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Decay of protons and neutrons induced by acceleration
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We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and
coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay
rates are verified to agree in both cases. For the sake of simplicity our calculations are performed in a
two-dimensional spacetime since our conclusions are not conceptually affected by this.
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PACS numbes): 13.30—a, 04.62+v, 12.15.Ji, 14.20.Dh

[. INTRODUCTION have chosen to perform the -calculations in a two-
dimensional spacetime because there is no conceptual loss at
It is well known that according to the standard model theall. A comprehensivebut restricted to the inertial frame
mean proper lifetime of neutrons is aboyt=887 s while four-dimensional spectral analysis of the invesdecay for
protons are stabler{,>1.6X 10%° yr) [1]. This is only true, accelerated protons and a discussion of its possible impor-
however, forinertial nucleons. There are a number of high- tance to cosmology and astrophysics will be presented else-
energy phenomena where acceleration plays a crucial rolehere.
(see Refs[2] and[3,4] for comprehensive discussions on  The paper is organized as follows. In Sec. Il we introduce
electron depolarization in storage rings and bremsstrahlunghe classical current which suitably describes the decay of
respectively. The influence of acceleration in particle decay accelerated nucleons. Section Ill is devoted to calculate the
was only considered quite recenfly]. As was pointed out, B and inverse3 decay rates in the inertial frame. In Sec. IV
acceleration effects are not expected to play a significant roleve review the quantization of the fermionic field in the coac-
in most particle decays observed in the laboratory. Notwithcelerated frame. In Sec. V we compute end inverses
standing, this might not be so under certain astrophysical andecay rates in the accelerated frame. For this purpose we
cosmological conditions. Muller has estimatgd] the time  must take into account the Fulling-Davies-Unruh thermal
decay of accelerated ™, 7, andp* via the following pro-  bath[6,7]. Finally, in Sec. VI we discuss our results and
cesses: further perspectives. We will use natural unkg=c=+%
o =1 throughout this paper unless stated otherwise.
() u~—e vev,,
- Il. DECAYING-NUCLEON CURRENT

(i) 7 —p v, In order to describe the uniformly accelerated nucleon, it
is convenient to introduce the Rindler wedge. The Rindler
wedge is the portion of Minkowski spacetime defineddy
as described in the laboratory frame. Here we analyze i |tl where ¢,2) are the usual Minkowski coordinates. It is
more detail processii) and the related one convenient to cover the Rindler wedge with Rindler coordi-

nates (,u) which are related witht(z) by

(i) p"—n e’y

. + _

(V) n—p" e ve. t=usinhv, z=ucoshv, (2.1
Procesgiii ) is probably the most interesting one in the SENSE | cre Ocu< -+ oo and —w<p< +oo. AS a result, the line
that the protormustbe accelerated in order to give rise to a . : .

L . .. element of the Rindler wedge is written as
nonvanishing rate. In the remaining cases, nonvanishing
rates are obtained even when the decaying particles d=2= u2dy2—du2. 2.2)
(u~,7,n) are inertial. As a first approximation, Muller has
considered that all particles involved are scalars. Here we The world line of a uniformly accelerated particle with
shall treate ", ve, and the corresponding antiparticles as fer-proper acceleratiora is given in these coordinates hy
mions while p™ and n will be represented by a classical =a~1=const. Particles following this world line have

current. This is a suitable approximation as far as thesgroper timer=wv/a. Thus let us describe a uniformly accel-
nucleons are energetic enough to have a well defined trajegrated nucleon through the vector current

tory. Moreover, we will analyze8 and inverse8 decays in

the coaccelerated frame in addition to in the inertial frame. j“*=quts(u—aty, (2.3

