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Smooth landscape solvent dynamics in electron transfer reactions
Vitor B. P. Leitea)

Departamento de Fı´sica—IBILCE, Universidade Estadual Paulista, Sa˜o Josédo Rio Preto 15054-000,
SP, Brazil

~Received 16 December 1997; accepted 1 March 1999!

Solvent effects play a major role in controlling electron–transfer reactions. The solvent dynamics
happens on a very high-dimensional surface, and this complex landscape is populated by a large
number of minima. A critical problem is to understand the conditions under which the solvent
dynamics can be represented by a single collective reaction coordinate. When this unidimensional
representation is valid, one recovers the successful Marcus theory. In this study the approach used
in a previous work@V. B. P. Leite and J. N. Onuchic; J. Phys. Chem.100, 7680~1996!# is extended
to treat a more realistic solvent model, which includes energy correlation. The dynamics takes place
in a smooth and well behaved landscape. The single shell of solvent molecules around a cavity is
described by a two-dimensional system with periodic boundary conditions with nearest neighbor
interaction. It is shown how the polarization-dependent effects can be inferred. The existence of
phase transitions depends on a factorg proportional to the contribution from the two parameters of
the model. For the present model,g suggests the existence of ‘‘weak kinetic phase transitions,’’
which are used in the analysis of solvent effects in charge–transfer reactions. ©1999 American
Institute of Physics.@S0021-9606~99!50420-0#
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I. INTRODUCTION

Electron transfer~ET! reactions play a major role in
many chemical and biological processes,1,2 in which the sol-
vent effects have been extensively studied.3–5 The Marcus
theory has successfully explained the solvent role in ET b
single collective reaction coordinate.6 On a different ap-
proach to the problem, the solvent dynamics happens o
very high-dimensional surface, and this complex landsc
is populated by a large number of minima.7 One can wonder
how this complex landscape view can be accommoda
with the single-coordinate picture. This question has b
addressed by Onuchic and Wolynes~OW!,8 with a simple
model for a polar solvent interacting with a charged cav
representing the donor or acceptor site for ET. Although t
model is far from representing details of real solvents
includes the basic features of a rough-energy landscape:
tidimensional degrees of freedom, with each solvent m
ecule being treated independently; a disordered energy l
scape with multiple minima; and a polarizable mediu
around a charged cavity. Above the thermodynamic gl
transition, it recovers the continuum dielectric limit. R
cently the dynamics of OW model was studied by Leite a
Onuchic,9 who showed that at high temperatures, the sys
exhibits effective diffusive one-dimensional dynamic
where the Born–Marcus limit is recovered. At low tempe
tures, a polarization-dependent glassy phase~polarization-
dependent phase transition! appears and a slow non-sel
averaging dynamics is expected.

The representation of this complex system in terms o
single reaction coordinate resembles the protein folding s
tem. The energy landscape, with the interplay of roughn

a!Electronic mail: vleite@df.ibilce.unesp.br
10060021-9606/99/110(20)/10067/9/$15.00
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and driving forces, plays a crucial role controlling the kine
ics and thermodynamics of the folding process.10,11 The sol-
vent problem is a much simpler one, but its understanding
terms of a single reaction coordinate can bring an insigh
the protein folding area.

There are several different dynamic regimes in ET s
tems: adiabatic, nonadiabatic and Zusman’s; all of them
suming the existence of a single reaction coordinate wh
represents the outer-sphere effects. An extensive present
and discussion of electron transfer reactions controlled
solvent dynamics can be found elsewhere.3,12,13 If this as-
sumption is not valid, all the above regimes are inadequ
and have to be reevaluated. The OW model addresses
limits of validity of the unidimensional representation. In th
previous works8,9 it was pointed out that the main pitfall o
the OW model was the assumption of solvent random en
gies, i.e., it does not include energy correlation betwe
states. In this work, the simple model is adapted to inclu
energy correlation. The single shell of solvent molecu
around a cavity is described by a two-dimensional~2D! sys-
tem with periodic boundary conditions with nearest neighb
interaction ~NNI!. The energy landscape is very smoo
compared with the random energies case, which leads
more well behaved type of solvent.

