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Relativistic quantum thermodynamics of ideal gases in two dimensions

H. Blas and B. M. Pimenté&l
Instituto de Fsica Tesica—UNESP, Rua Pamplona 145, 0140%S2aulo, Brazil

J. L. Tomazelli
DFQ-Faculdade de Engenharia, Universidade Estadual Pauli€tampus de Guaratingugta
Avenida Dr. Ariberto Pereira da Cunha 333, 12500-000 Guaratingu8ta Paulo, Brazil
(Received 23 June 1999

In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions.
Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is
shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and
equal mass Bose and Fermi gases are equivalent as known in the litef8i063-651X%99)11611-9

PACS numbgs): 05.30.Fk, 05.30.Jp, 05.70.Ce

I. INTRODUCTION time as well as in imaginary time formalism. In this work we
adopt the latter one. To study the thermodynamics of relativ-

The polylogarithm and hyperlogarithm functio4,2]  istic bosongfermiong at finite charge density and tempera-
have many intriguing properties, with important applicationsture in the grand canonical ensemble, one has to compute the
in many branches of mathematics and physics such as numgrand partition function
ber theory, representation theory of infinite dimensional al-
gebras, exact solvable models, conformal field theory, etc. . .
The remarkable dilogarithm will be the main protagonist of Z=Tr e”“”’“N):f dd (D, e PH NP ),
our paper. Recently, in the context of statistical thermody- 2.1
namics of ideal gases at low temperature, in any dimension,

it has been observed that the reduced density can be e¥are the sum runs over all states auds a chemical po-
pressed in polylogarithms of integral and half-integral orderentia| associated to some conserved charge of the system.

[3,4]. Polylogarithms turned out to give a single unified pic- This partition function can be written 48]
ture of the density of the ideal Fermi and Bose gases and also

the classical gas. Different statistical effects are related to
different structural properties of polylogarithms. In this way, zzf [dl‘[]j
it has been stablished that different statistics represent differ- (
ent domains of polylogarithm]. 8 9D
In particular, it is interesting to consider 2 dimensional Xexp[f de d3x(iH——H(H,(I>)+MN(H,<D))],

ideal gases at low temperature. It was shown by M&yhat 0 ar
2D ideal Bose and Fermi gases have the same specific heat 2.2)
at the same temperature. Making use of some remarkable
properties of the polilogs, M. H. Lee has shown that te 2\ here 7 is real Euclidean time. The term periodiantiperi-
ideal nonrelativistic Bose and Fermi gases are completelyic) means that the integration over the field is constrained
equivalent(see[5,7] and references thergin so that®(x,0)= = d(x,8), where the upper siga+) refers

_ The aim of this paper is to consider a relativistic disper-, hosons and the lower sigr-) refers to fermionic fields.
sion relation and show that the results@f can be obtained s js 4 consequence of the trace operation. Since all other
as a non-relativistic limit of the relativistic ideal Fermi and ¢tandard thermodynamic properties may be determined from
Bose gases. We shall show that in 2 dimensions the statistyy \ye must compute this function. If we consider a theory of
cal thermodynamics of ideal quantum gases can be unified charged scalar free field for the boson Lagrangian and the
even for a relativistic dlsper3|_on relation anc_j an equwalencgheory of a free fermiorDirac) Lagrangian, the actions are
between the Bose and Fermi gases established for the noggaqratic in their corresponding fields; then all the integra-
relativistic limit. This unified formulation is established {55 in(2.2) are Gaussian and can be performed exaste

through a formulation of the statistical thermodynamics of[g] and references thereiriThe outcome of these computa-
ideal gases by polylogs. tions is

[dP]

periodic
antiperiodig

Il. THE PARTITION FUNCTION a3k
. . . o v | /2 — o Blo—p)
The functional integral expression for the partition func- Inz= +VJ (277)3[,3(»+In(1+e *)

tion at finite temperature can be formulated directly in real
+In(1xe Pletmy], (2.3

*Electronic address: pimentel@ift.unesp.br wherew=(k?>+m?)¥2 and =T (in units of i=c=1).
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There are several observations to make al4@ud). An ! L T T 1
overall spin factor of 2 must be written on the right hand side %3 A T
in the fermion caséin 3D spatial dimension V is the vol- 0.6 -

ume of x space, the upper signs hold for bosons and the¢?4
lower ones for fermions. Separate contributions from par-0-2
ticles (u) and antiparticle$—u«) are evident. It must also be 0=
noticed that the zero-momentum mode contribution, in theo:2
boson case, has not been considered. Finally, the zero-poi-04
energies of the respective vacua also appear in this formulo6
Since we are interested in low temperatiemperatures -08
smaller than the masses of the partiglélsermodynamic s st w0 o e
guantities, we will neglect the third terfantiparticle contri- R o T
bution) of (2.3). In the grand canonical ensemble, the expres- FIG. 1. Observe the domain ¢fin which we may approximate
sion for the reduced densiy(p=N/V) is obtained fromz Lio(O)=Liy(2).
by the relationp=B"/V dIn Z/du, then one gets

T
|

—k)(k=0,1,...) in thedenominator of each term of the
B dk 1 series expansion, this series truncates, then containing a fi-
P ) (27 exd Blog— )]+ 1" 24 nite number of terms up te=n/2—-1. _
Let us consider thermodynamics @=2 space dimen-

As usual the uppe(lower) sign in (2.4) correspond to the sions. It is fairly simple to obtain a closed expressionder
Bose (Fermi case. In the case of bosons we must reqUireSettingdzz and substituting/vzeﬁ’(xz*mﬁ)m in relation
pu=<min order to ensure a positive-definite value fgr, the (3.2 or (3.3 one gets
number of bosons with momentukn