This is interesting because the particle content of these de-

cays will be quite different in each one of these frames. Thigvhereq is a small coupling constant and is the nucleon’s
is a consequence of the fact that the Minkowski vacuunfour-velocity: u*=(a,0) andu”=(\a’?+1,at) in Rindler
corresponds to a thermal state of Rindler parti¢&3]. We  and Minkowski coordinates, respectively.
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The current above is fine to describe stable acceleratelth order to keep a unified procedure for inertial and acceler-
nucleons but must be improved to allow nucleon-decay proated frame calculations, we have orthonormalized modes
cesses. For this purpose, let us consider the nucleon as(a.2),(3.3) according to the same inner product definit[&n
two-level system{7-9]. In this scenario, neutron®) and that will be used in Sec. IV:
protons|p) are going to be seen as excited and unexcited

states of the nucleon, respectively, and are assumed to be . (+
: i (W Wi )= IS0y o)
eigenstates of the nucleon Hamiltonibin ko’ s K'a
Hin)=my|ny, H|p)=my[p), (2.4 =0(k=k")851 6+ 00 (34

wherem, andm, are the neutron and proton mass, respecwhere Y=y, dX,=n,d% with n* being a unit vector
tively. Hence, in order to consider nucleon decay processesgrthogonal to> and p0|nt|ng to the future, antl is an arbi-

we replaceq in Eq. (2.3 by the Hermitian monopole trary spacelike hypersurfacgn this section, we have chosen
R .. t=const for the hypersurface.) As a consequence canoni-
q(r)=e"7gee ™" (2.5  cal anticommutation relations for fields and conjugate mo-

menta lead to the following simple anticommutation rela-
HereGFE|<mp|ao|mn>| will play the role of the Fermi con- tions for creation and annihilation operators
stant in the two-dimensional Minkowski spacetime. As a re-

sult, current(2.3) will be replaced by (B .b} ) ={0e .0l }=8(k—K') 8,5 (3.5
j#=a(nursu-at). (26 and

Ill. INERTIAL FRAME CALCULATION OF THE 8 {Bior s} ={ 8o,y o} ={Brr . dicr o1} = {Dyp AL, 1 =0.

AND INVERSE g DECAY (3.6

FOR ACCELERATED NUCLEONS

Let us firstly analyze the decay of uniformly accelerated Next we couple minimally electrof’, and neutrino?,
protons and neutrons in the inertial frafisee processd@i) ~ f1€lds to the nucleon curren@.6) accordmg to the Fermi
and (iv) in Sec. . We shall describe electrons and neutrinosaction
as fermionic fields:

§= f a2\ = 0], (W, b+ Wyl ). (37)
\If(tz)—E dk[bk,,w”w(t,zwd A5 (4,2)],

(3.1 Note that the first and second terms inside the parenthesis at
the right-hand sidéRHS) of Eq. (3.7) vanish for theB decay
whereb,,, andd], are annihilation and creation operators of [Process(iv) in Sec. | and inverse8 decay[procesiii) in
fermions and antlfermlons respectively, with momentkm Sec. ||, respectively.
and polarizationr. In the inertial frame, frequency, momen-  Let us first consider the invers@ decay. The vacuum
tum and masm are related as usuali= K2+ m2>0, y{te)  transition amplitude is given by

and z//ﬁ;“’) are positive and negative frequency solutions of

the Dirac equation y*d,,y{,“)—myi, “’=0. By using the Afiy"=(nle(eg o vk,0 |5 10y@|p). (3.9
v* matrices in the Dirac representati¢gee, e.g., Ref4]),
we find By using current2.6) in Eq. (3.7), and acting with§, on the
nucleon states in E43.8), we obtain
*V(wEm)/2w 3.8
( ) ei(th+kZ) 0 |Am7.
) s——| | — 3.2 —J%+a?
(t,2)= 5 | K\Za(em) 3.2 ARM= f dtf dz——on T t?+a?)
0 - .
x(e;e(,e , ka(,V| v,y W 0), (3.9
and
where Am=m,—m,,7=a"'sinh }(at) is the nucleon’s
0 proper time and we recall that in Minkowski coordinates the
. gl(Fot+ka |+ [(o+m)2w four-velocity is u“=(\/a?t?+1,at) [see Eq.(2.3 below].
<ﬁk‘_‘”)(t,z)=— 0 . (3.3 The numerical value of the two-dimensional Fermi constant
V2w G will be fixed further. By using the fermionic fiel@.1) in
—k/IV2w(w*m) Eq. (3.9 and solving the integral in thevariable, we obtain
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—(Ggldm) o, _ +o0
( F ) Ter v dTei[Am1-+a_1(a)e+w,,)sinharfa_l(ke+k,,)coshar]

