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Ambiguity in the evaluation of the effective action on the cone
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An ambiguity in the computation of the one-loop effective action for fields living on a cone is illustrated. It
is shown that the ambiguity arises due to the noncommutativity of the regularization of ultraviolet and~conical!
boundary divergencies.@S0556-2821~99!02122-0#
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I. INTRODUCTION

Recently there has been much interest in computation
one-loop effects for quantum fields living in backgroun
with conical singularities, especially in the context of qua
tum corrections to the Bekenstein-Hawking entropy@1,2#. In
this context, conical singularity methods@2–16# have been
shown to be a powerful tool. There is, nevertheless, a c
troversy in the literature concerning two possible kinds
approaches to computing one-loop effects on the cone, l
ing to different results~for a review, see@17#!.

In the local approach@4,5,12#, one starts regularizing an
renormalizing local quantities, such as the effective Lagra
ian density or the energy-momentum tensor. Global qua
ties, for example the effective action, are then obtained
integrating the local ones over the background. Local qu
tities show a nonintegrable singularity atr 50, wherer is the
proper distance from the apex of the cone. For a mass
field in D dimensions, for example, simple dimensional co
siderations determine the dependence of the effective
grangian density onr as beingr 2D. Therefore, integration
over the background usually requires the introduction o
cutoff at a proper distancee from the tip of the cone.

In the global approach@3,6,10,11,13,15,16#, integration
over the background is performed before ultraviolet regu
ization, resulting that the volume cutoffe is not required. At
this point it should be remarked that the local and glo
approaches are equivalent to each other when the b
ground is a smooth manifold.

In the context of quantum fields at finite temperature
Rindler space-time~or near the horizon of a black hole!, both
approaches lead to a divergent entropy. However the or
of the divergences seems quite different—in the local
proach the divergence is associated with the~divergent! local
temperature on the horizon@18#, contrasting with the ultra-
violet ~uv! nature of the divergence in the global approa
Another important difference concerns dependence on
temperatureT of the thermodynamical quantities@19,12,14#.
In the local approach the free energy, at high temperatu
shows a leading contribution proportional toTD, whereas in
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the global approach it behaves asT2. Finally, in the global
approach the divergences can be renormalized into the
gravitational action@2,10,11#, whereas such a procedure
not possible in the context of the local approach@20#.

Considering these facts, it can be said that there is
ambiguity in the computation of one-loop effects on th
cone. As different uv regularization techniques have be
used in the literature~for example, thez function procedure
@12,21# in the case of the local approach, and the Schwin
proper-time@3,6,10,11,15,16# or the Pauli-Villars@9# proce-
dures in the case of the global approach!, it was not clear
whether the origin of the ambiguity had to do with the
different features or some other reason. In this paper
show that the origin of the ambiguity is not in the uv reg
larization employed~since it appears within any regulariza
tion scheme as will be shown!, but that it arises from a con
flict between regularization of uv and horizon divergenci
One may say, from the mathematical point of view, that
conflict is simply due to the fact that the uv regulatord and
the horizon cutoffe appear as ine2/d, and therefore the
result depends radically on the order in which these reg
tors are sent to zero.

The next section illustrates the ambiguity by employi
the Schwinger proper-time regularization. A discussion f
lows where we give a particle-loop interpretation to the tw
approaches and argue that the local approach seems
supported by physical considerations. In Appendixes A a
B, the ambiguity is considered in the context of a poin
splitting regularization, and in a wide class of Schwinger-li
regularizations, respectively.

II. LOCAL VS GLOBAL APPROACH

Let us see how the ambiguity arises. For simplicity a s
lar field will be considered, but the argument is essentia
the same for higher spins. The starting point is a represe
tion of the local heat kernel for minus the Laplace-Beltra
operator A52Db on the four-dimensional flat coneCb
3R2 with metric ds25r 2dt21dr21dy21dz2, where t
P@0,b#, r PR1 andy,zPR. The deficit angle of the cone i
2p2b. In the context of finite temperature theory in th
Rindler space-time~or near the horizon of a black hole!, b21

is the temperature. A useful representation of the heat ke
is given by@22–24,5#
©1999 The American Physical Society15-1
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Kt
b~x,xuA!5

1

16p2t2
1

i

32p2bt2EG
dwe2(r 2/t)sin2(w/2)cot

pw

b
,

~1!

where the contourG consists of two branches intersecting t
real axis very close to the origin. One branch goes fro
2p1 i` to 2p2 i`, and the other one fromp2 i` to p
1 i`. An advantage of this representation is that the fl
space heat kernel~the first term on the right-hand side! ap-
pears isolated from the conical singularity contribution. T
feature will show clearly that the ambiguity arises due to
presence of a conical singularity.

