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Higgs- and Goldstone-boson-mediated long range forces
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In certain mild extensions of the standard model, spin-independent long range forces can arise by exchange
of two very light pseudoscalar spin-0 bosons. In particular, we have in mind models in which these bosons do
not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a
1/r 3 behavior of the potential for the exchange of very light pseudoscalars and a 1/r 7 dependence if the
pseudoscalars are true massless Goldstone bosons.
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I. INTRODUCTION

Most studies and investigations on long range forces h
always centered, for obvious reasons, around the electrom
netic and gravitational interaction. However, starting w
the very early example of the Casimir-Polder long ran
force @1#, over the Feinberg-Sucher force@2# mediated by
two neutrinos~see Fig. 1! and finally going to recent devel
opments in supersymmetry and superstrings@3#, there has
been continuous interest in effects and detection of ex
long range forces@4#. The actual applicability or relevance o
these forces is, of course, different from case to case.
instance, the Casimir-Polder force is, in principle, of elect
magnetic origin. It arises as a consequence of photon
change between polarizable neutral systems and the resu
potential has a 1/r 7 dependence at long distances. Althou
the Casimir-Polder force has been recently detected i
laboratory experiment@5#, the neutrino mediated~i.e., in-
volving weak interaction couplings! Feinberg-Sucher force i
too weak to be of any significance in Earth-based exp
ments. If at all, a suitable arena for this force would be
astrophysical and/or cosmological dimension~see for in-
stance in this respect@6# and references in@7#!. The result of
Feinberg and Sucher has been recently extended to als
count for the exchange of very light Dirac@8# and Majorana
@9# neutrinos. Temperature-dependent corrections includ
the exchange of thermalized neutrinos at finite temperat
such as the relic cosmic neutrinos atT21;1 mm, have
been calculated in@10,7#. Finally let us mention that exten
sions of the standard model can allow, in principle, for
variety of different long range forces@4#, mediated, for in-
stance by very light or massless scalars or pseudosc
@11#. The former force acting between neutrinos themsel
has been discussed, e.g., in@12#. The potential due to the
exchange of two pseudoscalar particles~box diagrams! was
computed in@13,14#. Furthermore, new exotic long rang
forces can appear also in the context of gauge mediated
persymmetry breaking and in superstring theories@3#. The
implications of a new long range force due to an extraU(1)
gauge group have been discussed recently by Fayet in@15#.
0556-2821/99/59~7!/075009~7!/$15.00 59 0750
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Should neutrinos be the only massless or very light p
ticles in spectrum of the theory, then the Feinberg-Suc
result would be the only possible exotic long range for
regardless of the model. This is clear since all long ran
forces~including the electromagnetic and gravitational inte
action! arise as a consequence of an exchange of very l
quanta. However, as mentioned above, many extension
the standard model also predict very light pseudoscal
Usually diagrams involving two such pseudoscalars will th
result in a spin-independent long range force between s
dard fermions@13,14#. Recall that an exchange of a sing
pseudoscalar between fermions gives a spin-dependent r
for the potential@4#. Indeed, a covariant calculation with tw
pseudoscalars exchange has been recently performed in@14#
in the context of a generic theory where the coupling of
pseudoscalarf to fermions is taken either asfc̄g5c or,
alternatively, as the derivative version (]mf)c̄g5gmc. In the
latter casef can represent a generic Goldstone boson. In
first case the authors obtain a 1/r 3 dependence of the poten
tial whereas the double exchange of Goldstone bosons yi
a more drastic fall-off, viz. 1/r 5. However, very often, i.e., in
a wide class of models, these pseudoscalars do not coup
standard fermions~often not even to gauge bosons! on ac-
count of some symmetry arguments~see the Appendix where
one such model is briefly sketched!. However they do always
have a tree level coupling to Higgs-scalar particles of
theory. Indeed, it is difficult to imagine a reasonable symm
try argument which would forbid such couplings. We no