AP =
(i)
\/wvwe(wv+ mv)(we_ me) -

X{[(w,+m,)(we—me) + K Kc]coshar—[(w,+m,)Ke+ (we— M)k, ]sinhar}.
The differential transition rate

dZPi[?‘lﬂn -
dk.dk :UE:+ UZ+ | A (3.10

calculated in the inertial frame will thus be

d?pPP=n GE [+ 4o
W:ﬁfx dTlf,x drexgiAm(7,— ) ]expi(we+ w,)(sinhar, —sinhar,)/a—i(ke+k,)
,2+m, —me) +k, Kk L, MK+ (we— Mok,
x[(cosharl—cosharz)/a]}((w J{we™ Me) °c T (o Jeet (we™ Me) sinhar,
\/a),,a)e((x),,-f—mv)(we—me) \/wvwe(wv+mv)(“)e_me)
((wv+mv>(we—me>+kvke (@,+ M)kt (0e— MK, _
X coshar,— sinhar, |.
\/wuwe(wv+my)(we_me) \/wywe(wu+mv)(we_me)

In order to decouple the integrals above, it is convenient to introduce first new varsadnheké such thatr,=s+&/2, 7,
=s— £/2. After this, we write

d?pp-n G2 f

+ oo + o
5 ked 7 — ” 5 dsf dgei{Am§+ 2a_lsinr(a§/2)[(wy+ wg)coshas—(k,+ ke)sinhas]}[(wvwe+ kuke) cosh s
v T W,We —o0

— o0

—(wek, + w, Ke)sinh 2as—m, mecoshaé]. (3.11
|
Next, by defining a new change of variables, - GéaJMdT(e *“d}yf“ dn
n — 5 5 == == 1 ioAmia
Ke(r)— Kiy= — @eySinh(as) + ke, coslas), 272 ) = we )= w, Jo \17i12Ama

. . . X exi(®e+ o -1
we are able to perform the integral in theariable, and the exdi(wetw,)(N=N"7)]

differential transition rat€3.11) can be cast in the form X[Z)Vz)e+~kVT<e— m,mo(\2+\"2)/(2a2)],
1 dZIPi[r)1—>n G|2: oo (313
LEPRT [“ae
T dkldk, 472wl )-= - 5 5
where we(,)= \/ke(v) +mg V)/a .
xexgiAmé+i2a Y wi+ w))sinnag2)] Let us assume at this point,— 0. In this case, using Egs.
S (3.871.3—(3.871.4 of Ref.[10], we perform the integration
X(w,wetk Ke—m,mecoshas), (312 jn \ and obtain the following final expression for the proton
decay rate:

where T=["%ds is the total proper time andwg

E\/k’g(vﬁ— mez(y).