The organization of this paper is as follows. In Sec.
we review the OW model for a solvent,8 the phase transitions
and the high-temperature limit.9 In Sec. III we discuss the
kinetic behavior at low temperatures. The phase transiti
are studied using the variables from the previous wor9

Since very little can be done analytically, the analysis
made mostly by comparing its results with the simpler ca
where there is no correlation between energies. In Sec. IV
summarize the results and comments upon their relation w
real solvents.
7 © 1999 American Institute of Physics
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II. THE SOLVENT MODEL

This model is a minor variation of the thermodynam
Onuchic and Wolynes~OW! solvent model,8 and the analysis
of its dynamics employs the same approaches used ear9

The OW model considers a single shell of solvent molecu
with simple rotational dynamics, represented by dipo
pointing only in two directions, inward and outward, i.e.,
Ising spins~Fig. 1!. The interaction energy between dipol
and between each dipole and the charge cavity are assu
to be rather simple. For the single shell ofN dipoles, the
solvation energy is

Esolv52(
i 51

N

j i~q!sz~ i !1(̂
i j &

Ji j sz~ i !sz~ j !, ~1!

where the first term is the dipole–charge interaction and
second term is due to dipole–dipole interaction.q is an index
associated to the charge cavity. The charge–dipole inte
tion j i(q) and the dipole–dipole interactionJi j are assumed
to obey a Gaussian distribution, with averagesj̄(q) and J̄
and standard deviationDj(q) and DJ, respectively. Each
dipole interacts with onlyz neighboring dipoles. The tota
polarizationp is defined by

p5n12n2 , ~2!

and

n11n25N, ~3!

where n1 (n2) is the number of dipoles oriented inward
~outwards! to the charge cavity.p is used as the reactio
coordinate for the solvent, and the free energy depend
parametrically onp is used as the effective potential.

The average solvent energy is

Ē~x!5NFxj̄~q!1
zJ̄x2

2
G , ~4!

wherex5p/N is the average polarization per dipole.
The OW model uses the Random Energy Model~REM!

approximation14,15 to evaluate the solvent energies given
Gaussianly distributed random variables. The standard de
tion of the solvation energy is assumed independent ofx,

DE25NDe25NFDj21
zDJ2

2 G . ~5!

FIG. 1. The single-shell OW model for solvent dipoles around a cavity w
chargeq.
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The energy probability distributiong(x,E) at polariza-
tion x is

g~x,E!5
1

A2pDE
expF2

„E2Ē~x!…2

2DE2 G . ~6!

In the present model, the energies are not simple rand
variables, but a sum of them, following strictly Eq.~1!. The
motivation to work with a 2D Ising model with NNI lies in
its simple way to introduce energy correlation betwe
states. Our primary goal is to check its behavior with t
approach used to investigate the OW model based on R
What is new in this work is the idea of representing t
influence of a disordered system in terms of a single reac
coordinate, which is not addressed in rigorous 2D Is
studies.16,17 However at the present time we do not kno
how to correlate the rigorous results with our present wo

For the sake of simplicity, in our simulations the sing
shell model with NNI is approximated by a 2D lattice wit
NNI and periodic boundary conditions. Even though this a
proximation corresponds to a topology of a torus, one c
think of it as a topologically distorted spherical shell, whe
all dipoles have the same coordination number~number of
nearest neighbor!. In other words, it can be thought as
representation of a ‘‘sphere’’ where the two poles have
same coordination number as all other points. This appro
mation greatly simplifies the analysis and the computatio
work without affecting the quantitative results.

While studying the dynamics, in order to define th
model completely, one needs to define the way by which
system is allowed to move from one state to another, i.e.,
kinetic rules. It allows only a single dipole flip per eleme
tary move, with move acceptance based on a Monte C
procedure. That is equivalent to a rate from a stateA to a
connected stateB of

R5H R0

N
exp@2~EB2EA!/T#, for EB.EA ,

R0

N
, for EB,EA ,

~7!

whereR0 is associated to the flipping rate of any dipole.
Most real solvents do not present phase transitions a

liquid phase, nevertheless, it is observed a deviation fr
continuous models at low temperatures.18 These changes in
their dynamics we refer to as kinetic or dynamic phase tr
sitions. In this, sense our model tries to represent the s
features of experimental systems. There are three kin
phase transitions, each of them is associated with a diffe
entropic contribution, which yields to different transitio
temperatures. The phase transitions are briefly explai
below.9 Though the REM approximation is not valid, we st
use it as a qualitative guide in this work.

