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Effective action for QED in 211 dimensions at finite temperature
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Both the parity-breaking and parity-invariant parts of the effective action for the gauge field in QED3 with
massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular
configuration of the background gauge field, namely a constant magnetic field and a time-dependent time
component of the background gauge field. Our results allow us to compute exactly physically interesting
quantities such as the induced charge density and fermion condensate whose dependence on the temperature,
fermion mass and gauge field is discussed.@S0556-2821~99!03416-5#

PACS number~s!: 12.20.Ds, 11.10.Kk, 11.10.Wx, 11.30.Rd
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Many aspects of quantum electrodynamics in 211 di-
mensions (QED3) @1# in the presence of external fields ha
already been studied. The dynamical generation of a Ch
Simons~CS! term for the gauge field@2#, the formation of a
fermion condensate in the presence of an external magn
field @3,4# and the breaking of Lorentz symmetry@5,4# are
some of the many features exhibited by QED3. Some of
these aspects are desirable in 311 dimensions and also ver
important in the study of superconductivity@6–9# and the
quantum Hall effect@10# in planar systems.

In order to carry the study of such phenomena further i
important to consider the effects of temperature; these m
sometimes be completely different from one’s expectatio
Particularly, it has been shown that the development of
fermion condensate catalyzed by a magnetic field is unst
at finite temperature@11# and that the issue of gauge invar
ance at finite temperature is only consistently addressed
re-summation of the graphs is carried out@12–14#. This
question has also been extensively reported using diffe
techniques in the context of QED3 @15–20# as well as by
means of an analogous quantum mechanical model w
allows one to perform a comparative analysis of the per
bation series with exact results@21,22#—in fact this was the
approach used in one of the seminal works on the sub
@12#.

Although the exact contribution of the time component
the gauge field has been considered only for the parity
lating term of the effective action, it also contributes to t
parity invariant one and this may result in extra effects
quantities such as the fermion condensate and the densi
charge generated dynamically. To explore such effects is
main purpose of this article. By making use of the Foc
Schwinger proper-time technique@23# we compute the one
loop effective action at finite temperature for a specific co
figuration, namely a constant magnetic field and a tim
dependent time-component of the gauge field. We a
address the aspects of gauge invariance and temperatur
pendence of the thermal condensate and the charge de
With this program our results go beyond those obtained
@18#, where the same technique was used.
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In QED the one-loop effective action for the gauge field
obtained by integrating out the fermions

eiSe f f[A]5E DcDc̄ expF i E d3xc̄~ i ]”1eA” 2m!c G
3expF i E d3x~2 1

4 FmnFmn1uemnaAm]nAa! G , ~1!

which can be calculated exactly only for some configuratio
of the field. In this case the gauge field is understood a
classical background field and many important features
be analyzed from the resulting effective action at zero te
perature@23–25# and finite density@26,27# or at finite tem-
perature@28,29# and finite density@30,31#. Whenever the ef-
fective action cannot be obtained exactly, it is useful to ad
some approximation. The derivative expansion techniqu
such an approximation@32# which has been successfully em
ployed to analyze different aspects of effective actions in
11 @33# and in 211 dimensions@34,35#.

The CS term at finite temperature was obtained by me
of the derivative expansion@36# as well as other technique
@37–43#. Although there was strong evidence that the C
coefficient for a non-Abelian gauge field should be quantiz
at finite temperature@39#, it was found to depend smoothl
on the temperature, leading to the conjecture that it wo
not depend on the temperature at all@39#. Later it was proved
that the derivative expansion could only be used to obtain
CS term for some very special configurations of the gau
field due to the intrinsic non-locality of the CS coefficient
finite temperature, which could not be removed because
the essential non-analyticity present in the vacuu
polarization graph@44–46#. More recently the subject gaine
new impetus in Refs.@47,48# where it was argued on th
basis of gauge invariance of the partition function that th
was a contradiction between the quantization of the CS
efficient at finite temperature and the results obtained at
perturbative level.