2 o] oo
The total transition rat&P,~"=PP~"/T is obtained after rp-n_ 4Gra j* dTQJ+ ok,
0

integrating Eq.(3.12 in both momentum variables. For this mlemama o
purpose it is useful to make the following change of vari- 5
ables: X Kioamal 20VK2+mZa?+k,)].  (3.14

’ T —L’ — paél2 . .
Ke(n = Ke(n)=Ke(y/a,  E—A=e%" Performing analogous calculation for tffedecay, we ob-

_ tain for the neutron differential and total decay rates the fol-
(Note thatke(, is adimensional.Hence we obtain lowing expressiongsee Eqs(3.12 and(3.13)]:
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Edzp{rp— J déexd —iAmé+iz2a? g“zw-" IIH'HH'HH':
T dkldk, 47%wlo) g i :
X (0t o))sinh(aé/2)] 5 e -
X (w!ws+ Kk ki—m,mecoshag) (3.19
and 28 - .
Fnﬁp:G_ﬁaf”ﬁe ﬂf d\ : :
" 272 - o= @, Jo A1ti2Ama &Y [~ -
X exdi (@t @,)(A\=\"1)] E| | | | |:
X[y et Kke— MM\ 24\ ~2)/(282)]. S Y

log[a/(1MeV)]

(319 FIG. 1. The neutron mean proper lifetime is plotted as a func-
By makingm,—0 in the expression above, we end up with tion of the proper acceleratian Note thatr,—887 s as the proper
acceleration vanishes. After an oscillatory regimg decreases
G,Z:a to (o steadily as the acceleration increases.
Fir?p:mf d"ej dk
me 0 mean proper lifetime as a function of its proper acceleration
E——> -~ a (see Fig. L Note that after an oscillatory regime it decays
X Kizamal 2( k§+m§/a2+ky)]. (3.17 steadily. ?n Fig. 2 we plot the proton me)::m groper Iifetimye.
The necessary energy to allow protons to decay is provided
by the external accelerating agent. For accelerations such
that the Fulling-Davies-UnrulfFDU) temperaturgsee dis-
cussion in Sec. Yis of order ofm,+me—m,, i.e., al2w
~1.8 MeV, we have that,~ 7, (see Figs. 1 and)2Such
accelerations are considerably high. Just for sake of compari-
son, protons at the CERN Large Hadron CollidéHC)
d¢ have a proper acceleration of about $0MeV .

In order to determine the value of our two-dimensional
Fermi constanGr we will impose the mean proper lifetime
m,(a)=1/{"P of an inertial neutron to be 887 [4]. By
taking a—0 and integrating both sides of E(B.15 with
respect to the momentum variables, we obtain

r=di [ edk;

4772 2wy e w, S

L, , IV. FERMIONIC FIELD QUANTIZATION
Xexgi(wet w,)Elexp(—iAmé) IN A TWO-DIMENSIONAL RINDLER WEDGE

X(w,w¢ Tk ke—m,m). (3.18 We shall briefly review[11] the quantization of the fer-

] ] . ) mionic field in the accelerated frame since this will be crucial
Next, by performing the integral i§, we obtain

oy 40 I L B L
2 4 1
Fn~>p| 2G f i 4
. _}0_ L - -
n a Me \/(,0,2 \/&)’2 5‘, [ i
30— —
X(w;wé—myme)ﬁ(w;,-i—wé—Am). i 1
(3.19 I ]
. . . . 20 B ]
Now it is easy to perform the integral ia,,: - 7
2GE (am-m, do ! :
T Placo=— T o= -]
T Jme Vo's—mg i ]
! ! I .
we(Am_we)_mee (3 2@ 0 [ Loy | Lo | L | I S | ]

\/(Am— wé)z— m2 ’ -1 -0.5 0 0.5 1
log[a/(1MeV)]

By integrating the right-hand side of E¢3.20 with m, FIG. 2. The proton mean proper lifetime is plotted as a function
—0 and imposing /i, ", to be 887 s, we obtai®r  of the proper acceleration T,— +oo for inertial protons 6—0).
=9.918<10 = Note thatGg<1 which corroborates our For accelerationsa~a,=2m(m,+m,— mp)~11 MeV we have
perturbative approach. Now we are able to plot the neutrothat r,~ ;.
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for our further purposes. Let us consider the two-dimensional d d)\ . N e
Rindler wedge described by the line eleméh®). The Dirac (Uﬁuﬁ) =[mu+(lw/a+1/2)%].
equation in curved spacetime isygV ,—m),,=0, where

vhk=(e,)*y“ are the Dirac matrices in curved spacetime,

V,=d,+T, and T,=3[7*7"1(e,)'V (ep), are the
Fock-Kondratenko connections.y{ are the usual flat-
spacetime Dirac matricedn the Rindler wedge the relevant
tetrads ared,)“=u"154,(e)*= 8. As a consequence, the
Dirac equation takes the form

