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Decay of protons and neutrons induced by acceleration

George E. A. Matsas and Daniel A. T. Vanzella
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sa˜o Paulo, SP Brazil

~Received 27 October 1998; published 16 March 1999!

We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and
coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay
rates are verified to agree in both cases. For the sake of simplicity our calculations are performed in a
two-dimensional spacetime since our conclusions are not conceptually affected by this.
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I. INTRODUCTION

It is well known that according to the standard model t
mean proper lifetime of neutrons is abouttn5887 s while
protons are stable (tp.1.631025 yr! @1#. This is only true,
however, forinertial nucleons. There are a number of hig
energy phenomena where acceleration plays a crucial
~see Refs.@2# and @3,4# for comprehensive discussions o
electron depolarization in storage rings and bremsstrahlu
respectively!. The influence of acceleration in particle dec
was only considered quite recently@5#. As was pointed out,
acceleration effects are not expected to play a significant
in most particle decays observed in the laboratory. Notw
standing, this might not be so under certain astrophysical
cosmological conditions. Muller has estimated@5# the time
decay of acceleratedm2,p2, andp1 via the following pro-
cesses:

~ i! m2→e2n̄enm ,

~ ii ! p2→m2n̄m ,

~ iii ! p1→n e1ne,

as described in the laboratory frame. Here we analyze
more detail process~iii ! and the related one

~ iv! n→p1 e2n̄e .

Process~iii ! is probably the most interesting one in the sen
that the protonmustbe accelerated in order to give rise to
nonvanishing rate. In the remaining cases, nonvanish
rates are obtained even when the decaying parti
(m2,p2,n) are inertial. As a first approximation, Muller ha
considered that all particles involved are scalars. Here
shall treate2,ne , and the corresponding antiparticles as f
mions while p1 and n will be represented by a classic
current. This is a suitable approximation as far as th
nucleons are energetic enough to have a well defined tra
tory. Moreover, we will analyzeb and inverseb decays in
the coaccelerated frame in addition to in the inertial fram
This is interesting because the particle content of these
cays will be quite different in each one of these frames. T
is a consequence of the fact that the Minkowski vacu
corresponds to a thermal state of Rindler particles@6,7#. We
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have chosen to perform the calculations in a tw
dimensional spacetime because there is no conceptual lo
all. A comprehensive~but restricted to the inertial frame!
four-dimensional spectral analysis of the inverseb decay for
accelerated protons and a discussion of its possible im
tance to cosmology and astrophysics will be presented e
where.

The paper is organized as follows. In Sec. II we introdu
the classical current which suitably describes the decay
accelerated nucleons. Section III is devoted to calculate
b and inverseb decay rates in the inertial frame. In Sec. I
we review the quantization of the fermionic field in the coa
celerated frame. In Sec. V we compute theb and inverseb
decay rates in the accelerated frame. For this purpose
must take into account the Fulling-Davies-Unruh therm
bath @6,7#. Finally, in Sec. VI we discuss our results an
further perspectives. We will use natural unitskB5c5\
51 throughout this paper unless stated otherwise.

II. DECAYING-NUCLEON CURRENT

In order to describe the uniformly accelerated nucleon
is convenient to introduce the Rindler wedge. The Rind
wedge is the portion of Minkowski spacetime defined byz
.utu where (t,z) are the usual Minkowski coordinates. It
convenient to cover the Rindler wedge with Rindler coor
nates (v,u) which are related with (t,z) by

t5u sinhv, z5u coshv, ~2.1!

where 0,u,1` and 2`,v,1`. As a result, the line
element of the Rindler wedge is written as

ds25u2dv22du2. ~2.2!

The world line of a uniformly accelerated particle wit
proper accelerationa is given in these coordinates byu
5a215const. Particles following this world line hav
proper timet5v/a. Thus let us describe a uniformly acce
erated nucleon through the vector current

j m5qumd~u2a21!, ~2.3!

whereq is a small coupling constant andum is the nucleon’s
four-velocity: um5(a,0) andum5(Aa2t211,at) in Rindler
and Minkowski coordinates, respectively.
©1999 The American Physical Society04-1
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The current above is fine to describe stable acceler
nucleons but must be improved to allow nucleon-decay p
cesses. For this purpose, let us consider the nucleon
two-level system@7–9#. In this scenario, neutronsun& and
protons up& are going to be seen as excited and unexc
states of the nucleon, respectively, and are assumed t
eigenstates of the nucleon HamiltonianĤ:

Ĥun&5mnun&, Ĥup&5mpup&, ~2.4!

wheremn andmp are the neutron and proton mass, resp
tively. Hence, in order to consider nucleon decay proces
we replaceq in Eq. ~2.3! by the Hermitian monopole

q̂~t![eiĤ tq̂0e2 iĤ t. ~2.5!