FIG. 1. One of the diagrams in the S.M. giving rise to the tw
neutrino force in four-Fermi effective theory.
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F. FERRER AND M. NOWAKOWSKI PHYSICAL REVIEW D59 075009
assume that the scalars themselves couple to standard f
ons, which is the case in most models. If so, then the diag
in Fig. 2 displays a very nice analogy to the diagram resp
sible for the Feinberg-Sucher force~see Fig. 1!. Indeed, we
have replaced only fermions by bosons when comparing
1 with Fig. 2. Of course, one expects a differentr depen-
dence of the potential arising from the two diagrams due
different dimensionality of the coupling constants. If th
pseudoscalars have both couplings, to the fermions as we
to the Higgs scalars, the result of@14# and our paper should
then be added. Since the coupling of the Higgs scala
fermions is usually proportional to the mass of the fermio
one may suspect that the box-diagrams using the di
pseudoscalar-fermion coupling are more important. In g
eral this is model dependent, but we can safely state here
the pseudoscalar fermion coupling constant is also ‘‘exp
mentally’’ restricted by arguments of energy loss in st
where one assumes that the bulk of energy of the sta
carried away by the standard mechanism in form of phot
and neutrinos@16#.

If we assume that the pseudoscalar is a Goldstone bo
a connection to theU(1) forces considered in@15# can be
possibly made as the latter display a ‘‘Goldstone-like’’ b
havior as theU(1) coupling approaches zero@15#.

The paper is organized as follows. In Sec. II we calcula
using dispersion theoretical methods@17#, the long range
force due to the diagram in Fig. 2 where we assume that
coupling between the Higgs scalar~H! and the very light
pseudoscalar~a! is linear and of the formHaa. We also
briefly touch upon some issues concerning a possible t
perature dependence of the potential. In the subsequent
tion we change the linear coupling to a derivative version
the formH(]ma)(]ma). In Sec. IV we discuss the particula
case of Goldstone bosons exchange. In Sec. V we summ
our results.

II. LONG RANGE FORCES DUE TO
PSEUDOSCALAR-PSEUDOSCALAR-SCALAR

NONDERIVATIVE COUPLINGS

The dispersion theoretical technique of calculating lo
range forces in quantum field theory is reviewed in detai
@17#. This method is especially suitable to cope with high
order diagrams and relativistic effects and its implementa
to compute the neutrino pair exchange force is straight
ward @2#. The results agree with the computations done
@18# by performing the Fourier transform of the associa

FIG. 2. Pseudoscalar mediated long range force without di
fermion coupling.
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Feynman amplitude in momentum space~this latter strategy
is only applicable in general when there is no lower ord
long range force and relativistic corrections are negligible!.

According to the rules of the dispersion theoretic
method we must compute the following Laplace transfo
~we restrict here ourselves to central forces which dep
only on the distancer[ur u between the two particles!:

V~r !5
2 i

8p2r E4ma
2

`

dt@M# t exp~2At r !, ~2.1!

where the integration variablet stands for the usual Mande
stam variable which equals the four-momentum trans
squared,q2. Here, @M# t denotes the discontinuity of th
Feynman amplitude~i.e., the absorptive part of the sam!
across the cut in the realt axis and is best computed b
taking advantage of the analyticity and generalized unita
properties leading to the Cutkosky rules@17#.

Let us now consider the case of some generic interac
terms of the form

Lint5g
H f f

f̄ f H, L int8 5g
Haa

aaH, ~2.2!

where f are standard fermions,H is the heavy Higgs scala
with massmH anda is the very light pseudoscalar with mas
ma . We can essentially neglect here possible quartic c
plings of the formH2a2 as self-energy corrections due to th
quartic coupling would only eventually give rise to conta
interactions.

It is convenient to define global coupling constants as

G[
g

H f f
g

Haa

mH
2

, G8[
g

H f 8 f 8
g

Haa

mH
2

, ~2.3!

which capture the constants of the four vertices and the
Higgs propagators in Fig. 2. For future reference we draw
reader’s attention to the fact that we have expanded
Higgs propagators inq2 and kept only the zeroth order o
this expansion; this then gives themH

2 in the denominators of
G and G8 in Eq. ~2.3!. The full matrix element of the dia-
gram in Fig. 2 is given by

M522 i GG8G@ ū~p18!u~p1!ū~p28!u~p2!#. ~2.4!