_(91//00” 0 ia3 . d
IT—< mu—7—|Ua3£ Yoo 4.1

(4.10

The solutions of these differential equations can be written in
terms of Hankel functionst()), ., .(imu),(j=1,2) [see Eq.
(8.491.6 of Ref. [10]] or modified Bessel functions
Kiwa=12(Mu),liyas12(mu) [see Eqg.(8.494.3 of Ref.
[10]]. Hence, by using Eq94.5 and (4.8), and imposing
that the solutions satisfy the first-order £4.3), we obtain

wherea;=9%y'.
We shall express the fermionic field as

Po= 3, | dolBuotusv.0)+ Bl o0,
4.2

where i, ,=f,,(u)e” "2 are positive >0) and nega-
tive (w<<0) energy solutions with respect to the boost Kill-
ing field 9/dv with polarizationo=*=. From Eq.(4.1) we

obtain
Hufwo= 0f uo 4.3
where
H.=a mu;/o—kﬂ—iu%i}. (4.4
2 au

By “squaring” Eq. (4.3 and defining two-component

spinorsy;(j=1,2) through

x1(U)
fw(r(u):<)(2(u))v (4.9
we obtain
d d) R 1 o?] i
UggYgo/Xr=|mu +Z—¥ X1~ 5 93X2
) ' (4.6)
d d) [ ,, 1 o o
UggYqu/Xe=| mus+ g 21X g 7
(4.7)

Next, by introducingp™= y,+ x», we can defing™ and{*
through

4.9

+_(§+(u))
()

In terms of these variables Eg4.6),(4.7) become

ii *_ 22+'/+1/22i 4.9
uduuduf _[mu (|(1)a_ )]f, ()

Kiwia+12mu) +iK; ,a—1(mu)

0
for(U)=A .
i T = Kiwjar12mu) +iK; y/a—12(mu)
0
(4.11
0
Kiwia+r120mMmu) +iKj ,a—12(mu)
fo_(U)=A_ 0
Kiwia+120mu) —iKj ,a—12(mu)
(4.12

Note that solutions involvind;a+1/> turn out to be non-

normalizable and thus must be neglected. In order to find the

normalization constants

1/2

, (4.13

mcoshimw/a
A, —p_—|Meoshmola)

2ma

we have use(l9] [see also Eq(3.4)]

<$wo’1‘//w’a’>z szzyawo"y;éww’o" = 5((1)_ (1)’)50.0./ )
(4.19

whereEE YTy° and is set to bev =const. Thus the nor-
mal modes of the fermionic fielt4.2) are

12
m coshi mw/a)
+ =\ 5
¢ 27a
Kiwra+ 120mu) +iKj,/a—12(mu)
0 .
X ] e—lwv/a,
—Kiwra+120mu) +iK; /4 1(mu)
0

(4.195
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mcosi ww/a) v FIYe, & -
Apﬂn__J dve'Am”’a<vw ” |‘I’T(v a—l)
v v ’

“” 27%a
0 XWe(v,aYle, , ), (5.2
i +iKi /g . .
Kiorar 12 MU +1Kio/a-12mu) g iwv/a where we note that the second term in the parenthesis of Eq.
0 (3.7 does not contribute. Next, by using Eg.2), we obtain
Kiwra+12mu) —iK;,a-1(mu) o
—n_CF iAmo/
(41@ 'AFV) :?5‘%"‘71/ dvel mofa
As a consequence, canonical anticommutation relations for X ¢1VUV(U,a‘l)zpwe,ge,(v,a‘l). (5.3

fields and conjugate momenta lead annihilation and creation
operators to satisfy the following anticommutation relations:Using now Eqgs(4.15 and (4.16) and performing the inte-
gral, we obtain