1 m—Inw
lll. STATISTICAL THERMODYNAMICS OF TWO ga(M,r) = fo W D) =] 1
DIMENSIONAL IDEAL RELATIVISTIC QUANTUM N -

GASES: UNIFIED FORMULATION =+Li(xe™"" M Emin(1xe™ ), (3.9

The reduced density of an ideal gasdrspatial dimen- \here L, is the dilogarithm function; see Appendixfor a
sions is expressible 48,4] brief summary of the necessary relations concerning poly-
logarithms. To derive further thermodynamics it is custom-

— pod+2p d+1) 4 — ary to introduce a parameterdefined by the relationship

p=1 - Tg(m,r), (3.1
z=eMr-1), (3.5

where we have defined the dimensionless variabfes
=m/T andr=u/m (note that/r|<1 in the case of bosops the parametee is generally referred as the fugacity of the

and the function system.
Then, the density of a relativistic ideal quantum gasin 2
_ 1 f*wd [t 1 (aside from a spin factpris expressible in the closed and
GMO=Ta) Jo X exgormA)—rm]=1-  exact form
(3.2 T2 _ - z if Bose,

A method for obtaining low-temperature expansions in p_ZSgr(o[UZ(gHmul(@L {= —7 if Fermi.
term of polylogs and for any dimensiahs presented in Ref. (3.6
[4]. Then, the expression for the functigy(m,r) can be .
written as For the Bose gas, the argumehtakes on values in the

interval O<¢=<1. For the Fermi gas, it is-c<?=<0. The
o J 17” relation (3.6) is an exact relation valid at any real{<1),
gd(m,r)=(2ﬁ)d’2’lﬁf 2 i.e., any temperaturglO0].
2dlr(_ 0 k=0 In the domain of{ in which we may approximate
2 Li,({)~Li4({) (see Fig. 1, one can writg3.6) as
A -k (_ di2—1+k
m(zm) "* ( In(\lN)> T2 z if Bose,
m(l—r)— _— + i —
2 37
—k dr2+k
(2m) (—Inw)®= (3.3 Then, taking into accouriB.7) and the recurrence relation
[ d eMINxw »° ' (A1) for m=1, we may obtain the basic thermodynamic
kil E_k quantities—pressure, energyU, and entropys
In the case of eved, we make an important observation. _y o Liad) 3.9

Due to the appearance of the functiod (d/2 P T L)’
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U Lix
N~ Lh(0)" 39
S Lfo
N~ 20,0 In|Z|+m. (3.10

Following the same procedure as[if], we can assume
the same reduced density for both type of particles

2
?)P:[:H'WLM(ZB): —[1+m]Liy(—2zp),
(3.11

where zg and zg are the fugacities of the Bose and Fermi
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In the limit m>1 (non-relativistic limi) one gets from
(3.14 the same relationship between the energies of both
type of gases as ifi7]. Since the second term of the right
hand side 0f3.14) in this approximation will not depend on
T, of course the specific heats must be the same. The same
analysis can be performed for the remaining thermodynamic
quantities. Then, in then>1 and Li({)~Li({) approxi-
mations, the results of Ld&] can be recovered if one con-
siders from the beginning the study of ideal relativistic gases;
i.e. “in d=2 the energy and pressure of the Bose gas are
equal to those of the Fermi gas shifted by the zero-point
constant of the Fermi gas.”

IV. CONCLUSIONS

gases, respectively. Assuming that both type of particles are

spinless and have equal ma$3,11) allows us to consider
both gases at the same temperatiirdJsing the Landen’s

In this paper we derived the expression for the densities of
relativistic ideal Bose and Fermi gases in two dimensions in

relation(A2) in (3.11) we can deduce that the fugacities area closed and exact form making use of polylogarithm func-

related by the following Euler transformation

(3.12

Applying Landen’s relationgA2) and (A3) to (3.8—
(3.10 we may obtain, for example for the energy

U(zg) Lix(Zp)
N Liy(zg)

ZFZZB/(l_ZB).

1
Lin(—zg/(1—2zg))+ E[(Lil(_ZB/(l_ZB)))]Z
Liy(—2zg/(1—2zg))

(3.13
By (3.12 we may obtain
U(zg) U(zp) 1
=N T abi-ze)
_ U(ze) 1 1 2mp (3.14

N 21+m T

The second term on the right hand side (8f14) is T

dependent. It corresponds to the relativistic correction intro-

duced, considering the (i) term in (3.7), in the energy
relationship of both type of gases.

The non-relativistic limit corresponds td<m. In this
limit the contribution of the first term i3.6) is negligible,

i.e., the T%2mLiy({) function is smaller than the

m/27 T2Li,(£) term. The term proportional t62/27 Li,({)

tions. Taking into account the approximation »(4)
~Li,({), valid for some domain of, we have related the
energies of both type of gases, showing that they differ by a
temperaturel dependent term. We then concluded that es-
sentially both gases are inequivalent even in this approxima-
tion.

We rederived the results ¢7] making a further approxi-
mation, m>1, and thus stablished the equivalence between
the spinless and equal mass Bose and Fermi gases in the
non-relativistic limit.
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APPENDIX: THE DILOG AND MONOLOG
RELATIONSHIPS

The following properties of polylogs can be established,
see[1,2] for details. We have the recurrence relation

thus becomes a relativistic correction to the expression pre-

sented in[7], in which only the monolog term, L{¢), ap-
pears.

Lim(x)=(xdix) Lip,1(X). (A1)
If xis real number andd<<1 andy= —x/1—-Xx, then
Liy(x)=—Liq(y) (A2)
and
Lip(x)=—Liy(y)— %[LH(Y)]Z- (A3)
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