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Smooth landscape solvent dynamics in electron transfer reactions
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SP, Brazil
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Solvent effects play a major role in controlling electron—transfer reactions. The solvent dynamics
happens on a very high-dimensional surface, and this complex landscape is populated by a large
number of minima. A critical problem is to understand the conditions under which the solvent
dynamics can be represented by a single collective reaction coordinate. When this unidimensional
representation is valid, one recovers the successful Marcus theory. In this study the approach used
in a previous worKV. B. P. Leite and J. N. Onuchic; J. Phys. Chelfi0, 7680(1996] is extended

to treat a more realistic solvent model, which includes energy correlation. The dynamics takes place
in a smooth and well behaved landscape. The single shell of solvent molecules around a cavity is
described by a two-dimensional system with periodic boundary conditions with nearest neighbor
interaction. It is shown how the polarization-dependent effects can be inferred. The existence of
phase transitions depends on a factgroportional to the contribution from the two parameters of

the model. For the present model,suggests the existence of “weak kinetic phase transitions,”
which are used in the analysis of solvent effects in charge—transfer reactionk99®American
Institute of Physicg.S0021-960809)50420-7

I. INTRODUCTION and driving forces, plays a crucial role controlling the kinet-
ics and thermodynamics of the folding procé$st The sol-
Electron transfer(ET) reactions play a major role in vent problem is a much simpler one, but its understanding in
many chemical and biological processésn which the sol-  terms of a single reaction coordinate can bring an insight to
vent effects have been extensively studietiThe Marcus the protein folding area.
theory has successfully explained the solventrole in ET by a  There are several different dynamic regimes in ET sys-
single collective reaction coordinateOn a different ap- tems: adiabatic, nonadiabatic and Zusman’s; all of them as-
proach to the problem, the solvent dynamics happens on uming the existence of a single reaction coordinate which
very high-dimensional surface, and this complex landscapgepresents the outer-sphere effects. An extensive presentation
is populated by a large number of minifh@ne can wonder and discussion of electron transfer reactions controlled by
how this complex landscape view can be accommodategolvent dynamics can be found elsewh&te!® If this as-
with the single-coordinate picture. This question has beeRumption is not valid, all the above regimes are inadequate,
addressed by Onuchic and Wolyn@W),® with a simple  and have to be reevaluated. The OW model addresses the
model for a polar solvent interacting with a charged cavity|imits of validity of the unidimensional representation. In the
representing the donor or acceptor site for ET. Although thisyrevious work&? it was pointed out that the main pitfall of
model is far from representing details of real SOlventS, |tthe OW model was the assumption of solvent random ener-
includes the basic features of a rough-energy landscape: Miies, j.e., it does not include energy correlation between
tidimensional degrees of freedom, with each solvent molstates. In this work, the simple model is adapted to include
ecule being treated independently; a disordered energy lan@nergy correlation. The single shell of solvent molecules
scape with multiple minima; and a polarizable mediumgaround a cavity is described by a two-dimensiof2i) sys-
around a charged cavity. Above the thermodynamic glasgem with periodic boundary conditions with nearest neighbor
transition, it recovers the continuum dielectric limit. Re- jnteraction (NNI). The energy landscape is very smooth

cently '_[hge dynamics of OW model was studied by Leite andcompared with the random energies case, which leads to a
Onuchic; who showed that at high temperatures, the systemyqre well behaved type of solvent.

exhibits effective diffusive one-dimensional dynamics, The organization of this paper is as follows. In Sec. I
where the Born—Marcus limit is recovered. At low tempera-yye review the OW model for a solvehthe phase transitions
tures, a polarization-dependent glassy phgesarization-  gnq the high-temperature linfitin Sec. Il we discuss the
dependent phase transitibmppears and a slow non-self- yinetic behavior at low temperatures. The phase transitions
averaging dynamics is expected. _ are studied using the variables from the previous work.