HereGF[u^mpuq̂0umn&u will play the role of the Fermi con-
stant in the two-dimensional Minkowski spacetime. As a
sult, current~2.3! will be replaced by

ĵ m5q̂~t!umd~u2a21!. ~2.6!

III. INERTIAL FRAME CALCULATION OF THE b
AND INVERSE b DECAY

FOR ACCELERATED NUCLEONS

Let us firstly analyze the decay of uniformly accelerat
protons and neutrons in the inertial frame@see processes~iii !
and~iv! in Sec. I#. We shall describe electrons and neutrin
as fermionic fields:

Ĉ~ t,z!5 (
s56

E
2`

1`

dk@ b̂kscks
~1v!~ t,z!1d̂ks

† c2k2s
~2v! ~ t,z!#,

~3.1!

whereb̂ks andd̂ks
† are annihilation and creation operators

fermions and antifermions, respectively, with momentumk
and polarizations. In the inertial frame, frequency, momen
tum and massm are related as usual:v5Ak21m2.0. cks

(1v)

and cks
(2v) are positive and negative frequency solutions

the Dirac equationigm]mcks
(6v)2mcks

(6v)50. By using the
gm matrices in the Dirac representation~see, e.g., Ref.@4#!,
we find

ck1
~6v!~ t,z!5

ei ~7vt1kz!

A2p S 6A~v6m!/2v

0

k/A2v~v6m!

0

D ~3.2!

and

ck2
~6v!~ t,z!5

ei ~7vt1kz!

A2p S 0

6A~v6m!/2v

0

2k/A2v~v6m!

D . ~3.3!
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In order to keep a unified procedure for inertial and acce
ated frame calculations, we have orthonormalized mo
~3.2!,~3.3! according to the same inner product definition@9#
that will be used in Sec. IV:

^cks
~6v! ,ck8s8

~6v8!&[E
S
dSmc̄ks

~6v!gmck8s8
~6v8!

5d~k2k8!dss8d6v6v8 , ~3.4!

where c̄[c†g0,dSm[nmdS with nm being a unit vector
orthogonal toS and pointing to the future, andS is an arbi-
trary spacelike hypersurface.~In this section, we have chose
t5const for the hypersurfaceS.) As a consequence canon
cal anticommutation relations for fields and conjugate m
menta lead to the following simple anticommutation re
tions for creation and annihilation operators

$b̂ks ,b̂k8s8
† %5$d̂ks ,d̂k8s8

† %5d~k2k8!dss8 ~3.5!

and

$b̂ks ,b̂k8s8%5$d̂ks ,d̂k8s8%5$b̂ks ,d̂k8s8%5$b̂ks ,d̂k8s8
† %50.

~3.6!

Next we couple minimally electronĈe and neutrinoĈn

fields to the nucleon current~2.6! according to the Ferm
action

ŜI5E d2xA2g ĵm~Ĉ̄ngmĈe1Ĉ̄eg
mĈn!. ~3.7!

Note that the first and second terms inside the parenthes
the right-hand side~RHS! of Eq. ~3.7! vanish for theb decay
@process~iv! in Sec. I# and inverseb decay@process~iii ! in
Sec. I#, respectively.

Let us first consider the inverseb decay. The vacuum
transition amplitude is given by

A ~ iii !
p→n5^nu ^ ^ekese

1 ,nknsn
uŜI u0& ^ up&. ~3.8!

By using current~2.6! in Eq. ~3.7!, and acting withŜI on the
nucleon states in Eq.~3.8!, we obtain

A ~ iii !
p→n5GFE

2`

1`

dtE
2`

1`

dz
eiDmt

Aa2t211
umd~z2At21a22!