A. The phase transitions

1. Polarization-dependent phase transition

The system is studied parametrically onx. The entropic
relevant number is the number of states with polarizationx,
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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V~Nx!5
N!

n1!n2!
5

N!

@N~12x!/2#! @N~11x!/2#!
. ~8!

The average number of states with polarizationx and energy
betweenE andE1dE is

^n~x,E!&5V~Nx!g~x,E!dE. ~9!

Using the REM procedure,14 for ^n(x,E)&@1, one can ap-
proximate ^ logn(x,E)& by loĝ n(x,E)&, and the entropy be
comes

S~x,E!. log^n~x,E!&. logV~Nx!2
„E2Ē~x!…2

2DE2
. ~10!

At the critical energy,

Ec~x!5Ē~x!2DE„2 logV~Nx!…1/2, ~11!

the entropy vanishes, and the approximation above is
valid. The system becomes frozen into a small nonexpon
la
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tial number of states with low energies. In the thermod
namic limit for E,Ec(x), instead of Eq.~10!, S(x,E)50.

For every polarizationx there is a critical temperature
the polarization-dependent phase transition Tc(x), given by

bc~x!5
1

Tc~x!
5

]S

]E U
E5Ec(x)

5
@2S* ~Nx!#1/2

DE
, ~12!

where S* (Nx)5 logV(Nx) is the configuration entropy. In
the small-x limit,

bc~x!5
~2 log 22x2!1/2

De
. ~13!

At a particularT, such thatT5Tc(x0), for uxu,ux0u the
system has a behavior like the standard Born–Marcus mo
As it hits x0 , the dynamics becomes glassy. The average
energy is
F~x!5H Ē~x!2DE2~q!/2T2TS* ~Nx!, for T.Tc~x! ~ uxu,ux0u!,

Ec~x!5Ē~x!2DE„2S* ~Nx!…1/2, for T<Tc~x! ~ uxu.ux0u!.
~14!
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The free energy, depending parametrically on the total po
ization, is used as a smooth effective potential aboveTc(x).

2. Global phase transition

Thermodynamically, there is only one phase transiti
here called theglobal phase transition, which is associated
with the total number of states 2N. The REM procedure to
estimate the entropy, following Eq.~10!, is used again, being
characterized by

Sg~E!5 log@2Ng~E!#, ~15!

where Sg(E) is the total entropy, andg(E) is the energy
probability distribution. Using Eqs.~6! and ~12!,

bc
g5

1

Tc
g

5
@2N log 2#1/2

DE
5

~2 log 2!1/2

De
, ~16!

which is the same result as forbc(x50). The critical energy
Ec

g where the entropy of the entire system becomes zero
given by

Ec
g52NDe~2 log 2!1/2. ~17!

3. Local phase transition

This transition is related to the local configurational e
tropy and local energy distribution of states, correspond
to a temperature where the system starts to get trappe
local minima,Tc

loc (1/bc
loc). Below this temperature, escap

from local minima go preferentially through the neighb
with the smallest barrier instead of overcoming a typical b
rier. This phase transition has to do with the conditions un
which the system gets trapped in local minima. The deri
r-

,

is

-
g
in

-
r
-

tion of the local phase transition is obtained via the RE
approach used above. If each state is connected withM other
states by one elementary move, the average numbe
neighboring stateŝnl(E)& for a given state with an energ
betweenE andE1dE is

^nl~E!&5
M

A2pDe l

expF2
E2

2De l
2GdE, ~18!

whereDe l is the standard deviation of the energy distributi
associated with states connected by single-flip kinetics~in-
stead ofDE as for REM!.

If ^nl(E)&@1, the local entropy can be approximated

Sl~E!. log^nl~E!&. logM2
E2

2De l
2

. ~19!

There is a critical energyEc
loc , where the entropy vanishe

@Ec
loc52De l(2 logM)1/2# and

bc
loc5

1

Tc
loc

5
]Sl

]E U
E5E

c
loc

5
~2 logM !

De l

1/2. ~20!