The solution to this puzzle was given in@12# where a (0
11)-dimensional model was used to demonstrate that
effective action atTÞ0 is compatible with gauge invariance
if it is obtained exactly. Similar conclusions were reached
@13# after a zeta-function analysis of the fermion determin
in QED3 at TÞ0. More recently, in@14#, the parity-breaking
part of the effective action in QED3 at TÞ0 was calculated
exactly thanks to the choice of a particular class of gau
transformations and provided that only the following r
©1999 The American Physical Society03-1



ar
rm

-

be

e

BRIEF REPORTS PHYSICAL REVIEW D 60 067703
stricted set of gauge configurations,Aj5Aj (xW ), A3
5A3(t), is considered. The result shows that gauge inv
ance is compatible with the dynamically generated CS te

We are going to adopt the same gauge configuration
given by Aj5Aj (xW ), A35A3(t), but for a constant mag
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netic fieldF125B: Aj5
1
2 F jkxk, for which it is possible to

obtain an exact result for the fermion propagator. This can
obtained from the covariant calculation@2# and made par-
ticular for our purpose. It is given in Minkowski space-tim
by
G~x,x8!5 i
e3p i4

8p3/2
F~x,x8!E

0

` ds

s3/2e2 im2s expS i FeA0~ t2t8!2
~ t2t8!2

4s
1

euBus
4s

cot~euBus!~xW2xW8!2G D
3H m2g0

~ t2t8!

2s
1

euBus
2s

e jkg j~xW2xW8!k1
euBus

2s
cot~euBus! gW •xW J euBus

sin~euBus! Fcos~euBus!2 ig0
* F0

uBu
sin~euBus!G , ~2!
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whereF(x,x8) is the gauge dependent factor,

F~x,x8!5expS ieE
x8

x

dhmAm~h! D , ~3!

and * F05(1/2)e jkF jk . One can note that a simple gaug
transformation on this factor removes theA05const taken
into account explicitly in the propagator. However, we a
going to see that at finite temperature there are factors
pendent on the time component of the gauge field that ca
be removed by a gauge transformation.

To implement the finite temperature calculation in t
imaginary-time formalism we recall that the propagator c
also be rewritten as G(x,x8)5F(x,x8) E @d3kE/
(2p)3] e2 ikE(x2x8)G̃(kE), where

G̃~kE!52E
0

`

dsexpS 2 isFm21~k31eÃ3!2

1kW2
tan~euBus!

euBus G D $m2g3~k32eÃ3!2gW •kW1e i j g
ikj

3tan~euBus!%F11g3

* F3

uBu
tan~euBus!G ~4!

is its Fourier transform in the Euclidean version (g3

52 ig0) and Ã3 is given by A3(t)˜Ã3(t)5A3(t)

1]tL(t)5 b21 *0
b
dt8A3(t8)1 2pk/eb , whereL~t! is the

gauge transformation mentioned in Eq.~7! of @14#. Once
again we note that a simple redefinition ofk3 as a continuous
variable rendersG̃(kE) gauge independent, leaving th
gauge dependence only on the factorF(x,x8).

From now on we consider only the gauge invariant pro
gator in order to compute gauge invariant quantities, for
ample the charge density which is given bŷj 3&
5 ie tr@g3GE(x,x8)#ux5x8 . Performing the trace of theg ma-
trices and the integration overkW , we obtain the following
expression for the charge density:

^ j 3&5 ~e2/2p! b21 (
n52`

` E
0

`

dsexp$2 is@m2

1~wn1eÃ3!2] %@m * F32uBu~wn1eÃ3!coth~euBus!#,
~5!
e-
ot

n

-
-

where wn5(2n11)p/b. We can see from the above ex
pression that there are two contributions to the expecta
value of the charge density, the parity violating~PV! one
which is proportional to* F3 and the parity invariant~PI!
one which is proportional touBu. Now we can obtain the
parity violating charge density: namely,

^ j 3&
PV52 im

e2 * F3

2p

1

b
(

n52`

`

@m21~wn1eÃ3!2#21

52 i
m

umu

e2 * F3

4p
tanhS umub

2
D

3F11tanh2S umub

2
D tan2S eÃ3b

2
D G21

3F11tan2S eÃ3b

2
D G . ~6!

We note that this expression is indeed gauge invariant un
both small and large gauge transformations.