3^ekese

1 ,nknsn
uĈ̄ngmĈeu0&, ~3.9!

where Dm[mn2mp ,t5a21sinh21(at) is the nucleon’s
proper time and we recall that in Minkowski coordinates t
four-velocity is um5(Aa2t211,at) @see Eq.~2.3! below#.
The numerical value of the two-dimensional Fermi const
GF will be fixed further. By using the fermionic field~3.1! in
Eq. ~3.9! and solving the integral in thez variable, we obtain
4-2
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A ~ iii !
p→n5

2~GF/4p!dse ,2sn

Avnve~vn1mn!~ve2me!
E

2`

1`

dtei [Dmt1a21~ve1vn!sinhat2a21~ke1kn!coshat]

3$@~vn1mn!~ve2me!1knke#coshat2@~vn1mn!ke1~ve2me!kn#sinhat%.

The differential transition rate

d2P in
p→n

dkedkn
5 (

se56
(

sn56
uA~ iii !

p→nu2 ~3.10!

calculated in the inertial frame will thus be

d2P in
p→n

dkedkn
5

GF
2

8p2E2`

1`

dt1E
2`

1`

dt2exp@ iDm~t12t2!#exp$ i ~ve1vn!~sinhat12sinhat2!/a2 i ~ke1kn!

3@~coshat12coshat2!/a#%S ~vn1mn!~ve2me!1knke

Avnve~vn1mn!~ve2me!
coshat12

~vn1mn!ke1~ve2me!kn

Avnve~vn1mn!~ve2me!
sinhat1D

3S ~vn1mn!~ve2me!1knke

Avnve~vn1mn!~ve2me!
coshat22

~vn1mn!ke1~ve2me!kn

Avnve~vn1mn!~ve2me!
sinhat2D .

In order to decouple the integrals above, it is convenient to introduce first new variabless andj such thatt1[s1j/2, t2
[s2j/2. After this, we write

d2P in
p→n

dkedkn
5

GF
2

4p2vnve
E

2`

1`

dsE
2`

1`

djei $Dmj12a21sinh~aj/2![ ~vn1ve!coshas2~kn1ke!sinhas] %@~vnve1knke!cosh 2as

2~vekn1vnke!sinh 2as2mnmecoshaj#. ~3.11!
is
ri

.

n

ol-
Next, by defining a new change of variables,

ke~n!→ke~n!8 52ve~n!sinh~as!1ke~n!cosh~as!,

we are able to perform the integral in thes variable, and the
differential transition rate~3.11! can be cast in the form

1

T

d2P in
p→n

dke8dkn8
5

GF
2

4p2ve8vn8
E

2`

1`

dj

3exp@ iDmj1 i2a21~ve81vn8!sinh~aj/2!#

3~vn8ve81kn8ke82mnmecoshaj!, ~3.12!

where T[*2`
1`ds is the total proper time andve(n)8

[Ak8e(n)
2 1me(n)

2 .
The total transition rateG in

p→n5P in
p→n/T is obtained after

integrating Eq.~3.12! in both momentum variables. For th
purpose it is useful to make the following change of va
ables:

ke~n!8 → k̃e~n![ke~n!8 /a, j→l[eaj/2.

~Note thatk̃e(n) is adimensional.! Hence we obtain
09400
-

G in
p→n5

GF
2a

2p2E2`

1`dk̃e

ṽe
E

2`

1`dk̃n

ṽn

E
0

1` dl

l12 i2Dm/a

3exp@ i ~ṽe1ṽn!~l2l21!#

3@ṽnṽe1 k̃nk̃e2mnme~l21l22!/~2a2!#,

~3.13!

whereṽe(n)[Ak̃e(n)
2 1me(n)

2 /a2.
Let us assume at this pointmn→0. In this case, using Eqs

~3.871.3!–~3.871.4! of Ref. @10#, we perform the integration
in l and obtain the following final expression for the proto
decay rate:

G in
p→n5

4GF
2a

p2epDm/aE0

1`

dk̃eE
0

1`

dk̃n

3Ki2Dm/a@2~Ak̃e
21me

2/a21 k̃n!#. ~3.14!