For b>bc
loc the system spends most of the time at loc

minima, and the local phase transition is determined only
the local distribution of energies. When the energies betw
states are correlated, as one changes the state of a s
dipole, the total solvation energy changes only by the ene
interaction of the flipped dipole with the rest of the syste
This difference implies significant changes in the dynami
behavior.

The global and polarization-dependent phase transiti
depend on the distribution of energies of the entire syst
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
DE, which are the same as in the REM case.9 Differently
from the random energies case, where thebc

loc(REM) is the
first transition felt by the system@bc

loc~REM!,bc(x),bc
g#,

now

bc~x!,bc
g,bc

loc , ~21!

since for typical values ofM (;N) andDe l;De,

~2 log 22x2!1/2

De l
,

~2 log 2!1/2

De
,

~2 logM !1/2

De
.

B. High-temperature limit

This limit has been discussed in detail in the previo
work.9 The only difference between that work and t
present one is the type of interactions, which is irrelevan
this limit. So all the conclusions with respect to hig
temperature regimes are applicable to the present mode
follows. The multidimensional master equation can be
duced into a unidimensional diffusion equation for the to
polarization. The resulting dynamics corresponds to a p
ticle diffusing in an effective~almost! quadratic potential. In
this limit ~noninteracting dipoles!, all diffusion pathsare
equivalentand the unidimensional equation is exact. The f
energy, depending parametrically on the total polarizati
accurately describes the kinetic effective potential.

III. LOW TEMPERATURES—SYSTEM WITH
INTERACTIONS

In this section dipole–dipole or charge–dipole intera
tions are considered. For simplification, we discuss only
dipole-dipole interaction, but the general form of interacti
can be trivially derived, as it only includes an extra term
Ē(x) @Eq. ~4!# and in DE @Eq. ~5!#. To probe the different
dynamical regimes, we vary the two parameters that cha
terize the energy distribution, i.e., the average energy of
dipole–dipole interaction,J̄, and its random fluctuation with
width DJ. There are two limit cases to be studied.

~a! DJÞ0 and J̄50. There is no correlation betwee
polarizationx and energy. States for allx’s obey the same
energy distribution.

~b! DJ50 andJ̄Þ0. There is no disorder in the interac
tions.

We first discuss case~a! above. In Sec. III A theglobal
and local phase transitions are studied. In Sec. III B we d
cuss the polarization-dependent phase transition. In Sec.
we investigate case~b!. In Sec. III D we address the gener
case whereDJÞ0 andJ̄Þ0. The approach used in this se
tion is the same of previous work;9 the variables observe
are the same, so we suggest to the reader to analyze
works together. The previous results are important for a c
understanding of these physical processes. Strictly spea
there is no phase transition, but some qualitative change
the dynamics of the system at low temperatures. E
though it is hard to estimate the diffusion coefficient, rep
senting the problem in terms of a single reaction coordin
for the solvent is still possible.
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A. Local and global phase transitions

In this limit, there is no correlation between polarizatio
(x) and energy, and states for allx’s obey the same energ
distribution. Rigorously, a 2D system with a neare
neighbor interaction does not present a thermodynamic ph
transition.17 The REM approach to estimate the temperat
phase transition is valid only for random~noncorrelated! en-
ergies. Nevertheless, we still use this approach to have
idea of the dynamics. We do not expect to observe an o
ous phase transition in our simulation, as it is observed in
REM case, and indeed the phase transitions observed in
work are ‘‘weak kinetic’’ ones. In this context, the globa
phase transition corresponds to the weak kinetic polarizat
dependent phase transition atx50. If this simple model is
extended to multishell solvent molecules around a cav
which corresponds to the three-dimensional NNI of Isi
spins, then the true global~thermodynamic! phase transition
is expected.17

The local phase transition is studied, as in Ref. 9,
probing the ratio between rates and the escape times
function of b. We compute the ratiof i between the fastes
individual rate to escape from a statei r i

max @5max(rij)# and
the total rateRi of Eq. ~7!,

f i5r i
max/Ri . ~22!

The ratiof i shows the importance of the fastest rate~smallest
barrier! on the overall escape rate. When the fastest r
starts to dominate, a single ‘‘kinetic’’ route becomes pref
ential. To probe this transition, we measure the average v
of f i ,

f̄ 5(
i

f i exp@2bEi #Y (
i

exp@2bEi #. ~23!