(Do D!, 1 ={0ye, 0], 1=8(0— )8, (4.17)

p—n 4GF
A :K\/memycosfiﬂwef/a)COS“”“’v/a)

and
XREKi, ja-12M,/a)Ki, _ja+12Me/a)]
{BwoYBw’U’}:{awO'vaw’a’}:{ﬁwolaw’a’} X5087,UV5(we——wV—Am). (54)
- gt 1=
={Puo.d, 1} =0. (4.18 Analogous calculations lead to the following amplitudes for

processesvi) and (vii):
V. RINDLER FRAME CALCULATION OF THE B

4G
AND INVERSE B DECAY AFVT)’”=—F\/memV cosi{ mw,+ /a)cosi mw, /a)
FOR ACCELERATED NUCLEONS ma

Now we analyze thg8 and inversg3 decay of accelerated XREKivg: ja-1dMe/@) Ko jar 1AM, /3)]
nucleons from the point of view of the uniformly accelerated _
frame. Mean proper lifetimes must be the same of the ones X 5" o "_5(“’ ~wer—AM), 5.9
obtained in Sec. Ill but particle interpretation changes sig- G
nificantly. This is so because uniformly accelerated particles p—n_ TF —
. 4 . ) . iy =———1y/MgM,, COS -/a)cos /a
in the Minkowski vacuum are immersed in the FDU thermal Alui Ta Vmem, cost{mwe- /a)cost{ 7w, /a)
bath characterized by a temperattire a/27 [6,7]. As it will
be shown, the proton decay which is represented in the iner- XRE Ky, ra+ 1A Me/) Ko a+ 1M, /8)]
tial frame, in terms of Minkowski particles, by proce@s) _ _
will be represented in the uniformly accelerated frame, in A Gl Am). (5.6
terms of Rindler particles, as the combination of the follow-
ing processes:

The differential transition rates per absorbed and emitted
particle energies associated with procesges-(vii) are
_ _ given by

(v) pfe"—=nv, (vi) pTv—ne*, (vii) pfe v—n.

2.5p—n
197 _

Processesv)—(vii) are characterized by the con\Ersion of T do-do, et
protons in neutrons due to the absorptionecf and v, and

2 AR Pne(we )L

emission ofe™ and » from and to the FDU thermal bath. —ne(w,)], (5.7
Note that processii) is forbidden in terms of Rindler par- o pn
ticles because the proton is static in the Rindler frame. 1 d°PR;" 1 . B
i it i T T 2 2 AR eyl
Let us calculate firstly the transition amplitude for process Tdosde- Teds A 77 Flw,
(V). e v e V
—Ne(we+)], (5.8
AP =(n|® a,(,Se ® 5.1
(V) < | <V | || We-0Tg > |p> ( ) 1 dzpz)\;)n 1 -
Taodo T Z:+ Z: [AR) [ Ne(we-)NE(w3),
where§, is given by Eq.(3.7) with y* replaced byy% and e Ny TTemm Oy 5.9
our current is given by Ed2.6). Thus, we obtairjwe recall
that in Rindler coordinates”=(a,0)] where
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(5.10

nF(w)E 1+ e277w/a

is the fermionic thermal factor associated with the FDU ther-

mal bath andT=2#5(0) is the nucleon proper time. By
using Egs(5.4)—(5.6) in Egs.(5.7)—(5.9 we obtain

2pp—n

_4G,2:/ msm
T dwe-dw,

3 V) efﬂ'Am/ab‘(wef_ wV_Am)

s \ a
X{ReKi, ja-12M,/a)