The one-loop integral is represented above byG, i.e.,

G[E d4k

~2p!4

i

k22ma
21 i e

i

k̄22ma
21 i e

,

k̄5k2q, q5p12p185p282p2 , q25t.
~2.5!

We assume also the nonrelativistic limit in which we ha
ū(p18)u(p1)5ū(p28)u(p2).1. Using the prescriptions aris
ing from generalized unitarity, which amount to the replac
ment,

ct
9-2
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1

k22ma
21 i e

→22p id~k22ma
2!u~k0!, ~2.6!

we obtain for the discontinuity

@G# t5
1

~2p!2E d4k

~2p!4d~k22ma
2!d~ k̄22ma

2!u~k0!u~ k̄0!

5
1

8p
A12

4ma
2

t
. ~2.7!

Obviously we have@M# t522 i GG8@G# t which has to be
inserted into Eq.~2.1! to compute the final expression of th
potential:

V~r !52
GG8

32p3r
E

4ma
2

`

dtA12
4ma

2

t
exp~2At r !

52
GG8ma

8p3r 2
K1~2mar !, ~2.8!

whereK1 is a modified Bessel function. To show that E
~2.8!, for a very small massma , yields indeed a long rang
potential, let us take the limitma→0 in Eq.~2.8! ~equivalent
to rma!1). For the leading order of the expansion we ge

V~r !.2
GG8

16p3r 3
. ~2.9!

For comparison we quote below the Feinberg-Sucher re
for massless neutrinos@2#

VFS~r !5
GF

2gvgv8

4p3r 5
, ~2.10!

whereGF is the Fermi andgv andgv8 weak vector coupling
constants. Note that, in contrast to Eq.~2.9!, the Feinberg-
Sucher force~2.10! is repulsive. This difference betwee
these two forces is due to an extra minus sign for the ferm
loop in Eq.~2.10!.

We would like to touch at this point briefly upon finit
temperature corrections to Eqs.~2.8! and ~2.9!. In doing so
we will follow mainly @10# and @7# to which we refer the
reader for more details on this subject. At finite temperat
T the spin-0 boson propagatorST(k) takes the form

ST~k!5
1

k22ma
21 i e

22ipd~k22ma
2!n~T!, ~2.11!
07500
lt

n

e

where n(T) is the particle distribution function with the
chemical potential already set to zero. As noted explicitly
@10#, the propagator~2.11! is sufficient to calculate the prob
lem at hand.1

We will restrict ourselves to Boltzmann distributions

n~T!5exp@~2Ek!/T#, ~2.12!

in which Ek is the energy. To calculate the potential itself w
use now the method of Fourier transforming the moment
amplitude, i.e.,

VT~r !5E d3Q

~2p!3
exp~ iQr !MT~Q!

5
1

2p2r E0

`

dQ QMT~Q!sinQr, ~2.13!

where in the static limit we haveq.(0,Q) and in the second
equality we have definedQ5uQu and r 5ur u. The second
expression in Eq.~2.13! holds for potentials which depen
only on r. As before, we can write effectivelyMT.
22iGG8GT such thatGT is the one loop integral involving
two ‘‘cross’’ products of two propagators, one the standa
vacuum part and the other thermal part, viz.,

GT5E d4k

~2p!42ipd~k22ma
2!n~T!

3S 1

~k1q!22ma
2 1

1

~k2q!22ma
2D . ~2.14!

GT can be further evaluated to be

GT5
4i

~2p!2E
0

` dk k2

Ak21ma
2

exp~2Ak21ma
2/T!

3E
21

1

dz
1

4k2z22Q2 , ~2.15!

where nowk5uku. Recalling thatMT522iGG8GT and in-
serting this into Eq.~2.13! and subsequently performing th
integration first overQ and then overz we get

1We depart for a moment from the dispersion theoretical met
and use, following@10# and@7#, the traditional Fourier transform to
compute theT-dependent effects. In such a situation we need o
the real part of the amplitude correctly given by using Eq.~2.11!
~see Ref. @10#!, which is the 121 component of the full
2-dimensional matrix propagator used in the real time approac
finite temperature field theory@19#.
9-3
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VT~r !52
GG8

4p3

1

r 2E
0

` k dk

Ak21ma
2

exp~Ak21ma
2/T!sin~2kr !