Figure 2 showsf̄ for three different systems, withDe l

541/2,81/2 and 121/2 having M520, 190 and 1140, respec
tively ~it corresponds to a flip of 1, 2 and 3 dipoles simult
neously, respectively!.19 We averagef̄ over a sample of 10
systems~for M51140 one sample only!. The phase transi-

FIG. 2. The average fractionf̄ between the fastest neighboring escape r
and the total escape rate@Eqs.~22! and~23!#, as a function of the inverse o
temperatureb. The system hasDe52 and 20, 190, and 1140 neighborin

states. The vertical lines indicate the position wheref̄ changes curvature
defined asbc

loc .
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tion is very weak, and there is no unique way to define
transition temperature.bc

loc is defined as the inflection poin

for f̄ . In the ideal phase transitionf̄ goes from a low to a
large value in a small interval ofb, i.e., the second deriva

tive of f̄ is large, and the inflection point is meaningful. Th
meaning of this transition is that below this temperature,
capes from local minima go preferentially through the neig
bor with the smallest barrier instead of overcoming a typi
barrier. In the NNI case, this transition is very smooth, in
cating that ‘‘preferential kinetic’’ routes do not play an im
portant role.

Table I compares the local phase transition temperat
obtained through simulation with the infinite limit analytic
result given by Eq.~20!. Even for such a small system, ou
kinetic definition is in qualitative agreement with the pred
tion, specially for a large number of neighbors.

One way of probing the local and global phase tran
tions is by studying the average and standard deviation
escape times,̂tesc&, ^ log tesc& andD log10 tesc, the same pa-
rameters used in Ref. 9. Figure 3 shows these paramete
a function ofb, for 10 different runs, each with 104 escapes
for a system with 100 dipoles. Even though the number
escapes~states! probed in this simulation is much smalle
than the total number of states in the systems, this is m
larger than any number of escapes involved in the mean
passage times~MFPT! that we investigate in the next sectio
(;103). Runs differ only by the initial conditions.bc

loc

51.5 according to Eq.~20!, and bc
g.1.0 according to Eq.

~16!. For b.1.0, fluctuations become significant, and t
results vary depending on the initial conditions. Howev
this dependence is much weaker than the random en
case~Fig. 7 in Ref. 9!, but it provides qualitative evidenc
for the weak local and global phase transitions. One sho
note the fluctuations are very small, compared with the
erage values.

The results depend on the sample used, but this effe
minimized by increasing the system size, which points t
finite size effect. Once the system is chosen, there is a st
ger initial condition dependence as the size of the system
increased.

A true phase transition, like the global phase transit
observed in the REM case, is not observed in this 2D Is

system. Even thoughf̄ and tesc qualitatively show the same
behavior observed as in the REM case, they happen in a
smooth way. As a consequence, one does not expect to
breakdown of the single reaction coordinate representati

TABLE I. Local phase transitionbc
loc results; the NNI case.

M neighbor
states

Theory
bc

loc
Simulation

bc
loc

20 1.22 0.8
190 1.14 1.1

1140 1.08 1.0
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B. Polarization-dependent phase transition

Sincebc(x),bc
g,bc

loc , as the temperature is lowere
the first dynamic phase transition observed is
polarization-dependent one. In this sub-section we focus
the time evolution of the polarization coordinate. All resu
are from numerical simulations. Since we are interested
the evolution between two different polarizations, the Fi
Passage Time~FPT! is the characteristic time to describe th

FIG. 3. Escape times on a system with 100 dipoles averaged over4

escapes as a function of the inverse of temperature~in units of disorder
energy parameterDJ). 10 runs were performed with different anneale
initial conditions, using a kinetic scheme where a single dipole flip is
lowed (M5100). ~a! Average escape timêtesc&. ~b! Average of the log of
the escape timêlog tesc&. ~c! Standard deviation of the log of the escap
time D log tesc5@^log2 tesc&2^log tesc&

2#1/2.
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events in the total polarization space. The FPT is defined
the time to evolve from an initial state of polarizationxi to a
final xf , t(xf ,xi), from whose distribution all dynamica
information can be obtained. We define the stochastic v
ablev(xf ,xi) as the number of escapes during the evolut
betweenxi to xf ~the equilibrium polarization is taken asxi

