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Effective action for QED in 2+ 1 dimensions at finite temperature
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Both the parity-breaking and parity-invariant parts of the effective action for the gauge field ig @ED
massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular
configuration of the background gauge field, namely a constant magnetic field and a time-dependent time
component of the background gauge field. Our results allow us to compute exactly physically interesting
guantities such as the induced charge density and fermion condensate whose dependence on the temperature,
fermion mass and gauge field is discus4&0556-282(199)03416-3

PACS numbgs): 12.20.Ds, 11.10.Kk, 11.10.Wx, 11.30.Rd

Many aspects of quantum electrodynamics i 2 di- In QED the one-loop effective action for the gauge field is
mensions (QEB) [1] in the presence of external fields have obtained by integrating out the fermions
already been studied. The dynamical generation of a Chern- o L
Simons(CS) term for the gauge fielf2], the formation of a eiseff[A]=J DyDy ex;{ij d3xy(ib+eA— m)zp}
fermion condensate in the presence of an external magnetic
field [3,4] and the breaking of Lorentz symmetty,4] are , , D a
some of the many features exhibited by QE[¥ome of Xexp{|j d3x( —aF Fruvt 0€,,,ARI"A ) - @

these aspects are desirable in3dimensions and also very hich can be calculated exactly only for some configurations
important in the study of superconductivit—9] and the  of the field. In this case the gauge field is understood as a
quantum Hall effecf10] in planar systems. classical background field and many important features can
In order to carry the study of such phenomena further it ishe analyzed from the resulting effective action at zero tem-
important to consider the effects of temperature; these mighterature[23—25 and finite density{26,27] or at finite tem-
sometimes be completely different from one’s expectationsperaturg 28,29 and finite density30,31. Whenever the ef-
Particularly, it has been shown that the development of théective action cannot be obtained exactly, it is useful to adopt
fermion condensate catalyzed by a magnetic field is unstablgome approximation. The derivative expansion technique is
at finite temperaturl1] and that the issue of gauge invari- such an approximatiof82] which has been successfully em-
ance at finite temperature is only consistently addressed if ployed to analyze different aspects of effective actions in 1
re-summation of the graphs is carried du2-14. This +1 [33] and in 2+1 dimensiong34,35.
question has also been extensively reported using different The CS term at finite temperature was obtained by means
techniques in the context of QB015-20 as well as by of the derivative expansiof86] as well as other techniques
means of an analogous quantum mechanical model whick87-43. Although there was strong evidence that the CS
allows one to perform a comparative analysis of the perturcoefficient for a non-Abelian gauge field should be quantized
bation series with exact resultg1,22—in fact this was the at finite temperatur¢39], it was found to depend smoothly
approach used in one of the seminal works on the subjecn the temperature, leading to the conjecture that it would
[12]. not depend on the temperature aff8B). Later it was proved
Although the exact contribution of the time component ofthat the derivative expansion could only be used to obtain the
the gauge field has been considered only for the parity vioCS term for some very special configurations of the gauge
lating term of the effective action, it also contributes to thefield due to the intrinsic non-locality of the CS coefficient at
parity invariant one and this may result in extra effects onfinite temperature, which could not be removed because of
quantities such as the fermion condensate and the density tfe essential non-analyticity present in the vacuum-
charge generated dynamically. To explore such effects is thpolarization grapli44—46¢. More recently the subject gained
main purpose of this article. By making use of the Fock-new impetus in Refs[47,48 where it was argued on the
Schwinger proper-time techniqUig3] we compute the one- basis of gauge invariance of the partition function that there
loop effective action at finite temperature for a specific con-was a contradiction between the quantization of the CS co-
figuration, namely a constant magnetic field and a time-efficient at finite temperature and the results obtained at the
dependent time-component of the gauge field. We alsperturbative level.
address the aspects of gauge invariance and temperature de-The solution to this puzzle was given [ih2] where a (0
pendence of the thermal condensate and the charge densityl)-dimensional model was used to demonstrate that the
With this program our results go beyond those obtained ireffective action af # 0 is compatible with gauge invariance,
[18], where the same technique was used. if it is obtained exactly. Similar conclusions were reached in
[13] after a zeta-function analysis of the fermion determinant
in QED; at T# 0. More recently, if14], the parity-breaking
*On leave of absence from UNESP—Campus de Guaratingueta part of the effective action in QEPat T#0 was calculated
SP—Brazil. Email address: m.hott1@physics.oxford.ac.uk exactly thanks to the choice of a particular class of gauge
TEmail address: g.metikas1@physics.oxford.ac.uk transformations and provided that only the following re-
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stricted set of gauge configurationsh;=A;(X), As netic fieldF,,=B: AJ-:% ijx", for which it is possible to
=As3(7), is considered. The result shows that gauge invari-obtain an exact result for the fermion propagator. This can be
ance is compatible with the dynamically generated CS termobtained from the covariant calculati¢@] and made par-