Since this term comes from the existence of a ferm
mass, it is important to ask what happens to the charge d
sity generated dynamically in the limitm˜0. From the
above expression we find that it vanishes independently
Ã3 for any temperature, although it survives at zero tempe
ture @2#. This phenomenon also happens to the fermion c
densate in the reducible representation@11# and will also be
seen to happen here with the irreducible representation.
melting of the charge condensation at finite temperature
clearly be seen by rewriting expression~6! as

^ j 3&
PV52 i ~m/umu!~e2 * F3/4p!

3@12 ~eb(umu1 ieÃ3)11!21 2 ~eb(umu2 ieÃ3)11!21#.

~7!
We can see that theT50 contribution survives in the limit
m˜0 but it is canceled by the thermal fluctuations. In ad
tion, Eq. ~7! shows that there is a formal analogy betwe
eÃ3 and an imaginary chemical potential.

From Eq.~6! we can obtain the parity violating contribu
tion to the effective action by recalling that̂ j 3&5
2 dSe f f/dA3(t) . Then we obtain
3-2
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Se f f
PV5

ie

2p

m

umu E d2x * F3 arctanF tanhS umub
2 D tanS eÃ3b

2
D G .

~8!
This is the result found in Refs.@13,14#. It can also be re-
written in a more suitable form to check the consequence
a gauge transformation,

Se f f
PV5

e

4p

m

umu E d2x * F3H ieE
0

b

dtA3~t!12p ik

2 ln@11e2b(umu2 ieÃ3)#1 ln@11e2b(umu1 ieÃ3)#J . ~9!

We point out that the superscript PV has been used for
effective action only for making clear that it is associat
with the parity violating charge density. It is the effectiv
Lagrangian which possesses the parity violating property
not the effective action. The latter is invariant under sm
gauge transformation (k50) and changes byiekF/2 under
large gauge transformation, whereF is the magnetic flux.
The change under large gauge transformation comes f
the zero-temperature contribution and, if the magnetic flu
quantized in units of 4p/e, the partition function for the
gauge field is invariant under large gauge transformat
Furthermore, one can also note that this is not the CS ter
finite temperature; this is hidden in the factors with logari
mic functions which are not extensive quantities.

The parity invariant contribution to the charge density
given by

^ j 3&
PI52

e2uBu
2p

1

b (
n52`

` E
0

`

ds e2 is[m21(wn1eÃ3)2]

3~wn1eÃ3!cot~euBus!

52 i
e2uBu
4p (

n50

`

(
s51

2

@~eb(En,s1 ieÃ3)11!21

2 ~eb(En,s2 ieÃ3)11!21#, ~10!

where En,s5Am212euBu(n1s21) is the energy of the
Landau levels.

We note that, atT50, the parity invariant charge densit
vanishes, as expected@2,23#. More interestingly, it vanishes
in the limit Ã350, as well. Comparing Eqs.~7! and~10! we
see that the parity violating contribution to the charge den
is proportional to * F3 and only the lowest Landau leve
contributes to it; on the other hand the parity invariant par
proportional touBu and all the Landau levels contribute. It
also important to remember that the parity violating con
bution is a peculiar feature of QED in an odd number
space-time dimensions with fermions in the irreducible r
resentation; on the other hand the parity invariant one ex
in both the irreducible and the reducible representation
QED3. Actually, it is the only contribution in the reducibl
representation, as is expected, since QED3 in the reducible
representation is very similar to QED4.