50). Notice that the number of escapes is different from
number of steps~time!, since only successful attempts a
considered. For a free random walk, the FPT is given
v rw(xf ,xi), and every step is ‘‘successful,’’ with the rando
walk mean FPT (̂t(xf ,xi)&) being simply the average
^v rw(xf ,xi)&. As the temperature is lowered, since it tak
longer for escapes to occur,^t(xf ,xi)& increases. Forb
smaller than any critical temperature, the paths are equ
lent, and ^t(xf ,xi)& is simply the product of the averag
number of escapes and the average escape time,

^t~xf ,xi !&5^v rw~xf ,xi !&^tesc&. ~24!

As b>bc , the system escapes preferentially through so
particular neighbors. If it leads to large fluctuations, the pa
are not equivalent andt(xf ,xi) deviates from Eq.~24!.

In the previous section it was shown that the fluctuatio
for this model on the escape times are small, so there is
breakdown on the equivalent diffusion pathways picture a
on the single reaction coordinate representation. Equa
~24! could be written as20,21

^t~xf ,xi !&5E
xi

xf
dxE

xi

x

dx8
exp@b~F~x!2F~x8!!#

D
, ~25!

whereF(x) is the free energy andD the diffusion constant.
SinceJ̄50, there is only the entropic term in the free energ
bF(x) is not temperature dependent, so the changes
t(xf ,xi) are due toD. The effect of the polarization
dependent kinetic transition is manifested through change
D along the coordinatex. SinceD is inversely proportional to
^tesc&,

9 the temperature dependence ontesc can be isolated,
and the changes onD can be investigated studyingv(xf ,xi)
as a function of temperature. Because the distribution
v(xf ,xi) is flat, ^ log10v(xf ,xi)& is calculated instead o
^v(xf ,xi)&. To quantify the deviation from the random-wa
result, we calculated

DV~xf ,xi !5^ log10v~xf ,xi !&2^ log10v rw~xf ,xi !& ~26!

and

DC~xf ,xi !5^ log10t~xf ,xi !&2^ log10v rw~xf ,xi !&, ~27!

as a function ofb, where ^ log10v rw(xf ,xi)& is the free
random-walk result.

We performed simulations on a 30-dipole 2D syste
with NNI with periodic boundary conditions, calculating 10
FPT for each sample system~on 100 different systems!. We
are interested in a comparison of different polarizations; F
4 showsDV(xf ,0) andDC(xf ,0) as a function ofb andxf .
Because the polarization-dependent phase transition oc
first for large polarizations,DV(xf ,0) deviates from zero
first under these conditions@Fig. 4~a!#. Since the escape
times are polarization independent,DC(xf ,xi) would have
the same temperature dependence for all polarizations,
4~b!. Following Eq. ~24!, DC(xf ,xi) is proportional to
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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^ log10 tesc(xf ,xi)&, the parameter that should be ‘‘physical
observable,’’ and one sees the obvious polarization dep
dence for different curves. The dependence ofDC(xf ,0)
with xfs can be interpreted as the variation in the diffusi
coefficient in the intervaluxf u, and one does not observe
truncated potential, as Onuchic and Wolynes suggested.

C. Constant dipole–dipole interaction

In this case, there is a nonzero average interactionJ̄
Þ0) and no variation in the dipole–dipole interaction (DJ

50). The average energyĒ(x) is given by the second term
in Eq. ~4!. For a given polarizationx there are different ways
n1 ‘‘inward’’ and n2 ‘‘outward’’ dipoles can be arranged
yielding different energies for eachx. One cannot find a di-
rect analytical form for the energy standard deviation, b
this can be calculated for small systems. One expects it to
like

DE~x!5ANz

2
J̄z~x!, ~28!

whereNz/2 is the number of interactions andz(x) is polar-
ization dependent and has to be calculated from the full e
meration of all states.

