
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
Relativistic quantum thermodynamics of ideal gases in two dimensions
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In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions.
Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is
shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and
equal mass Bose and Fermi gases are equivalent as known in the literature.@S1063-651X~99!11611-8#

PACS number~s!: 05.30.Fk, 05.30.Jp, 05.70.Ce
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I. INTRODUCTION

The polylogarithm and hyperlogarithm functions@1,2#
have many intriguing properties, with important applicatio
in many branches of mathematics and physics such as n
ber theory, representation theory of infinite dimensional
gebras, exact solvable models, conformal field theory,
The remarkable dilogarithm will be the main protagonist
our paper. Recently, in the context of statistical thermo
namics of ideal gases at low temperature, in any dimens
it has been observed that the reduced density can be
pressed in polylogarithms of integral and half-integral ord
@3,4#. Polylogarithms turned out to give a single unified p
ture of the density of the ideal Fermi and Bose gases and
the classical gas. Different statistical effects are related
different structural properties of polylogarithms. In this wa
it has been stablished that different statistics represent di
ent domains of polylogarithms@5#.

In particular, it is interesting to consider 2 dimension
ideal gases at low temperature. It was shown by May@6# that
2D ideal Bose and Fermi gases have the same specific
at the same temperature. Making use of some remark
properties of the polilogs, M. H. Lee has shown that the 2D
ideal nonrelativistic Bose and Fermi gases are comple
equivalent~see@5,7# and references therein!.

The aim of this paper is to consider a relativistic disp
sion relation and show that the results of@7# can be obtained
as a non-relativistic limit of the relativistic ideal Fermi an
Bose gases. We shall show that in 2 dimensions the sta
cal thermodynamics of ideal quantum gases can be un
even for a relativistic dispersion relation and an equivale
between the Bose and Fermi gases established for the
relativistic limit. This unified formulation is establishe
through a formulation of the statistical thermodynamics
ideal gases by polylogs.

II. THE PARTITION FUNCTION

The functional integral expression for the partition fun
tion at finite temperature can be formulated directly in r

*Electronic address: pimentel@ift.unesp.br
PRE 601063-651X/99/60~5!/6164~4!/$15.00
s
m-
l-
c.
f
-
n,
x-
r

so
to
,
r-

l

eat
le

ly

-

ti-
d
e
n-

f

l

time as well as in imaginary time formalism. In this work w
adopt the latter one. To study the thermodynamics of rela
istic bosons~fermions! at finite charge density and temper
ture in the grand canonical ensemble, one has to compute
grand partition function

Z5Tr e2b~H2mN̂!5E dFa^Faue2b~H2mN̂!uFa&,

~2.1!

where the sum runs over all states andm is a chemical po-
tential associated to some conserved charge of the sys
This partition function can be written as@8#

Z5E @dP#E periodic
~antiperiodic!

@dF#

3expH E
0

b

dtE d3xS iP
]F

]t
2H~P,F!1mN~P,F! D J ,

~2.2!

wheret is real Euclidean time. The term periodic~antiperi-
odic! means that the integration over the field is constrain
so thatF(x,0)56F(x,b), where the upper sign~1! refers
to bosons and the lower sign~2! refers to fermionic fields.
This is a consequence of the trace operation. Since all o
standard thermodynamic properties may be determined f
Z, we must compute this function. If we consider a theory
a charged scalar free field for the boson Lagrangian and
theory of a free fermion~Dirac! Lagrangian, the actions ar
quadratic in their corresponding fields; then all the integ
tions in~2.2! are Gaussian and can be performed exactly~see
@9# and references therein!. The outcome of these computa
tions is

ln Z57VE d3k

~2p!3 @bv1 ln~17e2b~v2m!!