Using ^ j 3&52dSe f f/dA3(t) and Eq.~10! we can obtain
the parity invariant effective Lagrangian, which is given b
06770
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L e f f
PI 5

euBu
4p (

n50

`

(
s51

2

$En,s1 b21 ln@11e2b(En,s1 ieÃ3)#

1 b21 ln@11e2b(En,s2 ieÃ3)#%. ~11!

The first term in the curly brackets is the zero temperat
contribution and can be rewritten as

L e f f
PI ~T50!5

ei3p/4

8p3/2E0

` ds

s5/2
e2 im2seuBus cot~euBus!. ~12!

Finally, we note that this effective Lagrangian has to
properly renormalized. The result can be read off direc
from Refs.@24,30#:

L e f f
PI ~T50!5

ei3p/4

8p3/2E
0

` ds

s5/2
e2 im2s

3@euBus cot~euBus!212 1
3 ~esuBu!2#, ~13!

and the whole effective Lagrangian is given byLe f f5

2 1
2 * F3

22u * F3A31L e f f
PV1L e f f

PI .
Another quantity which is significant in the analysis

symmetry breaking is the fermion condensate. It can
shown to be given bŷ c̄c&5 i tr@GE(x,x8)#ux5x8 . It also
has two contributions which will be evaluated by means
the well-known formulâ c̄c&52 ]Le f f/]m . The first one,
which comes from the parity invariant effective Lagrangia
is also present in QED3 with fermions in the reducible rep
resentation and is given by

^c̄c&PI52m
euBu
4p (

n50

`

(
s51

2
1

En,s

3@12 ~eb(En,s1 ieÃ3)11!21 2 ~eb(En,s2 ieÃ3)11!21#.
~14!

This expression is the same found in@11# using real-time
formalism, apart from a factor of 1/2 due to the trace
gamma matrices. Therefore the analysis carried out there
naturally be applied here. First we note that although t
part of the condensate is non-vanishing in the limitm˜0 at
zero temperature@3#, it melts at any finite temperature fo
m˜0 independently ofA3 . In the reducible representatio
this is the only contribution to the order parameter. In@49# a
B-dependent critical temperature was found for the case
small but non-vanishing mass. Above this critical tempe
ture and in the regimem2!T2!eB the condensate vanishe

The second contribution to the condensate comes from
parity violating effective Lagrangian and reads

^c̄c&PV52 i
e * F3

4p
tanS eÃ3b

2
D

3F11tanh2S umub
2 D tan2S eÃ3b

2
D G21

3F12tanh2S umub
2 D G
3-3



io

n
on
o
u
th

n-
er-
ful
ken
re-
a-
se-
.

o

o
nd

BRIEF REPORTS PHYSICAL REVIEW D 60 067703
52
e * F3

4p
$~eb(umu2 ieÃ3)11!21

2 ~eb(umu1 ieÃ3)11!21%. ~15!
We note that it vanishes ifT50 or Ã350.

In conclusion, we have found the thermal effective act
for a particular configuration of the gauge field, namelyAj
5 1

2 F jkxk with F125B5const andA35A3(t). Because the
presence ofA3(t), we found that the associated partitio
function is gauge invariant. In the course of our derivati
we also calculated the charge density and the fermion c
densate, highlighting their origins in terms of the contrib
tion of the Landau levels and the time component of
tt.

s.

r-

06770
n

n-
-
e

gauge field. Although we found these quantities very u
stable in the zero limit of the relevant parameters, the f
mion mass andA3(t) analysis developed here can be use
whenever quantum fluctuations of the gauge field are ta
into account. We also pointed out the similarities of our
sults with those obtained at finite density. More investig
tions of these similarities, their physical meaning and con
quences are under study and will be reported elsewhere
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