X Kiwe— /a+1/2(me/a)]}21

(5.11

1 d*PR;"
T dwe+dw,

:4G§/ MeM
2

_ V) e—wAm/aa(w;_ we+_Am)
=\ a

X{REK;,a+12(M,/a)

XKy 1a- v Mel@)1}%,

(5.12)

1 d*PR;)
T dwe-dw;,

:4G§/ MeM
2

5 V) e ™AMas(we-+ w,—Am)
=\ a

X{Rq:Kiw;/a+1/2(mV/a)
X Koy rat+ v Me/@)]}2.

(5.13

By integrating Eqs(5.11)—(5.13 in frequenciesw, and w,,

PHYSICAL REVIEW B9 094004

acimm, [,

X{REK; (o amya— 1AM, 1)Ky 12 Me/a) I}
(5.19
At this point we take the limitn,— 0. For this purpose, it

is useful to note thafsee EQs.(8.407.1, (8.405.1, and
(8.403.1 in Ref.[10]]

4G2 FMem,

p—n_
r 3a eq-rAm/a

acc

(iz)ei vl2_ JV(iZ)e_iWT/z),
(5.195

where v is noninteger, andargiz| <. Using this expres-
sion in conjunction with Eq(8.402 of Ref. [10], we have
for small |z| that

K@= 5 ginmm -

2 siny

~ H —-vp—1,_ ivml/2
K,(2) 5 sinwr[(IZ/z) I' “(—v+1l)e
—(iz/2)’T " Y(v+1)e "2, (5.16
By using Eq.(5.16, we can show that
mV
;Ki(w—Am)/a+1/2(mv/a)Ki(w—Amya—l/z(my/a)
mV—>O
T
(5.17

2 coshm(w—Am)/a]’

where it is appropriate, we obtain the following transition It is now possible to obtain the following partial and total

rates associated with each process:

transition rates:

2 w 2 ®
[pn_ AGgmem,, [+ dore- [pn_ Ggmeg + q
W) 3g2gmAmia o T8 W) 20 gmAmia [\ We~
2
><{Rin(me——Am)/a—l/Z(mV/a-)Kiwe—+1/2( me/a)]} ’ Kiwe— Ja+ 1/2( me/a)Kiwe, Ja— 1/2( me/a)
4GZmm, cosi m(we-—Am)/a] '
"= : f dwe- (5.18
- a ewAm/a
X{RE K (o + amyrat 112(M, 1)K . 1 Me /@) T}, Fp_m_ Fme 7y
(VI A we+
ae™ m/a
o 4GZmem,
Iy T SaZemimag dwe- Kiwg: ra+12(Me/@)Ki,, . ja-1/2(Me/a)
, cosh m(we+ +Am)/a] '
X{REK; (o, —amya-12M, /1)K, _+1(Me/a)]}. (5.19
We recall that Rindler frequencies may assume arbitrary 2
- K . R GEm Am
positive real values(In particular there are massive Rindler Fp—»n_ Fe dwa
particles with zero frequency. See REf2] for a discussion i) = r2gemdma g €
on zero-frequency Rindler particles with finite transverse and
angular momentun. Kiw, ra+12Me/@)Ki, _ja-12(Me/a)
The proton decay rate is given by adding up all contribu- X A '
tions: " =T, "+ I, "+ ;" This can be written in a costm(we-—Am)/a]
compact form as (5.20
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1.0 B T T T T T T T T T T T T T T T
L SRR [ [ [ i sz + o
5 ] il = 3 ama | G0
r ] mfae” "2Ma)am
08 I~ " BRyy,BR ]
i DR ] Kiw, ra+12Me/@)Ki,_~ja-12(Me/a)
- - >< ,
06 - ] cosh m(we-—Am)/a]
C ] (5.22
0.4 L — np (3'2:me +o0
r i F(ix) :WZaewAm/afo dwe+
0z —
i . Kiwg: 1a+12Me/@)Ki,, . ja—1/2(Me/a)
i ; 1 cosh m(we+ +Am)/a] ’
003 0 1 2 3 (5.23
log[a/(1MeV)]
) . G2m Am
FIG. 3. Branching ratio8BR, ,BR,;,.BR; ,BR;i; ,BRy ,BR, are | Fe f dwe-
plotted. For protons, procesgii) dominates over process@g and X r2ge-mAma ]y
(vi) for small accelerations, while procesde$ and (vi) dominate
over procesgvii) for high accelerations. For neutrons, procéss King Jat+ A me/a)Kiwe, Ja—1Mg/a)
dominates over procességiii) and (ix) for small accelerations, ,
while processesviii) and (ix) dominate over proces) for high cosh m(we-—Am)/a]
accelerations. (5.24
and and
2 o0
—n G’Z:me +o l—‘nﬂp_ GFme * d
1—‘gCC = 2 Am/ dw acc Zae— mAm/a | _ ®
T aeﬂ' m/a ) _ ar
Kiwa+12dMe/@)K; yja—12(Me/a) Kiora+ 1A Me/@)Kiosa— 1A Me/a) (5.25