Performing analogous calculation for theb decay, we ob-
tain for the neutron differential and total decay rates the f
lowing expressions@see Eqs.~3.12! and ~3.13!#:
4-3
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1

T

d2P in
n→p

dke8dkn8
5

GF
2

4p2ve8vn8
E

2`

1`

dj exp@2 iDmj1 i2a21

3~ve81vn8!sinh~aj/2!#

3~vn8ve81kn8ke82mnmecoshaj! ~3.15!

and

G in
n→p5

GF
2a

2p2E2`

1`dk̃e

ṽe
E

2`

1`dk̃n

ṽn

E
0

1` dl

l11 i2Dm/a

3exp@ i ~ṽe1ṽn!~l2l21!#

3@ṽnṽe1 k̃nk̃e2mnme~l21l22!/~2a2!#.

~3.16!

By makingmn→0 in the expression above, we end up w

G in
n→p5

4GF
2a

p2e2pDm/aE0

1`

dk̃eE
0

1`

dk̃n

3Ki2Dm/a@2~Ak̃e
21me

2/a21 k̃n!#. ~3.17!

In order to determine the value of our two-dimension
Fermi constantGF we will impose the mean proper lifetim
tn(a)51/G in

n→p of an inertial neutron to be 887 s@1#. By
taking a→0 and integrating both sides of Eq.~3.15! with
respect to the momentum variables, we obtain

G in
n→pua→05

GF
2

4p2E2`

1`dke8

ve8
E

2`

1`dkn8

vn8
E

2`

1`

dj

3exp@ i ~ve81vn8!j#exp~2 iDmj!

3~vn8ve81kn8ke82mnme!. ~3.18!

Next, by performing the integral inj, we obtain

G in
n→pua→05

2GF
2

p E
me

1` dve8

Av8e
22me

2Emn

1` dvn8

Av8n
22mn

2

3~vn8ve82mnme!d~vn81ve82Dm!.

~3.19!

Now it is easy to perform the integral invn8 :

G in
n→pua→05

2GF
2

p E
me

Dm2mn dve8

Av8e
22me

2

3
ve8~Dm2ve8!2mnme

A~Dm2ve8!22mn
2

. ~3.20!

By integrating the right-hand side of Eq.~3.20! with mn

→0 and imposing 1/G in
n→pua→0 to be 887 s, we obtainGF

59.918310213. Note thatGF!1 which corroborates ou
perturbative approach. Now we are able to plot the neut
09400
l

n

mean proper lifetime as a function of its proper accelerat
a ~see Fig. 1!. Note that after an oscillatory regime it deca
steadily. In Fig. 2 we plot the proton mean proper lifetim
The necessary energy to allow protons to decay is provi
by the external accelerating agent. For accelerations s
that the Fulling-Davies-Unruh~FDU! temperature~see dis-
cussion in Sec. V! is of order ofmn1me2mp , i.e., a/2p
'1.8 MeV, we have thattp'tn ~see Figs. 1 and 2!. Such
accelerations are considerably high. Just for sake of comp
son, protons at the CERN Large Hadron Collider~LHC!
have a proper acceleration of about 1028 MeV .

IV. FERMIONIC FIELD QUANTIZATION
IN A TWO-DIMENSIONAL RINDLER WEDGE

We shall briefly review@11# the quantization of the fer-
mionic field in the accelerated frame since this will be cruc

FIG. 1. The neutron mean proper lifetime is plotted as a fu
tion of the proper accelerationa. Note thattn→887 s as the prope
acceleration vanishes. After an oscillatory regimetn decreases
steadily as the acceleration increases.

FIG. 2. The proton mean proper lifetime is plotted as a funct
of the proper accelerationa. tp→1` for inertial protons (a→0).
For accelerationsa'ac[2p(mn1me2mp)'11 MeV we have
that tp'tn .
4-4
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for our further purposes. Let us consider the two-dimensio
Rindler wedge described by the line element~2.2!. The Dirac
equation in curved spacetime is (igR

m¹̃m2m)cvs50, where
gR

m[(ea)mga are the Dirac matrices in curved spacetim

¹̃m[]m1Gm and Gm5 1
8 @ga,gb#(ea)l¹̃m(eb)l are the

Fock-Kondratenko connections. (gm are the usual flat-
spacetime Dirac matrices.! In the Rindler wedge the relevan
tetrads are (e0)m5u21d0

m ,(ei)
m5d i

m . As a consequence, th
Dirac equation takes the form

i
]cvs

]v
5S g0mu2

ia3

2
2 iua3

]