1 ln~17e2b~v1m!!#, ~2.3!

wherev5(k21m2)1/2 andb5T21 ~in units of \5c51).
6164 © 1999 The American Physical Society
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There are several observations to make about~2.3!. An
overall spin factor of 2 must be written on the right hand s
in the fermion case~in 3D spatial dimension!, V is the vol-
ume of x space, the upper signs hold for bosons and
lower ones for fermions. Separate contributions from p
ticles ~m! and antiparticles~2m! are evident. It must also b
noticed that the zero-momentum mode contribution, in
boson case, has not been considered. Finally, the zero-p
energies of the respective vacua also appear in this form

Since we are interested in low temperature~temperatures
smaller than the masses of the particles! thermodynamic
quantities, we will neglect the third term~antiparticle contri-
bution! of ~2.3!. In the grand canonical ensemble, the expr
sion for the reduced densityr(r5N/V) is obtained fromZ
by the relation,r5b21/V ] ln Z/]m, then one gets

r5E d3k

~2p!3

1

exp@b~vk2m!#71
. ~2.4!

As usual the upper~lower! sign in ~2.4! correspond to the
Bose ~Fermi! case. In the case of bosons we must requ
m<m in order to ensure a positive-definite value fornk , the
number of bosons with momentumk.

III. STATISTICAL THERMODYNAMICS OF TWO
DIMENSIONAL IDEAL RELATIVISTIC QUANTUM

GASES: UNIFIED FORMULATION

The reduced density of an ideal gas ind-spatial dimen-
sions is expressible as@3,4#

r5p2d11/2GS d11

2 DTdgd~m̄,r !, ~3.1!

where we have defined the dimensionless variablesm̄
5m/T and r 5m/m ~note thatur u<1 in the case of bosons!
and the function

gd~m̄,r !5
1

G~d!
E

0

1`

dx xd21
1

exp@~x21m̄2!1/22rm̄#71
.

~3.2!

A method for obtaining low-temperature expansions
term of polylogs and for any dimensiond is presented in Ref
@4#. Then, the expression for the functiongd(m̄,r ) can be
written as

gd~m̄,r !5~2m̄!d/221
Ap

2d21GS d11

2 D E0

1

(
k50

1`

3H m̄~2m̄!2k

k!GS d

2
2kD

~2 ln w!d/2211k

em̄~12r !7w

1
~2m̄!2k

k!GS d

2
2kD

~2 ln w!d/21k

em̄~12r !7w J . ~3.3!

In the case of evend, we make an important observatio
Due to the appearance of the functionG(d/2
e

e
r-

e
int
la.

-

e

2k)(k50,1, . . . ) in thedenominator of each term of th
series expansion, this series truncates, then containing
nite number of terms up tok5n/221.

Let us consider thermodynamics ind52 space dimen-
sions. It is fairly simple to obtain a closed expression forg2 .
Setting d52 and substitutingw5em̄2(x21m̄2)1/2

in relation
~3.2! or ~3.3! one gets

g2~m̄,r !5E
0

1

dw
m̄2 ln w

exp@~x21m̄2!1/22rm̄#71

56Li2~6ėm̄~r 21!!7m̄ ln~17em̄~r 21!!, ~3.4!

where Li2 is the dilogarithm function; see AppendixA for a
brief summary of the necessary relations concerning po
logarithms. To derive further thermodynamics it is custo
ary to introduce a parameterz defined by the relationship

z[em̄~r 21!, ~3.5!

the parameterz is generally referred as the fugacity of th
system.

Then, the density of a relativistic ideal quantum gas in 2D
~aside from a spin factor! is expressible in the closed an
exact form

r5
T2

2p
Sgn~z!@Li2~z!1m̄Li1~z!#, z5H z if Bose,

2z if Fermi.
~3.6!

For the Bose gas, the argumentz takes on values in the
interval 0<z<1. For the Fermi gas, it is2`,z<0. The
relation ~3.6! is an exact relation valid at any realz(z<1),
i.e., any temperature@10#.

In the domain of z in which we may approximate
Li2(z)'Li1(z) ~see Fig. 1!, one can write~3.6! as

r5
T2

2p
sgn~z!@11m̄#Li1~z!, z5H z if Bose,

2z if Fermi.
~3.7!