~ The representation of this complex system in terms of &ince very little can be done analytically, the analysis is
single reaction coordinate resembles the protein folding sysyade mostly by comparing its results with the simpler case,
tem. The energy landscape, with the interplay of roughnesgnere there is no correlation between energies. In Sec. IV we
summarize the results and comments upon their relation with
3Electronic mail: vleite@df.ibilce.unesp.br real solvents.
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The energy probability distributiog(x,E) at polariza-
® @ tion x is

@ @ (XE)= —— (E-EC0)* 6)
X,E)= exg ————|.
J V27AE 2AE?
@ @ In the present model, the energies are not simple random
variables, but a sum of them, following strictly Ed.). The
@ @ motivation to work with a 2D Ising model with NNI lies in

its simple way to introduce energy correlation between
@ @ ® states. Our primary goal is to check its behavior with the
approach used to investigate the OW model based on REM.
) ) ~What is new in this work is the idea of representing the
FIG. 1. The single-shell OW model for solvent dipoles around a cavity W'thinﬂuence of a disordered system in terms of a single reaction
chargeq. . . . . . .
coordinate, which is not addressed in rigorous 2D Ising
studies'®'” However at the present time we do not know
Il. THE SOLVENT MODEL how to correlate the rigorous results with our present work.
For the sake of simplicity, in our simulations the single

This model is a minor variation of the thermodynamic : } . . ;
. .~ shell model with NNI is approximated by a 2D lattice with
Onuchic and Wolyne€OW) solvent modef,and the analysis NNI and periodic boundary conditions. Even though this ap-

of its dynamics employs the same approaches used earlier, =~ .
. ; roximation corresponds to a topology of a torus, one can
The OW model considers a single shell of solvent molecule%. . . ) .
. . . ; ) ink of it as a topologically distorted spherical shell, where
with simple rotational dynamics, represented by dipoles_, .. L
e : o . : all dipoles have the same coordination numbarmber of
pointing only in two directions, inward and outward, i.e., as . .
. : . : . : nearest neighbor In other words, it can be thought as a
Ising spins(Fig. 1). The interaction energy between dipoles ; " ,,
. . r%presentatlon of a “sphere” where the two poles have the
and between each dipole and the charge cavity are assume N : . )
i . . same coordination number as all other points. This approxi-
to be rather simple. For the single shell Mfdipoles, the . o : .
solvation energy is mation greatly simplifies the analysis and the computational
work without affecting the quantitative results.
N _ _ _ While studying the dynamics, in order to define the
Eso= —izl &(Q)oy(i)+ % Jijo(i)oy]), (1 model completely, one needs to define the way by which the
' system is allowed to move from one state to another, i.e., the
where the first term is the dipole—charge interaction and th&inetic rules. It allows only a single dipole flip per elemen-
second term is due to dipole—dipole interactigis an index  tary move, with move acceptance based on a Monte Carlo
associated to the charge cavity. The charge—dipole interagrocedure. That is equivalent to a rate from a stat® a
tion £;(q) and the dipole—dipole interactialy are assumed connected stat® of

to obey a Gaussian distribution, with avera@éq) andJ

R
and standard deviatioA £(q) and AJ, respectively. Each —Oexr[—(EB—EA)/T], for Eg>Ea,
dipole interacts with onlyz neighboring dipoles. The total R= N @
polarizationp is defined by Ro
N for Eg<E,,
p: n+ —n_, (2)
and whereR, is associated to the flipping rate of any qlipole. _
Most real solvents do not present phase transitions at its
n.+n_=N, ) liquid phase, nevertheless, it is observed a deviation from

where n, (n_) is the number of dipoles oriented inwards continuous models at low temperatu}éﬁ'hese Changes in
(outwards to the charge cavityp is used as the reaction their dynamics we refer to as kinetic or dynamic phase tran-
coordinate for the solvent, and the free energy dependin?itions- In this, sense our model tries to represent the same
parametrically orp is used as the effective potential. eatures of experimental systems. There are three kinetic

The average solvent energy is phase transitions, each of them is associated with a different
entropic contribution, which yields to different transition
temperatures. The phase transitions are briefly explained
below? Though the REM approximation is not valid, we still
use it as a qualitative guide in this work.