We are going to adopt the same gauge configuration ascular for our purpose. It is given in Minkowski space-time
given by Aj=A;(x), A3=As(7), but for a constant mag- by

o _,e37“4q) , Jw ds . . | o (t—t’)2+e|B|s 811 (% 5712
(X,X )_|8773’2 (x,x") Oswze exp il eAg(t—t')— pPe pPe cot(e|B|s)(X—X")
" O(t—t’)+e|B|s (s a2 k+e|B|S BlS) 5.3 e/B|s 5 o Fo B .
M=y s+ ag kY (X=X 5= cottelBls) 7-X| gorgry | coselBls) —iy° prsinelBls) |, ()
|
where®(x,x") is the gauge dependent factor, wherew,=(2n+1)7/B. We can see from the above ex-
X pression that there are two contributions to the expectation
(I)(x,x’)zex;(iej dntA( 77)), (3)  value of the charge density, the parity violatif@V) one
X

which is proportional to* F; and the parity invariantPl)

* — ) X H
and *Fo=(1/2)ecFj . One can note that a simple gauge "\ 1o i proportional t¢B|. Now we can obtain the

transformation on this factor removes tAg=const taken TR 1
into account explicitly in the propagator. However, we areparlty violating charge densolcty. namely,

going to see that at finite temperature there are factors de- . ., . e?*Fy 1 ) ~ 911
pendent on the time component of the gauge field that cannot (J3)" = —im o E“;—w [m?+ (wh+eAg)”]
be removed by a gauge transformation.

To implement the finite temperature calculation in the m e? *F, Im|B
imaginary-time formalism we recall that the propagator can =—i—
also be rewritten as G(x,x')=®(x,x’)[[d3kg/ im| 4m 2
(27T)3] e_ikE(X_X,)é(kE), where _ ~ .
m e

- o _ ~ X | 1+tantf mi tanz( AQ'B)
G(kE)z—f dsexp —is| m?+ (ky+eAg)? I 2 2

0

__tan(e|B|s) - . . eAsB

ZW {m_'}/g(kg_eA@)_'Y'k"f_Eij'ylkJ X 1+tar12 . (6)

We note that this expression is indeed gauge invariant under
4) both. small gnd large gauge transforma.tions. _
Since this term comes from the existence of a fermion
is its Fourier transform in the Euclidean versionyz( mass, it is important to ask what happens to the charge den-
——iy,) and ;3 is given by AS(T)_)Z3(T):A3(T) sity generated. dynami_cally in .the Ii|_'n'nn—>_0. From the
above expression we find that it vanishes independently of
+39,A(7)= B [Jd7' Ay(7')+ 2mkie, whereA(n) isthe R, for any temperature, although it survives at zero tempera-

gauge transformation mentioned in E@) of [14]. Once ture[2]. This phenomenon also happens to the fermion con-
again we note that a simple redefinitionkafas a continuous densate in the reducible representafid] and will also be

variale rendersG(kc) gauge independent. leauing the 3% 10 HPRST ere b e el ebiesenaton The
gauge dependence only on the factofx,x’). 9 9 P