]uDcvs , ~4.1!

wherea i[g0g i .
We shall express the fermionic field as

Ĉ~v,u!5 (
s56

E
0

1`

dv@ b̂vscvs~v,u!1d̂vs
† c2v2s~v,u!#,

~4.2!

where cvs5 f vs(u)e2 ivv/a are positive (v.0) and nega-
tive (v,0) energy solutions with respect to the boost Ki
ing field ]/]v with polarizations56. From Eq.~4.1! we
obtain

Ĥuf vs5v f vs , ~4.3!

where

Ĥu[aFmug02
ia3

2
2 iua3

]

]uG . ~4.4!

By ‘‘squaring’’ Eq. ~4.3! and defining two-componen
spinorsx j ( j 51,2) through

f vs~u![S x1~u!

x2~u!
D , ~4.5!

we obtain

S u
d

du
u

d

duDx15Fm2u21
1

4
2

v2

a2 Gx12
iv

a
s3x2 ,

~4.6!

S u
d

du
u

d

duDx25Fm2u21
1

4
2

v2

a2 Gx22
iv

a
s3x1 .

~4.7!

Next, by introducingf6[x17x2 , we can definej6 andz6

through

f6[S j6~u!

z6~u!
D . ~4.8!

In terms of these variables Eqs.~4.6!,~4.7! become

S u
d

du
u

d

duD j65@m2u21~ iv/a61/2!2#j6, ~4.9!
09400
al

,

S u
d

du
u

d

duD z65@m2u21~ iv/a71/2!2#z6.

~4.10!

The solutions of these differential equations can be written
terms of Hankel functionsHiv/a61/2

( j ) ( imu),( j 51,2) @see Eq.
~8.491.6! of Ref. @10## or modified Bessel functions
Kiv/a61/2(mu),I iv/a61/2(mu) @see Eq. ~8.494.1! of Ref.
@10##. Hence, by using Eqs.~4.5! and ~4.8!, and imposing
that the solutions satisfy the first-order Eq.~4.3!, we obtain

f v1~u!5A1S Kiv/a11/2~mu!1 iK iv/a21/2~mu!

0

2Kiv/a11/2~mu!1 iK iv/a21/2~mu!

0

D ,

~4.11!

f v2~u!5A2S 0

Kiv/a11/2~mu!1 iK iv/a21/2~mu!

0

Kiv/a11/2~mu!2 iK iv/a21/2~mu!

D .

~4.12!

Note that solutions involvingI iv/a61/2 turn out to be non-
normalizable and thus must be neglected. In order to find
normalization constants

A15A25Fm cosh~pv/a!

2p2a
G 1/2

, ~4.13!

we have used@9# @see also Eq.~3.4!#

^cvs ,cv8s8&[E
S
dSmc̄vsgR

mcv8s85d~v2v8!dss8 ,

~4.14!

wherec̄[c†g0 andS is set to bev5const. Thus the nor-
mal modes of the fermionic field~4.2! are

cv15Fm cosh~pv/a!

2p2a
G 1/2

3S Kiv/a11/2~mu!1 iK iv/a21/2~mu!

0

2Kiv/a11/2~mu!1 iK iv/a21/2~mu!

0

D e2 ivv/a,

~4.15!
4-5
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cv25Fm cosh~pv/a!

2p2a
G 1/2

3S 0

Kiv/a11/2~mu!1 iK iv/a21/2~mu!

0

Kiv/a11/2~mu!2 iK iv/a21/2~mu!

D e2 ivv/a.

~4.16!

As a consequence, canonical anticommutation relations
fields and conjugate momenta lead annihilation and crea
operators to satisfy the following anticommutation relatio

$b̂vs ,b̂v8s8
† %5$d̂vs ,d̂v8s8

† %5d~v2v8!dss8 ~4.17!

and

$b̂vs ,b̂v8s8%5$d̂vs ,d̂v8s8%5$b̂vs ,d̂v8s8%

5$b̂vs ,d̂v8s8
† %50. ~4.18!