_ 7 Ix?
X§(Q)+T

E(x)=N : (4)

wherex=p/N is the average polarization per dipole.
The OW model uses the Random Energy ModEM)

approximation**°to evaluate the solvent energies given byA. The phase transitions

Gaussianly distributed random variables. The standard devia-

tion of the solvation energy is assumed independent of 1. pojarization-dependent phase transition

ZAJ?
2

5) The system is studied parametrically @nThe entropic

2_ 2_
AET=NA€=N relevant number is the number of states with polarizakon

A&+
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N! N! tial number of states with low energies. In the thermody-
QN = T = NI/ [N(i+x/2 . @ namic limit for E<E(x), instead of Eq(10), S(x,E)=0.
For every polarizatiorx there is a critical temperature,

The average number of states with polarizaticand energy  the polarization-dependent phase transitiop(X), given by
betweenE andE+dE is

(n(x,E))=Q(Nx)g(x,E)dE.

Using the REM procedur¥, for (n(x,E))>1, one can ap-
proximate {logn(x,E)) by logn(x,E)), and the entropy be-

) 1 3S  [28*(Nx)]*?

X)= =— —_—,
BX¥= 7150 3E e AE

(12

where S*(Nx) =log (NX) is the configuration entropy. In

comes -
o the smallx limit,
(E-E(x))?
S(x,E)=log(n(x,E))=log Q(NX) = ————. (10 (2 log 2—x?)/2
2AE Bo)= 51— (13
At the critical energy,
E.(x) = E(x)— AE(2 log Q(Nx))¥?, (11) At a particularT, such thafT=T(x), for |x|<|X,| the

system has a behavior like the standard Born—Marcus model.
the entropy vanishes, and the approximation above is ndAs it hitsx,, the dynamics becomes glassy. The average free
valid. The system becomes frozen into a small nonexponerenergy is

E(X)—AE2(q)/2T—-TS*(Nx), for T>Tu(x) (|x[<|%o|),
F(x)= — (14)
E.(X)=E(x)—AE@S*(Nx)¥2, for T<T(x) (|x|>]xql).

The free energy, depending parametrically on the total polartion of the local phase transition is obtained via the REM

ization, is used as a smooth effective potential abDy). approach used above. If each state is connectedMitther
states by one elementary move, the average number of
neighboring stateén(E)) for a given state with an energy

2. Global phase transition betweenE andE +dE is

Thermodynamically, there is only one phase transition, )
here called theylobal phase transitionwhich is associated (n(E))= M exd — E dE (18)
with the total number of states’2 The REM procedure to ! V2mAe€ 2A €l ’

estimate the entropy, following E¢L0), is used again, being

characterized by whereA g is the standard deviation of the energy distribution

associated with states connected by single-flip kindiits

SYE)=log[2"g(E)], (19  stead ofAE as for REM).
where SU(E) is the total entropy, ang(E) is the energy If (n;(E))>1, the local entropy can be approximated by
probability distribution. Using Eqg6) and (12), E2
1 [2N|Og 2]1/2 (2 |Og 2)1/2 Sl(E)2|Og<n|(E)>=IogM— ZAEZ. (19)
C:_ = = s (16) |
T9 AE Ae |
Cc oc

There is a critical energf.~, where the entropy vanishes
which is the same result as f@¢(x=0). The critical energy [E\°°=— A ¢ (2 logM)*?] and

EJ where the entropy of the entire system becomes zero, is

given by oe_ 1 _ 99 _ (2logM), ,

— (20)
c i
E9= —NAe(2 log2) 2 17 TeC JE Ae

_ploc
E—Ec

For B=p\°° the system spends most of the time at local
minima, and the local phase transition is determined only by
This transition is related to the local configurational en-the local distribution of energies. When the energies between
tropy and local energy distribution of states, correspondingstates are correlated, as one changes the state of a single
to a temperature where the system starts to get trapped tipole, the total solvation energy changes only by the energy
local minima,T'Coc (1/[3'C°°). Below this temperature, escapes interaction of the flipped dipole with the rest of the system.
from local minima go preferentially through the neighbor This difference implies significant changes in the dynamical
with the smallest barrier instead of overcoming a typical barbehavior.
rier. This phase transition has to do with the conditions under  The global and polarization-dependent phase transitions

which the system gets trapped in local minima. The derivadepend on the distribution of energies of the entire system,

3. Local phase transition
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AE, which are the same as in the REM cadRifferently
from the random energies case, where BI¥REM s the
first transition felt by the systerhgl**fEM< g (x)<p9],
now