From now on we consider only the gauge invariant propa—c learly be seen by rewriting expressi() as

gator in order to compute gauge invariant quantities, for exdia)fV=—i(m/|m|)(e* *Fy/4m)
ample the charge density which is given b{js)
=ietr y3Ge(X,x")]|x=x’ . Performing the trace of the ma-

*

Fs
Xtan(e|B|s)} 1+ y3|?|tar(e|B|s)

X[1— (eﬁ(lml+ie~As)+1)—l - (eﬁ(\m|—ie;\3)+1)—1]_

trices and the integration ovdr, we obtain the following (7)
expression for the charge density: We can see that th€=0 contribution survives in the limit
% . m—0 but it is canceled by the thermal fluctuations. In addi-
(ja)=(e%12m) p~% X dsexp| —is[m? tion, Eqg. (7) shows that there is a formal analogy between
n=-« J0

e"A3 and an imaginary chemical potential.
From Eq.(6) we can obtain the parity violating contribu-
+ (W, +eAg)?} [m *F3—|B|(w,+eAg)coth(e|B|s)], tion to the effective action by recalling thatjs)=
(5) — 0S¢ 6A3(7) . Then we obtain
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Pv_i_GEJ' 20 % Im| B eAB
Seff—zw o] d“x *Fsarctantan - ta 5 .
8

© 2
eB -
‘Cepflf: | | E z {Enst Billn[1+e*B(Enls+|eA3)]
477 n=0 s=1 '

This is the result found in Ref$13,14. It can also be re- + B tIn[1+ e AEnsieAd]L (11
written in a more suitable form to check the consequences of
a gauge transformation, The first term in the curly brackets is the zero temperature
e m B contribution and can be rewritten as
sg’f"f:——f dzx*Fg{ieJ' drAs(7)+2mik
4 |m| 0

el374 o dg

Pl _ _ —im?s

Lei(T=0)= T fo —Ss/ze e|B|s cot(e|B|s). (12
aw

—|n[1+e—ﬁ<lm—ie7*3>]+|n[1+e—3<lml+‘e7*s>]}. 9
Finally, we note that this effective Lagrangian has to be

We point out that the superscript PV has been used for th roperly renormalized. The result can be read off directly
effective action only for making clear that it is associated!Tom Refs.[24,30:

with the parity violating charge density. It is the effective ol e'374 rx dg
Lagrangian w_h|ch possesses the parity wolgtmg property and ¢¢(T=0)= 8.2, €
not the effective action. The latter is invariant under small S
gauge transformationk&0) and changes biek®/2 under
large gauge transformation, whede is the magnetic flux.
The change under large gauge transformation comes from ) ] ) )
the zero-temperature contribution and, if the magnetic flux j@nd the whole effective Lagrangian is given U=
quantized in units of 4/e, the partition function for the — 3 *Fi— 0 *FaAg+ LEN+ LY.

gauge field is invariant under large gauge transformation. Another quantity which is significant in the analysis of
Furthermore, one can also note that this is not the CS term aymmetry breaking is the fermion condensate. It can be
finite temperature; this is hidden in the factors with logarith-shown to be given b)(E'//):i [ Ge(X,X")]|x—yx . It also

—im2s

x[e|B|scote|Bls)~1- & (esB])?], (13)

mic functions which are not extensive quantities. __has two contributions which will be evaluated by means of
_ Thebparlty invariant contribution to the charge density ISthe well-known formulal ) = — Lo am. The first one,
given by which comes from the parity invariant effective Lagrangian,
e e?|B| 1 i " 1 eIy 6hg)?) is also present in QEPwith fermions in the reducible rep-
(i) 27 Ba=. o se resentation and is given by
o 2
~ — e|B| 1
X (w,+eAg)cot(e|B|s Pl —m—
(Wo+eAg) 21( Bls) (W) dr 2 2 E
2 o B . -
= € |B| z 2 [(e,B(En'S+ieA3)+1)fl X[l_ (eB(En,s+ieA3)+1)_1 — (e.B(En,s_ieAs)J,_ 1)_1]_
4m 7=0 $=1 (14)
_ (eﬁ(En,s“e7*3)+1)‘1], (10) This expression is the same found [ibl] using real-time

formalism, apart from a factor of 1/2 due to the trace of
gamma matrices. Therefore the analysis carried out there can
naturally be applied here. First we note that although this
o . .. part of the condensate is non-vanishing in the limi0 at