(5.21

cosh m(w—Am)/a]

respectively. It is interesting to note that although transition

rates have fairly distinct interpretations in the inertial and

accelerated frames, mean proper lifetimes are scalars an

must be the same in both frames. Indeed, by plottin@)
=1rh " as a function of acceleration, we do reproduce Fig.
2. In Fig. 3 we plot the branching ratios

BR,)=T{,"/Thc", BRu=T{;" 5",
BR(V“)EFRE)n/Fg(;n .

coshm(w—Am)/a]

respectively. Figure 1 gives the neutron mean proper lifetime
m,(a) = LI).P which coincides with the one calculated in
t

Iae inertial frame. In Fig. 3 we plot the branching ratios

BRii =T BRi=TI

n—p

()

n—p
(viii)

n—p

0 /Fn—>p

acc

/Fn—>p

acc

IToP.

acc

It is easy to see thaB R(Viii) = BR(V) !BR(iX) = BR(vi) s and
B R(X) = B R(Vii) .

VI. DISCUSSIONS

We note that for small accelerations, where “few” high-  \ye have analyzed the decay of accelerated protons and
energy particles are available in the FDU thermal bath, progetrons. We have compared the particle interpretation of
cess(vii) dominates over processes) and (vi), while for o6 decays in the inertildee processe@i) and (iv)] and
high a<_:_ce|erat|0ns, process@s and(vi) dominate over pro- acceleratedsee processe)—(vii) and (viii )—(x)] frames.
cess(vii). _ , They were shown to be quite distinct. Branching ratios were
A similar analysis can be performed for uniformly accel- 554’ evaluated. For protons with small accelerations, process
erated neutrons. 'Accordlng t_o coaccelerated_obgervers, t'?@ii) dominates over processés and(vi), while for protons
neutro_n decay will be described by a combination of theii high accelerations process@s and (vi) dominate over
following processes: procesg\vii). For neutrons with small accelerations, process
(x) dominates over processésii) and (ix), while for neu-
trons with high accelerations, process$es ) and (ix) domi-
nate over proces). Mean proper lifetimes of the nucleons
as a function of their proper acceleration were plotted in

(viii) nv—p*e”, (ix) net—p*y, (X) n—pre .
The corresponding partial and total transition rates are

094004-8
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Figs. 1 and 2. For accelerations such thata,=27(m, and its application to astrophysics and cosmology are pres-
+me,—m,) we have thatr,~7,. Although such accelera- ently under consideration and will be presented somewhere
tions are quite beyond present technology, decay of acceleelse.

ated nucleons might be of some importance in astrophysics

and qosmology. We haye performed our_calculatlons using ACKNOWLEDGMENTS
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