V. RINDLER FRAME CALCULATION OF THE b
AND INVERSE b DECAY

FOR ACCELERATED NUCLEONS

Now we analyze theb and inverseb decay of accelerated
nucleons from the point of view of the uniformly accelerat
frame. Mean proper lifetimes must be the same of the o
obtained in Sec. III but particle interpretation changes s
nificantly. This is so because uniformly accelerated partic
in the Minkowski vacuum are immersed in the FDU therm
bath characterized by a temperatureT5a/2p @6,7#. As it will
be shown, the proton decay which is represented in the i
tial frame, in terms of Minkowski particles, by process~iii !
will be represented in the uniformly accelerated frame,
terms of Rindler particles, as the combination of the follo
ing processes:

~v! p1e2→nn, ~vi! p1n̄→ne1, ~vii ! p1e2n̄→n.

Processes~v!–~vii ! are characterized by the conversion
protons in neutrons due to the absorption ofe2 and n̄, and
emission ofe1 and n from and to the FDU thermal bath
Note that process~iii ! is forbidden in terms of Rindler par
ticles because the proton is static in the Rindler frame.

Let us calculate firstly the transition amplitude for proce
~v!:

A ~v!
p→n5^nu ^ ^nvnsn

uŜI ueve2se2

2 & ^ up&, ~5.1!

whereŜI is given by Eq.~3.7! with gm replaced bygR
m and

our current is given by Eq.~2.6!. Thus, we obtain@we recall
that in Rindler coordinatesum5(a,0)]
09400
or
n
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n
-

s

A ~v!
p→n5

GF

a E
2`

1`

dveiDmv/a^nvnsn
uĈn

†~v,a21!

3Ĉe~v,a21!ueve2se2

2 &, ~5.2!

where we note that the second term in the parenthesis of
~3.7! does not contribute. Next, by using Eq.~4.2!, we obtain

A ~v!
p→n5

GF

a
dse2,sn

E
2`

1`

dveiDmv/a

3cvnsn

† ~v,a21!cve2se2~v,a21!. ~5.3!

Using now Eqs.~4.15! and ~4.16! and performing the inte-
gral, we obtain

A ~v!
p→n5

4GF

pa
Amemn cosh~pve2 /a!cosh~pvn /a!

3Re@Kivn /a21/2~mn /a!Kive2 /a11/2~me/a!#

3dse2,sn
d~ve22vn2Dm!. ~5.4!

Analogous calculations lead to the following amplitudes
processes~vi! and ~vii !:

A ~vi!
p→n5

4GF

pa
Amemn cosh~pve1 /a!cosh~pvn̄ /a!

3Re@Kive1 /a21/2~me /a!Kivn̄ /a11/2~mn /a!#

3dse1,sn̄
d~vn̄2ve12Dm!, ~5.5!

A ~vii !
p→n5

4GF

pa
Amemn cosh~pve2 /a!cosh~pvn̄ /a!

3Re@Kive2 /a11/2~me /a!Kivn̄ /a11/2~mn /a!#

3dse2,2sn̄
d~vn̄1ve22Dm!. ~5.6!

The differential transition rates per absorbed and emit
particle energies associated with processes~v!–~vii ! are
given by

1

T

d2P ~v!
p→n

dve2dvn

5
1

T (
se256

(
sn56

uA ~v!
p→nu2nF~ve2!@1

2nF~vn!#, ~5.7!

1

T

d2P ~vi!
p→n

dve1dvn̄

5
1

T (
se156

(
sn̄56

uA ~vi!
p→nu2nF~vn̄!@1

2nF~ve1!#, ~5.8!

1

T

d2P ~vii !
p→n

dve2dvn̄

5
1

T (
se256

(
sn̄56

uA ~vii !
p→nu2nF~ve2!nF~vn̄!,

~5.9!

where
4-6



er
y

n

ar
er

n

u

al

DECAY OF PROTONS AND NEUTRONS INDUCED BY . . . PHYSICAL REVIEW D59 094004
nF~v![
1

11e2pv/a
~5.10!

is the fermionic thermal factor associated with the FDU th
mal bath andT52pd(0) is the nucleon proper time. B
using Eqs.~5.4!–~5.6! in Eqs.~5.7!–~5.9! we obtain

1

T

d2P ~v!
p→n

dve2dvn

5
4GF

2

p3 S memn

a2 D e2pDm/ad~ve22vn2Dm!

3$Re@Kivn /a21/2~mn /a!