We note that, af =0, the parity invariant charge density ;¢ yemperaturg3], it melts at any finite temperature for
vanishes, as expect¢d,23). More interestingly, it vanishes 1, 4 independently of. In the reducible representation
in the limit A3=0, as well. Comparing Eq$7) and(10) we  thjs is the only contribution to the order parameter[48] a
see that the parity violating contribution to the charge densitys_dependent critical temperature was found for the case of
is proportional to*F3 and only the lowest Landau level small but non-vanishing mass. Above this critical tempera-
Contl’ibutes to |t, on the Other hand the pa”ty inVariant part ique and in the regimm2<T2<eB the condensate vanishes.
proportional to|B| and all the Landau levels contribute. Itis  The second contribution to the condensate comes from the

also important to remember that the parity violating contri-parity violating effective Lagrangian and reads
bution is a peculiar feature of QED in an odd number of

space-time dimensions with fermions in the irreducible rep- Ewpvz i € *Fsta eAs
resentation; on the other hand the parity invariant one existg A 2
in both the irreducible and the reducible representation of

where E, s= ym?+2€|B|(n+s—1) is the energy of the
Landau levels.

~ -1
QEDs. Actually, it is the only contribution in the reducible Lt tani? Im|B 2 ey
representation, as is expected, since Q&Dthe reducible X tan 2 ta 2
representation is very similar to QD
Using (j3) = — 8Sefi/ 6A3(7) and Eq.(10) we can obtain Im|B8
S\3/ . . A X | 1—tantf| ——
the parity invariant effective Lagrangian, which is given by 2
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e*Fy Bl —ichy) . gauge _field. Althou_gh_ we found these quantities very un-
T an {(e d+1) stable in the zero limit of the relevant parameters, the fer-
mion mass and\;(7) analysis developed here can be useful
_ (eﬁ(\m\+ie73\3)+1)—l}_ (15) whenever quantum fluctuations of the gauge field are taken

We note that it vanishes =0 or Az=0 into account. We also pointed out the similarities of our re-

In conclusion, we have found the thermal effective actionsfUItS with thos‘? qbte_tiped at .finite d_ensity. M_ore investiga-
for a particular configuration of the gauge field, namaly tions of these similarities, their p.hyS|caI meaning and conse-
_ %ijx" with F 1,= B=const andA;=A,(7). Because the guences are under study and will be reported elsewhere.

presence ofA;(7), we found that the associated partition  M.H. is supported by Fundac de Amparo a Pesquisa do
function is gauge invariant. In the course of our derivationEstado de Sa Paulo(FAPESP-Brazil. G.M. is grateful to
we also calculated the charge density and the fermion corPPARC (UK) for financial support. The authors wish to
densate, highlighting their origins in terms of the contribu-thank Professor I. J. R Aitchison, Dr. N. E. Mavromatos and
tion of the Landau levels and the time component of theDr. A. Momen for valuable discussions.

[1] S. Deser, R. Jackiw, and S. Templeton, Ann. PKisY.) 140, Electrodynamics Vol. 220 of Lecture Notes in Physics
p
372(1982. (Springer-Verlag, Berlin, 1985
[2] A. Redlich, Phys. Rev. [29, 2366(1984. [25] D. Cangemi, E. D’Hoker, and G. Dunne, Phys. Rev5R)
[3] V. Gusynin, V. Miransky, and I. Shovkovy, Phys. Rev. Lett. 3163(1995. _
73, 3499(1994 [26] A. Chodos, K. Everding, and D. Owen, Phys. RevZ) 2881
’ ' (1990.

[4] T. Itoh and H. Kato, Phys. Rev. Le@#1, 30 (1998.

