E2.9). Although we have used a particular model in our compu-
In order to get a meaningful nonzero result for the potentiakations, we expect the 1/ behavior to hold for a generic
(due to Majorons we have to go one step more in thé  Goldstone boson. From the equivalence of the two schemes
expansion of the heavy Higgs propagators. We alreadyyhich allows us to employ nonlinear representations like Eq.
stressed in Sec. |l that the results presented there are valid fgl\?) where they can s|mp||fy the calculations and the gen-
the zeroth order expansion, i.e., fully neglecting éfén the  eral properties of decoupling of Goldstone bosons at low
heavy Higgs propagators. In other words, this means thainergied25] we conclude that for Goldstone bosons the po-
(GG") =(GG’) (q°=0)=0. The next term in the tential will always behave as 1/ and the vanishing of the

Majoron Majoron

expansion is coefficient in front of the ¥P term that only appears when
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using non-derivative couplings is not a coincidence of thisyalue(¢)=w/\/2 giving rise to a Majorana mass tet(imis
particular model. As the calculations in this section show, at, gimensionless parameter

low energies it is more direct and advisable to use derivative The scalar potential/(®,¢) contains besides the stan-

couplings whereas the alternatid2) requires more cOm-  yarq Higgs doubletb the singlete. The potential is of the
plicated calculations involving cancellations of constants,

terms to render the same results.
V(®,0)=u(DTD) + u3(¢* @)+ Ny (PTd)?

V. CONCLUSIONS FAo(¢* )2+ Ai DT D) (¢ ) (AL)

We have calculated the long range potentials due to the
exchange of very light or massless pseudoscalars using di
persion theoretical methods. In particular, we investigate
these long range potentials in models where the very light

uch that it conserves the lepton number. We choose first the
inear representation for the fields

+
pseudoscalars do not have a tree-level coupling to the stan- G W ot

dard fermion. The only possible diagram which in coordinate o= v P+IGY|, o=—+—, (A2
space can then result in long range potentials displays a for- E+ T V2 V2

mal resemblance to the diagram responsible for the two neu-
trino Feinberg-Sucher force. Indeed, the formal difference is

+ 0 ;
of fermions versus bosons in the loop. In Sec. Il we com-WhereG andG' are nonphysical Goldstone bosons eaten

puted the long range potential for very light pseudoscalars in'P by the gauge boson$ according to the Higgs mechadism,
the linear coupling scheme and also examined some anal®® the_physmal one(MaJoror_w) and v and_w are the corre-
gies and differences to the Feinberg-Sucher force. The Iatt@gpond'ng vacuum expectation V"?"“e.s triggering e.w. gnd lep-
included some investigation on finite temperature correction pon numbgr S.5.B. After minimization of the potential the
to the potentials. The potential in this case falls off as.1llh Mmass matrix of the two scalar particles reads

the following section we performed a very similar exercise,

but considering a derivative coupling scheme for the interac- A2 )‘_120\,\,

tion between heavy scalars and pseudoscalars. Finally we 2 ¢ 1, 1,
presented a nice equivalence of both coupling schemes in(¢ ) A1 , o —§mHHH+§mSSS
calculating the potential due to the exchange of true Gold- 70W AW

stone bosons. Here the fall-off is much steeper, namelf 1/ (A3)

As far as the latter is concerned we add that @ Blepen-

dence is possible, via box diagrams, provided the pseudogyhereH and S are the mass eigenstates obtained by the ro-
calars have tree level couplings to fermions. tation

H cosf —sinb\[ ¢
ACKNOWLEDGMENTS = _ (A4)
S sinéd cosfl |\ o
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Amparo aPesquisa de ®8aPaulo(FAPESB and Programa

de Apoio a Neleos de Excélecia (PRONEX. 2\ v%=cogom? +sirfem3,
2 _ o 2 2
APPENDIX 2\, w?=sirfdm;, + cog omg,

We present below the simplest version of a Majoron 2\ 10 W=Ssin 20(m§— mﬁ). (A5)

model which is a physical Goldstone boson in the spectrum

of the theory associated with spontaneous breakdown of tot&quation(A5) is useful to extract the vertices in terms of the
lepton numbelL [23]. This model, known as a singlet Ma- angle # and the scalar masses. We are especially interested
joron model, became well known in connection with invis- here in the trilinear verticeld J> andS*. They are given by
ible Higgs boson decay®6]. We emphasize that although the interaction Lagrangian

the details will be given here for this particular model, a

variety of similar models exist. o (\2Ggp)12 ) ) ,
The usual motivation behind a Majoron model lies in the  £int == tanB[Mscos#S—my sinfH]I"+ - - -
choice of the Majorana mass term. The latter can be either a (AB)

bare mass termm, vxCrg, violating explicitly the lepton

number or an interaction term of the formpr;Crg which  whereGg is the Fermi coupling constant and t@r v/w.
conserved.. The fielde is aSU(2)®U(1) complex singlet For comparison, let us also make use of a nonlinear rep-
with L= —2 which acquires a nonzero vacuum expectatiorresentation for the singlet field, viz.,
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1 As mentioned before, there exist a wide class of different

o=—=(W+o")expil/w). (A7) Majoron models invoking slightly differenty(1) symme-

V2 tries to be spontaneously broken. The latter can be either the
lepton number, a combination of individual lepton numbers
or a family symmetry. We refer the reader{&¥] for a short

The componentg ando’ will now mix to give the physical  account of these models and references. We mention also
scalarsH andS[as in Eqs(A3) and(A4)]. So far, there is no  that some, previously popular Majoron models , like the trip-
difference with respect to the linear representation. Howevelet model or the doublet model have been, by now, excluded
in the nonlinear representation the interaction terms of thén their simplest versions through LEP ddtarough the ab-
Majoron J with the scalars will get generated in the singletsence of the decay channél-J+ Higgs). However, more
kinetic term @,¢*)(J*¢) which after rotation to the physi- complicated versiorimostly in conjunction with a singlit
cal scalars gives can be still viable.
Also note that Majoron models which predict a tree level
coupling to ordinary matter are severely constrained by the
Ei(ﬁt):(\/EGF)l’ztanB[coses— sinoH](d,d)(d*I)+ - - -. argument of energy loss in stars possibly carried away by
(A8) Majorons. A singlet Majoron model evades these constraints.
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