FIG. 4. Evidence for the polarization-dependent phase transitionbc(x). ~a!
DV(xf ,0) @Eq. ~26!#, and ~b! DC(xf ,xi)& @Eq. ~27!# as a function of the
inverse of temperature~in units of disorder energy parameterDJ51), De
5z1/252.
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In Fig. 5, z(x) is shown for systems of 434, 435 and
535 dipoles with periodic boundary conditions. Intuitivel
we expect that in the largeN limit,

z~x!512x2, ~29!

as can be confirmed in Fig. 5.
Now the REM approximation is used to estimateTc(x),

Eq. ~12!,

Tc~x!5
DE~x!

@2S* ~Nx!#1/2
,

whereDE(x) is given by Eq.~28! and the entropic configu
ration approximated by9

S* ~Nx!.NF2S 11x

2 D logS 11x

2 D2S 12x

2 D logS 12x

2 D G .
~30!

Tc(x) decreases asuxu increases. In the previous case~Sec.
III B !, when DE(x) is constantTc(x) increases withuxu.
Both behaviors are shown in Fig. 6.

FIG. 5. z(x) for Ising spin dipoles with periodic boundary condition, E
~29!, in different lattice sizes, and the expectedN-large limit fit with
12x2.

FIG. 6. Polarization-dependent critical temperaturesTc(x) for the two dif-

ferent regimes:~a! J̄50 andDJÞ0 ~Sec. III B! and ~b! J̄Þ0 andDJ50
~Sec. III C!.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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As discussed in Ref. 9, there are different kinetic
gimes when both polarization-dependent average ene

@Ē(x)# and roughness (DE) are present. These regimes a
pear according to the relative values of average poten
barrier between two polarizationsxf and xi , Ē(xf)2Ē(xi)
andDE. They are measured by the parameterg,

g~xf ,xi !5
Ē~xf !2Ē~xi !

DE~xf !
2/T

. ~31!

For xi50.0 and temperatures close to the critical tempe
tures (J̄/T.1),

g~xf ,0!5
xf

2

z~xf !
2

5
xf

2

~12xf
2!2

. ~32!

The phase transitions are expected forg!1. Since the land-
scape is not so rough, by kinetic transitions we mean qu
tative changes inD, which are polarization-dependent. If on
considers that this occurs forg,0.1, thenxf,0.3, which
corresponds to polarizations very close to the equilibri
coordinate.

D. General case †Ē„x …Þ0 and DEÞ0‡

For the general case, the roughness is given by

DE~x!5FNz

2
„DJ21 J̄2z2~x!…G1/2

. ~33!

The idea is to increase the relative value ofJ̄/DJ and ob-
serve how the polarization-dependent diffusion coeffici
behaves. If the equivalent path idea is valid, then

t~xf ,xi !5^v rw~xf ,xi !&^tesc&exp@b„Ē~xf !2Ē~xi !…#.
~34!

Because of the flat distribution of t(xf ,xi),

^ log10 tesc(xf ,xi)& is calculated for different values ofJ̄/DJ.
Taking into account the nonzero average interactionĒ(x)
and using Eq.~34!,

^ log10 tesc~xf ,xi !&5^ log10t~xf ,xi !&2^ log10v rw~xf ,xi !&

2@b„Ē~xf !2Ē~xi !…# log10e. ~35!

The above approximation is valid as long asg!1. When the
average potential barrier is large compared to the disordeD
depends on the average potential barriers at eachx, and the
comparison of̂ log10 tesc(xf ,xi)& for different xf becomes
meaningless.̂ log10 tesc(xf ,xi)& as a function ofbDJ for
different xf and J̄/DJ are shown in Fig. 7. ForJ̄/DJ50 (g
50) one gets just the result of Fig. 4~b! with strongerxf

dependence asb (1/T) increases, and the kinetic transition
are expected to approximately follow Fig. 6. ForJ̄/DJ
50.1 (g<0.1) the relativexf dependence is smaller. Finally
for J̄/DJ50.3 (g<0.3) the disorder becomes less importa
for the dynamics, and the polarization-dependent effect st
to disappear. The diffusion constant is polarization indep
dent. Gradually one gets back to the previous case (J̄Þ0 and
DJ50), where even though there is no trivial description
the diffusion dynamics, the unidimensional representation
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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the problem is expected. There is no breakdown of the re
tion coordinate as in Ref. 9, since the diffusion paths are
equivalent.