Then, taking into account~3.7! and the recurrence relatio
~A1! for m51, we may obtain the basic thermodynam
quantities–pressureP, energyU, and entropyS:

r21bP5
Li2~z!

Li1~z!
, ~3.8!

FIG. 1. Observe the domain ofz in which we may approximate
Li2(z)'Li1(z).
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b
U

N
5

Li2~z!

Li1~z!
, ~3.9!

S

N
52

Li2~z!

Li1~z!
2 lnuzu1m̄. ~3.10!

Following the same procedure as in@7#, we can assume
the same reduced density for both type of particles

S 2p

T2 D r5@11m̄#Li1~zB!52@11m̄#Li1~2zF!,

~3.11!

wherezB and zF are the fugacities of the Bose and Fer
gases, respectively. Assuming that both type of particles
spinless and have equal mass,~3.11! allows us to consider
both gases at the same temperatureT. Using the Landen’s
relation~A2! in ~3.11! we can deduce that the fugacities a
related by the following Euler transformation

zF5zB /~12zB!. ~3.12!

Applying Landen’s relations~A2! and ~A3! to ~3.8!–
~3.10! we may obtain, for example for the energy

b
U~zB!

N
5

Li2~zB!

Li1~zB!

5

Li2„2zB /~12zB!…1
1

2
@~Li1„2zB /~12zB!…!#2

Li 1„2zB /~12zB!…
.

~3.13!

By ~3.12! we may obtain

U~zB!

N
5

U~zF!

N
1

1

2
Li1~2zF!

5
U~zF!

N
2

1

2

1

11m̄

2pr

T
. ~3.14!

The second term on the right hand side of~3.14! is T
dependent. It corresponds to the relativistic correction in
duced, considering the Li2(z) term in ~3.7!, in the energy
relationship of both type of gases.

The non-relativistic limit corresponds toT!m. In this
limit the contribution of the first term in~3.6! is negligible,
i.e., the T2/2p Li2(z) function is smaller than the
m̄/2p T2Li 1(z) term. The term proportional toT2/2p Li2(z)
thus becomes a relativistic correction to the expression
sented in@7#, in which only the monolog term, Li1(z), ap-
pears.
i
re

-

e-

In the limit m̄@1 ~non-relativistic limit! one gets from
~3.14! the same relationship between the energies of b
type of gases as in@7#. Since the second term of the righ
hand side of~3.14! in this approximation will not depend on
T, of course the specific heats must be the same. The s
analysis can be performed for the remaining thermodyna
quantities. Then, in them̄@1 and Li2(z)'Li1(z) approxi-
mations, the results of Lee@7# can be recovered if one con
siders from the beginning the study of ideal relativistic gas
i.e. ‘‘in d52 the energy and pressure of the Bose gas
equal to those of the Fermi gas shifted by the zero-po
constant of the Fermi gas.’’

IV. CONCLUSIONS

In this paper we derived the expression for the densitie
relativistic ideal Bose and Fermi gases in two dimensions
a closed and exact form making use of polylogarithm fun
tions. Taking into account the approximation Li2(z)
'Li1(z), valid for some domain ofz, we have related the
energies of both type of gases, showing that they differ b
temperatureT dependent term. We then concluded that
sentially both gases are inequivalent even in this approxi
tion.

We rederived the results of@7# making a further approxi-
mation, m̄@1, and thus stablished the equivalence betwe
the spinless and equal mass Bose and Fermi gases in
non-relativistic limit.
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APPENDIX: THE DILOG AND MONOLOG
RELATIONSHIPS

The following properties of polylogs can be establishe
see@1,2# for details. We have the recurrence relation

Lim~x!5S x
d

dxDLin11~x!. ~A1!

If x is real number andx,1 andy52x/12x, then

Li1~x!52Li1~y! ~A2!

and

Li2~x!52Li2~y!2
1

2
@Li1~y!#2. ~A3!
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Therefore the high temperature limit of~3.6! is not relevant in
realistic physical systems. Thermodynamics of an ultrarela
istic ideal Bose gas is considered in the second pape
Ref. @4#.