52
GG8

2p2

1

r

Tma

A11~2rT !2
K1S ma

T
A11~2rT !2D .

~2.16!

Equation ~2.16! is the finite temperature correction to E
~2.8!. It is instructive at this stage to examine different lim
of Eq. ~2.16!. First, let us consider the casema→0 as done in
Eq. ~2.9! for the vacuum contribution. We get the simp
result

VT~r !.2
GG8

2p3

1

r

T2

11~2rT !2 . ~2.17!

Using the last limit~i.e., ma→0) we can also investigate th
ranger @T21. In this range~2.17! can be expanded to give

VT~r !.2
GG8

8p3r 3 . ~2.18!

At these distances, long compared to the inverse temp
ture, we can add now to the vacuum part~2.9! Eq. ~2.18! to
arrive at the complete answer for the potential

Vtot~r !5VT~r !1V~r !.2
3

16

GG8

p3r 3 . ~2.19!

This last result is particularly interesting when we compar
with the corresponding result in the context of the two ne
trino force, calculated at zero and finite temperature@7#. In
the neutrino case the total sum consisting of the vacuum
and the finite temperature contribution@i.e., an equation cor-
responding to Eq.~2.19!# switches the sign of the force in th
range r @T21, a repulsive force becomes attractive in t
presence of relic neutrinos@7#. This is a quite interesting
result which sheds new light on the Feinberg-Sucher fo
The reason why a similar reversal does not take place in
two boson force@cf. Eq. ~2.19!# ~i.e., why this attractive
force does not become repulsive when we add tempera
corrections! is due to the fact that the relative sign betwe
the vacuum part of the propagator and the thermal par
plus in the boson propagator@cf. Eq. ~2.11!# whereas it is
minus for fermions@19#.

Although the temperature of the very light pseudosca
at the present epoch, provided of course these pseudosc
exist, is model dependent, it should be comparable~at least
in the order of magnitude! to the temperature of relic axion
@20# or Majorons@21#.

III. THE CASE OF DERIVATIVE COUPLINGS

In this section we will also compute the dispersion for
arising from Fig. 2, considering however a different coupli
scheme between the heavy Higgs scalars and the light p
doscalars. For the relevant Lagrangian interaction we t
now @22#
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L int9 5g̃
Haa

H~]ma!~]ma!. ~3.1!

To simplify things, we will also start right from the begin
ning considering massless pseudoscalars~instead of taking
the limit ma→0 at the end of the calculation!. We define also
overall couplings in analogy to Eq.~2.3!:

G̃[
g

H f f
g̃

Haa

mH
2

, G̃8[
g

H f 8 f 8
g̃

Haa

mH
2

. ~3.2!

As in the preceding section we start with the dispersion t
oretical definition of the potential, i.e., Eq.~2.1! where we
denote now the matrix element byM̃ given by

M̃.22iG̃G̃8•G̃ ,

G̃5E d4k

~2p!4

i

k2

i

k̄2
~k• k̄!2, ~3.3!

where as beforek̄5q2k. The rest of the calculation follows
essentially on the same lines as in Sec. II. First we have
calculate the discontinuity@M̃# t}@G̃# t and insert the resul
into Eq. ~2.1!. For the discontinuity we obtain

@G̃# t5
qmqn

~2p!2E d4kd~k2!d~ k̄2!kmkn

5
qmqn

~2p!2

p

2 F1

3S qmqn2
1

4
gmnq2D G5

t2

32p
~3.4!

with q25t as usual. Calculating the integral transform of th
discontinuity remains. To distinguish the potential from t
results in the preceding section we will call the potential d
to two pseudoscalar exchange arising from the interac
~3.1!, Ṽ. For the latter we get

Ṽ~r !52
G̃G̃8

128p3r
E

0

`

dt exp~2At r !t252
15G̃G̃8

8p3r 7
.