3Kive2 /a11/2~me /a!#%2, ~5.11!

1

T

d2P ~vi!
p→n

dve1dvn̄

5
4GF

2

p3 S memn

a2 D e2pDm/ad~vn̄2ve12Dm!

3$Re@Kivn̄ /a11/2~mn /a!

3Kive1 /a21/2~me /a!#%2, ~5.12!

1

T

d2P ~vii !
p→n

dve2dvn̄

5
4GF

2

p3 S memn

a2 D e2pDm/ad~ve21vn̄2Dm!

3$Re@Kivn̄ /a11/2~mn /a!

3Kive2 /a11/2~me /a!#%2. ~5.13!

By integrating Eqs.~5.11!–~5.13! in frequenciesvn andvn̄

where it is appropriate, we obtain the following transitio
rates associated with each process:

G~v!
p→n5

4GF
2memn

p3a2epDm/aEDm

1`

dve2

3$Re@Ki ~ve22Dm!/a21/2~mn /a!Kive211/2~me /a!#%2,

G~vi!
p→n5

4GF
2memn

p3a2epDm/aE0

1`

dve1

3$Re@Ki ~ve11Dm!/a11/2~mn /a!Kive121/2~me /a!#%2,

G~vii !
p→n5

4GF
2memn

p3a2epDm/aE0

Dm

dve2

3$Re@Ki ~ve22Dm!/a21/2~mn /a!Kive211/2~me /a!#%2.

We recall that Rindler frequencies may assume arbitr
positive real values.~In particular there are massive Rindl
particles with zero frequency. See Ref.@12# for a discussion
on zero-frequency Rindler particles with finite transverse a
angular momentum.!

The proton decay rate is given by adding up all contrib
tions:Gacc

p→n5G (v)
p→n1G (vi)

p→n1G (vii)
p→n . This can be written in a

compact form as
09400
-

y

d

-

Gacc
p→n5

4GF
2memn

p3a2epDm/aE2`

1`

dv

3$Re@Ki ~v2Dm!/a21/2~mn /a!Kiv/a11/2~me /a!#%2.

~5.14!

At this point we take the limitmn→0. For this purpose, it
is useful to note that@see Eqs.~8.407.1!, ~8.405.1!, and
~8.403.1! in Ref. @10##

Kn~z!5
p

2 sinnp
„J2n~ iz!einp/22Jn~ iz!e2 inp/2

…,

~5.15!

wheren is noninteger, anduargizu,p. Using this expres-
sion in conjunction with Eq.~8.402! of Ref. @10#, we have
for small uzu that

Kn~z!'
p

2 sinnp
@~ iz/2!2nG21~2n11!einp/2

2~ iz/2!nG21~n11!e2 inp/2#. ~5.16!

By using Eq.~5.16!, we can show that

mn

a
Ki ~v2Dm!/a11/2~mn /a!Ki ~v2Dm!/a21/2~mn /a!

→
mn→0 p

2 cosh@p~v2Dm!/a#
. ~5.17!

It is now possible to obtain the following partial and tot
transition rates:

G~v!
p→n5

GF
2me

p2aepDm/aEDm

1`

dve2

3
Kive2 /a11/2~me /a!Kive2 /a21/2~me /a!

cosh@p~ve22Dm!/a#
,

~5.18!

G~vi!
p→n5

GF
2me

p2aepDm/aE0

1`

dve1

3
Kive1 /a11/2~me /a!Kive1 /a21/2~me /a!

cosh@p~ve11Dm!/a#
,

~5.19!

G~vii !
p→n5

GF
2me

p2aepDm/aE0

Dm

dve2

3
Kive2 /a11/2~me /a!Kive2 /a21/2~me /a!

cosh@p~ve22Dm!/a#
,

~5.20!
4-7
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and

Gacc
p→n5

GF
2me

p2aepDm/aE2`

1`

dv

3
Kiv/a11/2~me /a!Kiv/a21/2~me /a!

cosh@p~v2Dm!/a#
, ~5.21!

respectively. It is interesting to note that although transit
rates have fairly distinct interpretations in the inertial a
accelerated frames, mean proper lifetimes are scalars
must be the same in both frames. Indeed, by plottingtp(a)
51/Gacc

p→n as a function of acceleration, we do reproduce F
2. In Fig. 3 we plot the branching ratios

BR~v![G~v!
p→n/Gacc

p→n , BR~vi![G~vi!
p→n/Gacc

p→n ,

BR~vii ![G~vii !
p→n/Gacc

p→n .