Even at temperatures belowTc
loc ~the smallest of the

critical temperatures!, because the fluctuations on esca
times are not large compared with their mean values,
equivalent diffusion paths are still expected. The breakdo
of the single reaction coordinate representation occurs ra
because the system becomes frozen. At very low temp
tures T!Tc

loc , the system is trapped in local minima fo
longer times, but specially it does not evolve along thex
coordinate, for it cannot overcome the average potential
ergies between polarizationsxi andxf , being effectively fro-
zen.

IV. CONCLUSION

Electron transfer reactions are strongly controlled by s
vent effects. It has been shown, using the OW model, th
complex solvent landscape can be reduced kinetically
thermodynamically into a global one-dimensional react
coordinate.9 The biggest pitfall of the OW model is that
does not include energy correlation between states, whic
not realistic. In this work, a more realistic system was e
plored with energy correlation between states, namely
Ising dipoles solvent molecules with nearest-neighbor in
action.

The representation of the solvent by a single react
coordinate, which validates the Marcus theory for ET, is p
sible as long as equivalent diffusion paths for the solv
dynamics exist during the solvent dynamical evolution in
polarization coordinate. As the system evolves between
polarization values, it may do it through different paths th
at high enough temperatures, are kinetically equivalent
this regime, this ‘‘complex solvent’’ shows a Debye-like b
havior and the Marcus theory is recovered. As the temp
ture is lowered, kinetic phase transitions take place and
equivalent path description breaks down. In the pres

FIG. 7. ^ log10 tesc& according to Eq.~35! for different final polarizations

(Nxf) as a function ofb. For J̄/DJ50.0 and 0.1 there is a stronger depe
dence on̂ log10 tesc& for larger polarizations, in agreement withTc(x) @Eq.

~12!#. For J̄/DJ50.3 the dependence onNxf is not well defined.
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model there are no real phase transitions. The ‘‘weak kin
transitions’’ are associated with changes in the diffusion c
stant, which can be qualitatively observed.

One can imagine for simple solvent models two extre
features. One presents a very rough landscape, like the
model, with phase transitions and glassy phases. The o
one would be a model in a highly organized medium w
very little roughness in the landscape. It does not pres
phase transitions and the single reaction coordinate repre
tation is valid for almost all temperatures, corresponding
the case of Sec. III C. The behavior of intermediate ca
were discussed in Sec. III A, III B and III D. The role of th
roughness gradually appears in the behavior of the diffus
constant, and as the roughness increases real phase t
tions start to appear.

We have shown that the methods of Leite and Onuch9

to infer the importance of disorder are adequate. Even w
the system has a well behaved smooth landscape, the q
tative changes can be observed. In the 2D NNI solvent c
the landscape is not very rough, the qualitative phase tra
tions are weak and the unidimensional representation
valid. As the temperature decreases there is a slow dow
the dynamics. The description of the system goes from
high-temperature Onuchic–Wolynes limit8 to low tempera-
ture Sumi–Marcus behavior22 with slow dynamics, down to
very low temperatures, when it is completely frozen and f
lows the Marcus description in frozen media.23

The solvent behavior is expected to vary according
the type of interaction~NNI, next-NNI, etc.! and topology
~single shell, multiple shell!, and of course with the degree o
disorder. The essential features are expected to hold m
generally in the limiting cases:~1! the high-temperature limit
with Marcus-like behavior, and~2! the low-temperature limit
with glassy behavior.

From this work the critical temperatures for real solven
can be estimated only with the knowledge of the parame
of our model, the roughnessDE and the average
polarization-dependent energyĒ(x), which could be calcu-
lated via Monte Carlo methods. The functionsf̄ , tesc and the
analysis of MFPTs can also be used in all atoms simulati
to infer the existence of phase transitions. An interest
study would be to adapt this analysis to probe the relaxa
processes on these simple solvent models and in real so
simulations. It might be possible to address the temperat
dependent solvent relaxation results in ethanol a
propanol,18 where there is a breakdown of continuum the
ries at low temperatures.

This solvent model, with local interactions and kinetic
behaves in analogy with the protein funnel as a perfect f
nel. The connectivity is well behaved9 and the type of inter-
action does not provide a very rough landscape. There
the studying the relaxation in these systems might help
understanding the relaxation in well behaved protein fold
funnels.24
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