Vitor B. P. Leite

-

-
-

‘‘‘‘‘‘‘
-

-
T

Be(X) < BI<B", @  _"r L T
since for typical values oM (~N) andA ¢ ~Ae, 04k .
(2log2-x2)2 _(210g2)¥2 (2 logM)V? Nesrs Neih. Tt
A¢g Ae Ae ' o2r 4 E 20 spins i
B. High-temperature limit 0 Y 1 v —
This limit has been discussed in detail in the previous B

9 i _
work.” The .Only dlfferenc.e bEtW.een tha.t W_Of!( and the FIG. 2. The average fractioh between the fastest neighboring escape rate
present one Is the type of Interactions, which is 'rreleva_nt aknd the total escape rdtegs.(22) and(23)], as a function of the inverse of
this limit. So all the conclusions with respect to high- temperatures. The system hade=2 and 20, 190, and 1140 neighboring
temperature regimes are applicable to the present model, amtes. The vertical lines indicate the position wherehanges curvature,
follows. The multidimensional master equation can be redefined agy*.
duced into a unidimensional diffusion equation for the total
polarization. The resulting dynamics corresponds to a par-

ticle diffusing in an effectivgalmos) quadratic potential. In  A. Local and global phase transitions
this limit (noninteracting dipoles all diffusion pathsare In this limit, there is no correlation between polarization
equivalentand the unidimensional equation is exact. The free(x) and energy, and states for alk obey the same energy
energy, dependi_ng param_etri(?ally on _the total POlarizatiO”distribution. Rigorously, a 2D system with a nearest-
accurately describes the kinetic effective potential. neighbor interaction does not present a thermodynamic phase
transition!’ The REM approach to estimate the temperature
phase transition is valid only for randofnoncorrelategen-
ergies. Nevertheless, we still use this approach to have an
idea of the dynamics. We do not expect to observe an obvi-
ous phase transition in our simulation, as it is observed in the

In this section dipole—dipole or charge—dipole interac-RgM case, and indeed the phase transitions observed in this
tions are considered. For simplification, we discuss only theyork are “weak kinetic” ones. In this context, the global
dipole-dipole interaction, but the general form of interactionpnase transition corresponds to the weak kinetic polarization-
can be trivially derived, as it only includes an extra term i”dependent phase transitionsat 0. If this simple model is
E(x) [Eq. (4] and inAE [Eq. (5)]. To probe the different extended to multishell solvent molecules around a cavity,
dynamical regimes, we vary the two parameters that charaghich corresponds to the three-dimensional NNI of Ising
terize the energy distribution, i.e., the average energy of thepins, then the true glob&hermodynamikphase transition
dipole—dipole interaction], and its random fluctuation with is expected.
width AJ. There are two limit cases to be studied. The local phase transition is studied, as in Ref. 9, by

(@ AJ#0 andJ=0. There is no correlation between Probing the ratio between rates and the escape times as a
polarizationx and energy. States for atfs obey the same function of 3. We compute the ratié; between the fastest
energy distribution. individual rate to escape from a state]"* [ =max(;;)] and

(b) AJ=0 andJ#0. There is no disorder in the interac- the total rateR; of Eq. (7),
tions.

fi = rimax/ R;. (22)
We first discuss cas@) above. In Sec. Il A theglobal . i
andlocal phase transitions are studied. In Sec. Il B we dis-| € ratiof; shows the importance of the fastest remallest

cuss the polarization-dependent phase transition. In Sec. 111 82Tie) on the overall escape rate. When the fastest rate

we investigate caséh). In Sec. IllD we address the general starts to dominate, a single “kinetic” route becomes prefer-
case where\ J£0 andJ<0. The approach used in this sec- ential. To probe this transition, we measure the average value

tion is the same of previous workthe variables observed of fi,

are the same, so we suggest to the reader to analyze both —

works together. The previous results are important for a clear f:Z fi exp{—,BEi]/ Z exf — BEi].
understanding of these physical processes. Strictly speaking, _

there is no phase transition, but some qualitative changes in _Figure 2 showsf for three different systems, with ¢
the dynamics of the system at low temperatures. Everr4"%8"2 and 12/ having M =20, 190 and 1140, respec-
though it is hard to estimate the diffusion coefficient, repre-tively (it corresponds to a flip of 1, 2 and 3 dipoles simulta-
senting the problem in terms of a single reaction coordinat@eously, respectively’® We average over a sample of 10
for the solvent is still possible. systems(for M =1140 one sample only The phase transi-

. LOW TEMPERATURES—SYSTEM WITH
INTERACTIONS

(23
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TABLE I. Local phase transitior8!°® results; the NNI case.