~3.5!

If we compare this expression with the potential~2.9! it be-
comes clear that it is theq45t2 dependence of@G# t which
gives here the steep fall-off proportional to 1/r 7. In Eq. ~2.9!
the corresponding integrand, i.e.,@G# t was simply a constan
~for ma50) giving rise to a milder 1/r 3 dependence.

In principle, one could now also calculate temperatu
dependent effects as we have done in Sec. II. We will, ho
ever, not dwell further on this subject here and instead
dress in the next section the interesting question of
potential due to the exchange of two Goldstone bosons.

IV. LONG RANGE FORCES
DUE TO PHYSICAL GOLDSTONE BOSONS

In the two preceding sections we have calculated in
rather model-independent way the potential due to two ps
doscalar exchange according to Fig. 2 and using two dif
9-4
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ent interaction Lagrangians,~2.2! and ~3.1!. Here we would
like to address the situation when the pseudoscalar is a
~i.e., strictly massless! Goldstone boson.

In the literature one can find numerous papers where
Goldstone bosons either the linear scheme~2.2! is used or
the derivative one as in Eq.~3.1!, very often with the insis-
tence that, for Goldstone bosons, the derivative couplin
the correct one.

We will examine the two Goldstone bosons potential n
in a general model, but using as an example the singlet
joron model@23#, briefly sketched in the Appendix. The Ma
joron J ~we change the notation here,a→J) is a true Gold-
stone boson due to spontaneous breaking of the le
number. The two different couplings discussed above h
been derived explicitly in the appendix. Equation~A6! cor-
responds to the linear scheme whereas Eq.~A8! to the de-
rivative one. Also note that, apart from the explicit form
the couplings, we can use from now on the results from
two preceding sections.

Since in the singlet Majoron model the physical spectr
consists of twoheavyscalarsH andS and themasslessMa-
joron J, instead of one diagram as in Fig. 2, we have fo
distinct amplitudes corresponding to the four possible co
binations of the heavy scalars, i.e., to the excha
HH,SS,HS, andSH.

Let us first investigate in detail the linear coupling sche
~A6! which would then fall in the general domain of Sec.
All we have to do now is to use the result~2.8! and replace
the general couplingGG8 by the concrete example from th
Appendix. As mentioned before, we have to sum over
different possibilities of heavy scalar exchanges, i.e.,

~GG8!
Majoron

5 (
P,P85H,S

g
P f f

g
P8 f f

g
PJJ

g
P8JJ

mP
2mP8

2 . ~4.1!

Although the coupling of Higgs scalars is not always stric
proportional to the fermion mass~for instance, in case o
nucleons it also depends on the gluon content of the nu
ons! we will use here, as an example, the coupling ofH and
S to fundamental fermions. In the singlet Majoron mod
they are given byg

H f f
52 i (A2GF)1/2mf cosu and g

S f f
5

2 i (A2GF)1/2mf sinu. The coupling constants among th
spin-0 bosons can be read off from Eq.~A6!. Taking all this
into account we obtain

~GG8!
Majoron

50. ~4.2!

This, of course, does not imply that the potential due to
exchange of two Majorons is zero. It means, however, tha
is not of the simple 1/r 3 dependence as indicated in Eq.~2.9!.
In order to get a meaningful nonzero result for the poten
~due to Majorons!, we have to go one step more in theq2

expansion of the heavy Higgs propagators. We alre
stressed in Sec. II that the results presented there are vali
the zeroth order expansion, i.e., fully neglecting theq2 in the
heavy Higgs propagators. In other words, this means
(GG8)

Majoron
5(GG8)

Majoron
(q250)50. The next term in the

expansion is
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~GG8!
Majoron

~q2![ (
P,P85H,S

g
P f f

g
P8 f f

g
PJJ

g
P8JJ

~q22mP
2 !~q22mP8

2
!

.
GF

2mf mf 8
2

sin2u cos2u tan2 b

3S 1

mH
2

2
1

mS
2D 2

q4. ~4.3!