. 27] D. Ki K.-S. h, Phys. Rev. b5, 6218(1 .
[5] Y. Hosotani, Phys. Lett. B19 332(1993. [27] Im and K.-S. So ys. Rev. B, 6218(1997

[28] W. Dittrich, Phys. Rev. D19, 2385(1979.

[6] T. Banks and J. Lykken, Nucl. PhyB336 500(1990. [29] M. Loewe and J. Rojas, Phys. Rev.4B, 2689(1992.
[7] E. Fradkin, Phys. Rev. B2, 570(1988. [30] P. EImfors, D. Persson, and B.-S. Skagerstam, Phys. Rev. Lett.
[8] J. Lykken, J. Sonnenschein, and N. Weiss, Int. J. Mod. Phys. A 71, 480(1993.

6, 5155(1992. [31] J. Andersen and T. Haugset, Phys. Rev61) 3073(1995.

[9] N. Dorey and N. Mavromatos, Nucl. PhyB386, 614(1992. [32] C. Fraser, Z. Phys. @8, 101(1985.

[10] F. Wilczek, Fractional Quantum Statistics and Anyon Super- [33] A. Das and A. Karev, Phys. Rev. 86, 623(1987.
conductivity(World Scientific, Singapore, 1990 [34] 1. Aitchison, C. Fosco, and F. Mazzitelli, Phys. Rev.33,

[11] A. Das and M. Hott, Phys. Rev. B3, 2252(1996). 4059(1996.

[12] G. Dunne, K. Lee, and C. Lu, Phys. Rev. Lef8, 3434 [35] G. Dunne, Int. J. Mod. Phys. A}12, 1,143(1997)'
[36] K. Babu, A. Das, and P. Panigrahi, Phys. Rev.3g 3725

(1999. (1987
[13] S. Deser, L. Griguolo, and D. Seminara, Phys. Rev. [#}. [37] A. Niemi, Nucl. PhysB251, 155 (1985.

1976(1997. [38] K. Ishikawa and T. Matsuyama, Nucl. Phy280, 523(1987).
[14] C. Fosco, G. Rossini, and F. Schaposnik, Phys. Rev. I8{t. [39] R. Pisarski, Phys. Rev. B5, 664 (1987.

1980(1997). [40] E. Poppitz, Phys. Lett. B52 417 (1990.
[15] I. Aitchison and C. Fosco, Phys. Rev.37, 1171(1998. [41] L. Moriconi, Phys. Rev. D44, R2950(1991).
[16] C. Fosco, G. Rossini, and F. Schaposnik, Phys. Re%6D  [42] M. Burgess, Phys. Rev. B4, 2552(1991).

6547(1998. [43] W. Kim et al, Phys. Rev. D46, 3674(1993.
[17] Y. Kikukawa and H. Neuberger, Nucl. Phy&513 735 [44] Y. Kao and M. Yang, Phys. Rev. B7, 730(1993.

(1998. [45] I. Aitchison, C. Fosco, and J. Zuk, Phys. Rev.4B, 5895
[18] R. Felipe, Phys. Lett. BI17, 114 (1998. (1993.
[19] C. Fosco, Phys. Rev. B7, 6554(1998. [46] I. Aitchison and J. Zuk, Ann. Phy$N.Y.) 242 77 (1995.
[20] L. Salcedo, Nucl. PhysB549 98 (1999. [47] N. Bralic, C. Fosco, and F. Schaposnik, Phys. LetB&3, 199
[21] A. Das and G. Dunne, Phys. Rev.37, 5023(1998. (1996.
[22] J. Barcelos-Neto and A. Das, Phys. Rev58 085022(1998. [48] D. Cabraet al, Phys. Lett. B383 434(1996.
[23] J. Schwinger, Phys. Re82, 664 (1951)). [49] K. Farakos, G. Koutsoumbas, and N. Mavromatos, Phys. Lett.
[24] w. Dittrich and M. ReuterEffective Lagrangian in Quantum B 431, 147(1998.

067703-4