()
M neighbor Theory Simulation
states ploe Blec
20 1.22 0.8
190 1.14 1.1 A 10'F g
1140 1.08 1.0 2 Escape Time
<\7° Nearest Neig. Int. (z=4)

Locally connec.

100 dipoles

AE = AJ (zN) /2

10 different runs (10* esc.)

tion is very weak, and there is no unique way to define the 10°F
transition temperature@'cOC is defined as the inflection point

for f. In the ideal phase transitioﬂgoes from a low to a
large value in a small interval g8, i.e., the second deriva-

tive of  is large, and the inflection point is meaningful. The ®) 141
meaning of this transition is that below this temperature, es- ;5
capes from local minima go preferentially through the neigh-

bor with the smallest barrier instead of overcoming a typical 7,
barrier. In the NNI case, this transition is very smooth, indi- $0.8
cating that “preferential kinetic” routes do not play an im- §°0.6
portant role. v '

Table | compares the local phase transition temperatures
obtained through simulation with the infinite limit analytical 0.2
result given by Eq(20). Even for such a small system, our .
kinetic definition is in qualitative agreement with the predic-
tion, specially for a large number of neighbors.

One way of probing the local and global phase transi-
tions is by studying the average and standard deviation of (c)
escape timegtesy, (I0gtesy @andA logygtesc, the same pa- 05 i
rameters used in Ref. 9. Figure 3 shows these parameters a
a function ofg, for 10 different runs, each with {@scapes 04
for a system with 100 dipoles. Even though the number of g
escapegstate$ probed in this simulation is much smaller 500.3
than the total number of states in the systems, this is much 4
larger than any number of escapes involved in the mean first 02
passage time@VFPT) that we investigate in the next section
(~10%. Runs differ only by the initial conditionsg!°® 01T
=1.5 according to Eq(20), and 8¢=1.0 according to Eq.
(16). For B>1.0, fluctuations become significant, and the
results vary depending on the initial conditions. However,
this dependence is much weaker than the random energyc. 3. Escape times on a system with 100 dipoles averaged oder 10
case(Fig. 7 in Ref. 9, but it provides qualitative evidence escapes as a function of the inverse of temperaturainits of disorder
for the weak local and global phase transitions. One shoul§?€r9y parameteAJ). 10 runs were performed with different annealed

. . Initial conditions, using a kinetic scheme where a single dipole flip is al-
note the fluctuations are very small, compared with the avi,yeq (v =100). () Average escape timg..y. (b) Average of the log of
erage values. the escape timélog t.sy. (C) Standard deviation of the log of the escape

The results depend on the sample used, but this effect fne A 109 tes=[(10g7 tes) —(10g tesd 1
minimized by increasing the system size, which points to a
finite size effect. Once the system is chosen, there is a stron-
ger initial condition dependence as the size of the system iB. Polarization-dependent phase transition

increased. . , " Since B¢(x) < BI< BI°°, as the temperature is lowered,
A true phase transition, like the global phase transitiony o first dynamic phase transiton observed is the

observed in the REM case, is not observed in this 2D Ising,qarization-dependent one. In this sub-section we focus on
system. Even though andt. qualitatively show the same the time evolution of the polarization coordinate. All results
behavior observed as in the REM case, they happen in a veste from numerical simulations. Since we are interested in
smooth way. As a consequence, one does not expect to hatlee evolution between two different polarizations, the First
breakdown of the single reaction coordinate representationPassage Timé&PT) is the characteristic time to describe the