Since the relevant integrand in the form of@G# tuma50 @cf. Eq.

~2.8!# does not give any furtherq2 dependence~it is a con-
stant!, the q45t2 term from Eq.~4.3! is the only one to be
integrated over. This, of course, resembles theq4 depen-
dence in Eq.~3.4!. Indeed, the final expression for the pote
tial reads

VJJ~r !52
15Gf

2mfmf 8

16p3r 7
sin2~2u!tan2bS 1

mH
2

2
1

mS
2D 2

~4.4!

and has remarkably the samer dependence as Eq.~3.5!.
Let us now repeat the steps from above for the deriva

coupling scheme~3.1! discussed in the general setting in Se
III and given specifically for the singlet Majoron case in E
~A8!. The equation corresponding to Eq.~4.3! reads in this
scenario as follows:

~G̃G̃8!
Majoron

~q2![ (
P,P85H,S

g
P f f

g
P8 f f

g̃
PJJ

g̃
P8JJ

~q22mP
2 !~q22mP8

2
!

.
GF

2mfmf8

2
sin22u tan2bS 1

mH
2

2
1

mS
2D 2

1•••

.~G̃G̃8!
Majoron

~q250!, ~4.5!

i.e., a nonzero result of the expansion here is already poss
at the lowest order. Inserting this into Eq.~3.5! we confirm,
however, the result~4.4!. This is mainly due to the fact tha
(GG8)

Majoron
(q2) has the sameq2 dependence as@G̃# t .

The equivalence of the two coupling schemes, Eqs.~A6!
and ~A8!, in calculating the potential due to Majorons e
change is a particular example of a more general theo
which states that physical results cannot depend on the
sen parametrization of the fields@24#. Recall that Eq.~A6!
follows directly from choosing the representation~A2!
whereas Eq.~A8! is a consequence of the representat
~A7!.

Although we have used a particular model in our comp
tations, we expect the 1/r 7 behavior to hold for a generic
Goldstone boson. From the equivalence of the two sche
which allows us to employ nonlinear representations like E
~A7! where they can simplify the calculations and the ge
eral properties of decoupling of Goldstone bosons at l
energies@25# we conclude that for Goldstone bosons the p
tential will always behave as 1/r 7 and the vanishing of the
coefficient in front of the 1/r 3 term that only appears whe
9-5
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using non-derivative couplings is not a coincidence of t
particular model. As the calculations in this section show
low energies it is more direct and advisable to use deriva
couplings whereas the alternative~A2! requires more com-
plicated calculations involving cancellations of consta
terms to render the same results.

V. CONCLUSIONS

We have calculated the long range potentials due to
exchange of very light or massless pseudoscalars using
persion theoretical methods. In particular, we investiga
these long range potentials in models where the very l
pseudoscalars do not have a tree-level coupling to the s
dard fermion. The only possible diagram which in coordin
space can then result in long range potentials displays a
mal resemblance to the diagram responsible for the two n
trino Feinberg-Sucher force. Indeed, the formal difference
of fermions versus bosons in the loop. In Sec. II we co
puted the long range potential for very light pseudoscalar
the linear coupling scheme and also examined some an
gies and differences to the Feinberg-Sucher force. The la
included some investigation on finite temperature correcti
to the potentials. The potential in this case falls off as 1/r 3. In
the following section we performed a very similar exercis
but considering a derivative coupling scheme for the inter
tion between heavy scalars and pseudoscalars. Finally
presented a nice equivalence of both coupling scheme
calculating the potential due to the exchange of true Go
stone bosons. Here the fall-off is much steeper, namely 1r 7.
As far as the latter is concerned we add that a 1/r 5 depen-
dence is possible, via box diagrams, provided the pseu
calars have tree level couplings to fermions.

ACKNOWLEDGMENTS

This work was partially supported by the CICYT R
search Project AEN98-1093. F.F. acknowledges the CIR
for financial support. M.N. would like to thank Fundac¸ão de
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APPENDIX

We present below the simplest version of a Major
model which is a physical Goldstone boson in the spectr
of the theory associated with spontaneous breakdown of
lepton numberL @23#. This model, known as a singlet Ma
joron model, became well known in connection with invi
ible Higgs boson decays@26#. We emphasize that althoug
the details will be given here for this particular model,
variety of similar models exist.