We note that for small accelerations, where ‘‘few’’ high
energy particles are available in the FDU thermal bath, p
cess~vii ! dominates over processes~v! and ~vi!, while for
high accelerations, processes~v! and~vi! dominate over pro-
cess~vii !.

A similar analysis can be performed for uniformly acce
erated neutrons. According to coaccelerated observers
neutron decay will be described by a combination of
following processes:

~viii ! nn→p1e2, ~ ix! ne1→p1n̄, ~x! n→p1e2n̄.

The corresponding partial and total transition rates are

FIG. 3. Branching ratiosBRv ,BRvi ,BRvii ,BRviii ,BRix ,BRx are
plotted. For protons, process~vii ! dominates over processes~v! and
~vi! for small accelerations, while processes~v! and ~vi! dominate
over process~vii ! for high accelerations. For neutrons, process~x!
dominates over processes~viii ! and ~ix! for small accelerations
while processes~viii ! and ~ix! dominate over process~x! for high
accelerations.
09400
n

nd

.

-

he
e

G~viii !
n→p5

GF
2me

p2ae2pDm/aEDm

1`

dve2

3
Kive2 /a11/2~me /a!Kive2 /a21/2~me /a!

cosh@p~ve22Dm!/a#
,

~5.22!

G~ ix!
n→p5

GF
2me

p2ae2pDm/aE0

1`

dve1

3
Kive1 /a11/2~me /a!Kive1 /a21/2~me /a!

cosh@p~ve11Dm!/a#
,

~5.23!

G~x!
n→p5

GF
2me

p2ae2pDm/aE0

Dm

dve2

3
Kive2 /a11/2~me /a!Kive2 /a21/2~me /a!

cosh@p~ve22Dm!/a#
,

~5.24!

and

Gacc
n→p5

GF
2me

p2ae2pDm/aE2`

1`

dv

3
Kiv/a11/2~me /a!Kiv/a21/2~me /a!

cosh@p~v2Dm!/a#
, ~5.25!

respectively. Figure 1 gives the neutron mean proper lifeti
tn(a)51/Gacc

n→p which coincides with the one calculated
the inertial frame. In Fig. 3 we plot the branching ratios

BR~viii ![G~viii !
n→p/Gacc

n→p , BR~ ix![G~ ix!
n→p/Gacc

n→p ,

BR~x![G~x!
n→p/Gacc

n→p .

It is easy to see thatBR(viii) 5BR(v) ,BR(ix)5BR(vi) , and
BR(x)5BR(vii) .

VI. DISCUSSIONS

We have analyzed the decay of accelerated protons
neutrons. We have compared the particle interpretation
these decays in the inertial@see processes~iii ! and ~iv!# and
accelerated@see processes~v!–~vii ! and ~viii !–~x!# frames.
They were shown to be quite distinct. Branching ratios w
also evaluated. For protons with small accelerations, proc
~vii ! dominates over processes~v! and~vi!, while for protons
with high accelerations processes~v! and~vi! dominate over
process~vii !. For neutrons with small accelerations, proce
~x! dominates over processes~viii ! and ~ix!, while for neu-
trons with high accelerations, processes~viii ! and~ix! domi-
nate over process~x!. Mean proper lifetimes of the nucleon
as a function of their proper acceleration were plotted
4-8
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Figs. 1 and 2. For accelerations such thata'ac[2p(mn
1me2mp) we have thattp'tn . Although such accelera
tions are quite beyond present technology, decay of acce
ated nucleons might be of some importance in astrophy
and cosmology. We have performed our calculations us
Fermi theory in a two-dimensional spacetime. Although t
is suitable to provide us with a qualitative understanding
many conceptual aspects underlyingb and inverseb decay
induced by acceleration, precise physical values will only
obtained after a more realistic analysis is performed. A fo
dimensional calculation~but restricted to the inertial frame!
-

-

09400
r-
cs
g

s
f

e
r-

and its application to astrophysics and cosmology are p
ently under consideration and will be presented somewh
else.
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