BAJ
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events in the total polarization space. The FPT is defined a(a) 038

the time to evolve from an initial state of polarizatignto a Nearest Neig. Int. (z=4)

final x¢, 7(X;,X;), from whose distribution all dynamical 30 dipoles

information can be obtained. We define the stochastic vari- %6 Init. pol: 0 1
ablew(xy,X;) as the number of escapes during the evolution Final pol. (Nxf)l‘;" 1§D

betweenx; to x; (the equilibrium polarization is taken as Foal ¢ |
=0). Notice that the number of escapes is different from the 2’

number of stepgtime), since only successful attempts are
considered. For a free random walk, the FPT is given by 02t
ow(Xs,X;), and every step is “successful,” with the random
walk mean FPT (7(X:,x;))) being simply the average
{wrw(X5,X;)). As the temperature is lowered, since it takes OF
longer for escapes to occufr(X;,x;)) increases. FoiB

smaller than any critical temperature, the paths are equiva B

lent, and(7(x,x;)) is simply the product of the average (b) L6F . . . . 3
number of escapes and the average escape time,

Nearest Neig. Int. (z=4)
(7(X¢ X)) = (@ (X, Xi) }teso- (24 30 dipoles

L2F  Tnit. pol.: 0
Final pol. (Nx¢): 40 8o

g
~
1

As B=f., the system escapes preferentially through some

particular neighbors. If it leads to large fluctuations, the paths <2 i 12¢ 16+

are not equivalent and(x; ,x;) deviates from Eq(24). g 08F )
In the previous section it was shown that the fluctuations <« o6} .

for this model on the escape times are small, so there is n oal i

breakdown on the equivalent diffusion pathways picture anc ’

on the single reaction coordinate representation. Equatiol 021 i

(24) could be written &9 oLs . L . . :

X E(x)— E(X 0 0.2 0.4 0.6 0.8

<xf,>f fd,er{;%((; SO)) . B

. ) ) FIG. 4. Evidence for the polarization-dependent phase trangiifx). (a)
whereF(x) is the free energy anD the diffusion constant. Aq(x,,0) [Eq. (26)], and (b) A¥(x;,x;)) [Eq. (27)] as a function of the

Sincel = 0, there is only the entropic term in the free energy, mverse of temperaturén units of disorder energy parametéd=1), Ae
BF(x) is not temperature dependent, so the changes in* =2,

7(Xs,X;) are due toD. The effect of the polarization-

dependent kinetic transition is manifested through changes in

D along the coordinate. SinceD is inversely proportional to  (log;gtesd Xs ,Xi)), the parameter that should be “physically
(tesy,’ the temperature dependencetqg, can be isolated, observable,” and one sees the obvious polarization depen-
and the changes db can be investigated studying(X; ,X;) dence for different curves. The dependenceAd¥ (x;,0)

as a function of temperature. Because the distribution ofvith x;s can be interpreted as the variation in the diffusion
o(Xs,x) is flat, (logigw(Xs,X;)) is calculated instead of coefficient in the intervalx;|, and one does not observe a
(w(X¢,X;)). To quantify the deviation from the random-walk truncated potential, as Onuchic and Wolynes suggested.
result, we calculated

AD(x; . xi) =(logro (Xt i) = {l0Gro wrw(Xr Xi)) (26) C. Constant dipole—dipole interaction

and _
In this case, there is a nonzero average interactibn (
AW (x¢,x;) =(logio 7(X¢ ,X;)) —(l0G10 @y (X ,Xi)), (27)  #0) and no variation in the dipole—dipole interactioh)
as a function ofB, where (log;own(X1,X)) is the free =0). The average enerdy(x) is given by the second term
random-walk result. in Eq. (4). For a given polarizatiox there are different ways

We performed simulations on a 30-dipole 2D systemn+ “inward” and n_ “outward” dipoles can be arranged,
with NNI with periodic boundary conditions, calculating 100 Yielding different energies for each One cannot find a di-
FPT for each sample systefon 100 different systemswe  rect analytical form for the energy standard deviation, but
are interested in a comparison of different polarizations; Figthis can be calculated for small systems. One expects it to be
4 showsA Q(x¢,0) andA W (x; ,0) as a function o8 andx,.  like
Because the polarization-dependent phase transition occurs NZ_
first for large polarizationsAQ(x;,0) deviates from zero AE(X)= \/\Jg(x)
first under these conditiongFig. 4(a)]. Since the escape
times are polarization independed¥ (x;,x;) would have whereNz?2 is the number of interactions ar@x) is polar-
the same temperature dependence for all polarizations, Figzation dependent and has to be calculated from the full enu-
4(b). Following Eg. (24), AV (x;,X;) is proportional to meration of all states.