The usual motivation behind a Majoron model lies in t
choice of the Majorana mass term. The latter can be eith
bare mass term,mMnR

TCnR , violating explicitly the lepton
number or an interaction term of the formhwnR

TCnR which
conservesL. The fieldw is aSU(2)^ U(1) complex singlet
with L522 which acquires a nonzero vacuum expectat
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value^w&5w/A2 giving rise to a Majorana mass term~h is
a dimensionless parameter!.

The scalar potentialV(F,w) contains besides the stan
dard Higgs doubletF the singletw. The potential is of the
form

V~F,w!5m1
2~F†F!1m2

2~w* w!1l1~F†F!2

1l2~w* w!21l12~F†F!~w* w! ~A1!

such that it conserves the lepton number. We choose firs
linear representation for the fields

F5S G1

v

A2
1

f1 iG0

A2
D , w5

w

A2
1

s1 iJ

A2
, ~A2!

whereG1 and G0 are nonphysical Goldstone bosons ea
up by the gauge bosons according to the Higgs mechanisJ
is the physical one~Majoron! and v and w are the corre-
sponding vacuum expectation values triggering e.w. and
ton number S.S.B. After minimization of the potential th
mass matrix of the two scalar particles reads

~f s!S l1v2 l12

2
vw

l12

2
vw l2w2

D S f

s
D 5

1

2
mH

2 HH1
1

2
mS

2SS,

~A3!

whereH andS are the mass eigenstates obtained by the
tation

S H

SD 5S cosu 2sinu

sinu cosu D S f

s
D . ~A4!

Equations~A3! and ~A4! can be combined to deduce th
following set of equations:

2l1v25cos2umH
2 1sin2umS

2 ,

2l2w25sin2umH
2 1cos2umS

2 ,

2l12vw5sin 2u~mS
22mH

2 !. ~A5!

Equation~A5! is useful to extract the vertices in terms of th
angleu and the scalar masses. We are especially intere
here in the trilinear verticesHJ2 andSJ2. They are given by
the interaction Lagrangian

L int
~1!5

~A2GF!1/2

2
tanb@mS

2 cosuS2mH
2 sinuH#J21•••

~A6!

whereGF is the Fermi coupling constant and tanb5v/w.
For comparison, let us also make use of a nonlinear r

resentation for the singlet fieldw, viz.,
9-6
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w5
1

A2
~w1s8!exp~ iJ/w!. ~A7!

The componentsf ands8 will now mix to give the physical
scalarsH andS@as in Eqs.~A3! and~A4!#. So far, there is no
difference with respect to the linear representation. Howe
in the nonlinear representation the interaction terms of
Majoron J with the scalars will get generated in the sing
kinetic term (]mw* )(]mw) which after rotation to the physi
cal scalars gives

L int
~2!5~A2GF!1/2 tanb@cosuS2sinuH#~]mJ!~]mJ!1•••.

~A8!
S

E

B

s

07500
r,
e

t

As mentioned before, there exist a wide class of differ
Majoron models invoking slightly differentU(1) symme-
tries to be spontaneously broken. The latter can be either
lepton number, a combination of individual lepton numbe
or a family symmetry. We refer the reader to@27# for a short
account of these models and references. We mention
that some, previously popular Majoron models , like the tr
let model or the doublet model have been, by now, exclu
in their simplest versions through LEP data~through the ab-
sence of the decay channelZ→J1Higgs). However, more
complicated version~mostly in conjunction with a singlet!
can be still viable.

Also note that Majoron models which predict a tree lev
coupling to ordinary matter are severely constrained by
argument of energy loss in stars possibly carried away
Majorons. A singlet Majoron model evades these constrai
cs

ms

iss,

ett.

,

k

nd
@1# H. B. G. Casimir and P. Polder, Phys. Rev.73, 360 ~1948!; E.
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