(28)
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FIG. 5. {(x) for Ising spin dipoles with periodic boundary condition, Eq.
(29), in different lattice sizes, and the expectélarge limit fit with

1-x2

In Fig. 5, {(x) is shown for systems of>4, 4x5 and
5X5 dipoles with periodic boundary conditions. Intuitively,

| polarization | (IxI)

we expect that in the largd limit,
{(x)=1-x%,

as can be confirmed in Fig. 5.

Now the REM approximation is used to estimaigx),

Eq. (12,
Te(x)= ﬂ,
[2S*(Nx)]"?
whereAE(x) is given by Eq.(28) and the entropic configu-
ration approximated
S (Nx)~N| - 1+X)Iog 1+x _(1—x og 1—x) .
2 2 2 2

T.(x) decreases dx| increases. In the previous caggec.
l1B), when AE(x) is constantT(x) increases with|x|.

Both behaviors are shown in Fig. 6.

FIG. 6. Polarization-dependent critical temperatufgéx) for the two dif-
ferent regimes(a) J=0 andAJ#0 (Sec. Il B) and (b) J#0 andAJ=0

(Sec. Il O.

0.4 0.6 0.8 1

polarization (x)

Vitor B. P. Leite 10073

As discussed in Ref. 9, there are different kinetic re-
gimes when both polarization-dependent average energy
[E(x)] and roughnessAE) are present. These regimes ap-
pear according to the relative values of average potential
barrier between two polarizationg and x;, E(x;) —E(X;)
andAE. They are measured by the parameger

_ E(xq) —E(x)
Y(Xf,Xi)_—AE(Xf)Z/T : (31

For x;=0.0 and temperatures close to the critical tempera-
tures J/T=1),

X X

T2 (1-x))?

The phase transitions are expected §e£1. Since the land-
scape is not so rough, by kinetic transitions we mean quali-
tative changes ib, which are polarization-dependent. If one
considers that this occurs far<<0.1, thenx;<0.3, which
corresponds to polarizations very close to the equilibrium
coordinate.

¥(X1,0) (32

D. General case [E(x)#0 and AE#0]

For the general case, the roughness is given by

Nz o 1/2
AE(x)= 7(AJ2+J2§2(X)) . (33

The idea is to increase the relative valueJéhJ and ob-
serve how the polarization-dependent diffusion coefficient
behaves. If the equivalent path idea is valid, then

7(X¢ %) = (@pg(Xs X)) (tesd XA BE(X() —E(x))].
(34)

Because of the flat distribution of 7(x:,x;),
(logiotesd Xs ,Xi)) is calculated for different values of AJ.

Taking into account the nonzero average interactﬁlx)
and using Eq(34),

(logiotesd X5 ,Xi)) =(10g10 7(X; ,X;)) — (10Q10 @rw (Xt ,Xi))

—[B(E(x;)— E(x;))]logyee. (35)

The above approximation is valid as longas 1. When the
average potential barrier is large compared to the disoRler,
depends on the average potential barriers at aaamd the
comparison of(logygtesd X ,%;)) for different x; becomes
meaningless{log;otesdXs,Xi)) as a function ofBAJ for
differentx; andJ/AJ are shown in Fig. 7. Fo3/AJ=0 (y

=0) one gets just the result of Fig(b} with strongerx;
dependence g8 (1/T) increases, and the kinetic transitions
are expected to approximately follow Fig. 6. FOfAJ
=0.1 (y=<0.1) the relativex; dependence is smaller. Finally,
for J/AJ=0.3 (y=<0.3) the disorder becomes less important
for the dynamics, and the polarization-dependent effect starts
to disappear. The diffusion constant is polarization indepen-
dent. Gradually one gets back to the previous cdse( and
AJ=0), where even though there is no trivial description of
the diffusion dynamics, the unidimensional representation of
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' ' model there are no real phase transitions. The “weak kinetic
‘‘‘‘‘‘‘ transitions” are associated with changes in the diffusion con-

. stant, which can be qualitatively observed.

' One can imagine for simple solvent models two extreme

Nearest Nei. Interaction

A 15| Local States Connected o features. One presents a very rough landscape, like the OW
B 7| 30 dipoles —— T model, with phase transitions and glassy phases. The other
o% e one would be a model in a highly organized medium with

S 1 L™ Final pol. | very little ro_L_Jghness in thg Iandscape. It doe_s not present
v phase transitions and the single reaction coordinate represen-

tation is valid for almost all temperatures, corresponding to
s the case of Sec. llIC. The behavior of intermediate cases
were discussed in Sec. Il A, Il B and Il D. The role of the

roughness gradually appears in the behavior of the diffusion

o

[¥]
T

—
=
>
[

1]

g
(=2
1

B ' ' ' ' constant, and as the roughness increases real phase transi-
tions start to appear.
FIG. 7. (logytes9 according to Eq(35) for different final polarizations We have shown that the methods of Leite and Ondchic

(Nxy) as a function of3. ForJ/AJ=0.0 and 0.1 there is a stronger depen- to infer the importance of disorder are adequate. Even when
dence on(logyoteso for larger polarizations, in agreement with(x) [Eq.  the system has a well behaved smooth landscape, the quali-
(12)]. For J/AJ=0.3 the dependence dix; is not well defined. tative changes can be observed. In the 2D NNI solvent case,
the landscape is not very rough, the qualitative phase transi-
tions are weak and the unidimensional representation is
the problem is expected. There is no breakdown of the reacralid. As the temperature decreases there is a slow down in
tion coordinate as in Ref. 9, since the diffusion paths are stilthe dynamics. The description of the system goes from the
equivalent. high-temperature Onuchic—Wolynes lifhtb low tempera-
Even at temperatures beIoYK)COC (the smallest of the ture Sumi—Marcus behaviGrwith slow dynamics, down to
critical temperaturgs because the fluctuations on escapevery low temperatures, when it is completely frozen and fol-
times are not large compared with their mean values, théows the Marcus description in frozen medfa.
equivalent diffusion paths are still expected. The breakdown The solvent behavior is expected to vary according to
of the single reaction coordinate representation occurs rathehe type of interactioNNI, next-NNI, etc) and topology
because the system becomes frozen. At very low temperdsingle shell, multiple shell and of course with the degree of
tures T<TI°, the system is trapped in local minima for disorder. The essential features are expected to hold more
longer times, but specially it does not evolve along #he generally in the limiting case$il) the high-temperature limit
coordinate, for it cannot overcome the average potential enwith Marcus-like behavior, an(R) the low-temperature limit
ergies between polarizatiomsandx;, being effectively fro-  with glassy behavior.
zen. From this work the critical temperatures for real solvents
can be estimated only with the knowledge of the parameters
of our model, the roughnessA\E and the average

IV. CONCLUSION polarization-dependent ener@(x), which could be calcu-

Electron transfer reactions are strongly controlled by soldated via Monte Carlo methods. The functidng.scand the
vent effects. It has been shown, using the OW model, that analysis of MFPTs can also be used in all atoms simulations
complex solvent landscape can be reduced kinetically antd infer the existence of phase transitions. An interesting
thermodynamically into a global one-dimensional reactionstudy would be to adapt this analysis to probe the relaxation
coordinate’ The biggest pitfall of the OW model is that it processes on these simple solvent models and in real solvent
does not include energy correlation between states, which gmulations. It might be possible to address the temperature-
not realistic. In this work, a more realistic system was ex-dependent solvent relaxation results in ethanol and
plored with energy correlation between states, namely opropanol:® where there is a breakdown of continuum theo-
Ising dipoles solvent molecules with nearest-neighbor interfies at low temperatures.
action. This solvent model, with local interactions and kinetics,

The representation of the solvent by a single reactiorbehaves in analogy with the protein funnel as a perfect fun-
coordinate, which validates the Marcus theory for ET, is posnel. The connectivity is well behavéand the type of inter-
sible as long as equivalent diffusion paths for the solven@ction does not provide a very rough landscape. Therefore
dynamics exist during the solvent dynamical evolution in thethe studying the relaxation in these systems might help in
polarization coordinate. As the system evolves between twanderstanding the relaxation in well behaved protein folding
polarization values, it may do it through different paths that,funnels®*
at high enough temperatures, are kinetically equivalent. In
th|s.reg|me, this “complex solvgnt shows a Debye-like be- ACKNOWLEDGMENTS
havior and the Marcus theory is recovered. As the tempera-
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