The local heat kernel~1! can be integrated over the bac
ground to yield the well-known integrated heat kernel@25#

Kt
b~A!5

AHV~Cb!

16p2t2
1

AH

48pt S 2p

b
2

b

2p D , ~2!

whereV(Cb)5bR2/2 is the~infinite! area of a cone of ra
dius R, and AH is the ~infinite! area of the transvers
dimensions—the horizon area. The above integration
been performed by using formulas computed by Dowker
@23# ~see also@24#!. Defining

C2n~b!ª
i

4bEG
dw cotS pw

b D S sin2
w

2 D 2n

, ~3!

one has, forn51, 2,

C2~b!5
p

3b S 2p

b
2

b

2p D ,

C4~b!5
1

15
C2~b!F S 2p

b D 2

111G . ~4!

Let us focus on the computation of the one-loop effect
action for a neutral massless scalar field on the cone~the
massive case is treated in Appendix A!, noting that the am-
biguity should also be present in the computation of ot
global quantities. The effective action is determined by in
grating the effective Lagrangian over the background

Weff5E d4xAgLeff~x!.

Since, from dimensional considerations, it is expected
Leff(x) behaves asr 24, in the integration overr above one
introduces a cutoff at a distancee from the horizon (r
50). The effective Lagrangian can be computed by integ
ing over the proper-timet the product of the local heat kerne
by t21, and since it is uv divergent some regularization p
cedure is required. Here we will apply the Schwinger reg
larization which is widely used in the literature. Note how
ever that the results hold for any regularization proced
~see the Appendixes!.

According to the Schwinger regularization procedure,
infinitesimal uv cutoffd is introduced in the integration ove
t,
12401
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Leff~x!52
1

2Ed

`dt

t
Kt

b~x,xuA!,

resulting in

Weff52
bAH

2 E
e

`

rdr E
d

`dt

t
Kt

b~r uA!.

By using Eq.~1!, one integrates overt andr ~note that if the
regulatorsd ande are not set equal to zero in an early stag
the order in which the integrations are performed is not r
evant!, resulting in

Weff52
AHV~Cb!

64p2d2
1

iA H

128p2e2

3E
G
dw

cot
pw

b

sin4
w

2

~e2(e2/d)sin2(w/2)21!. ~5!

Clearly as the regulators appear in the ratioe2/d, the ~regu-
larized! effective action depends on the order in which t
regulators are sent to zero. Note that the first term on
right-hand side of Eq.~5! encodes essentially the flat-spa
ultraviolet divergence~which can be renormalized by rede
fining the bare cosmological constant!, whereas the secon
term encodes the conical singularity contribution. Now, n
ticing that if the horizon cutoffe is kept fixed then the coni-
cal contribution in Eq.~5! is uv finite, and observing Eqs.~3!

and ~4!, whend→0 one is led to~up to e2e2/d terms!

Weff52
AHV~Cb!

64p2d2
2

bA H

32p2e2
C4~b!. ~6!

Apart from the uv divergent term~which is irrelevant, since
it can be renormalized away! this result is exactly that ob
tained in thelocal approachby means of localz function
@12#, dimensional@20#, and point-splitting regularization~see
Appendix A!. Interpreting Weff /b as a free energy, the
Planckian term (1/b4) reproduces precisely the one in th
result by Susskind and Uglum@2#, which was obtained by
counting eigenmodes and employing a WKB approximati
There is also agreement with respect to the mass correc
(1/b2) ~see Appendix A and@17#!. Nevertheless, Eq.~6!
leads to a non-Planckian contribution (1/b2) in the free en-
ergy, which is absent in@2#. The source of this discrepancy
not well understood as yet, but it seems to be related to
presence of a conical singularity in the procedures yield
Eq. ~6!, and to the very interpretation ofWeff /b as a free
energy in the present context~see @26#, and references
therein!. Note that according to Eq.~6!, uv divergences affec
only the temperature-independent contribution in the co
sponding free energy, as usually is the case.

The global approachcorresponds to removing the hor
zon cutoff (e→0) from Eq. ~5! keeping the uv regulatord
fixed, resulting in
5-2
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Weff52
AHV~Cb!

64p2d2
2

bA H

32p2d
C2~b!, ~7!

which is in agreement with early results@3,6,10,11#.
There are some important remarks to be made concer

the dependence of the results on the regularization proce
employed. In the local approach the conical contribution
Weff is independent of the regularization employed~see the
Appendixes!. This is not the case in the global approac
which does depend on the regularization procedure. A
shown in Appendix B, in the context of the global approa
the conical contribution inWeff vanishes in bothz function
and dimensional regularizations, whereas it consists of an
divergent term according to the Schwinger regularizat
procedure. There is no contradiction though, once one r
izes that the divergent term is proportional to the Seel
DeWitt coefficientA15bAHC2(b) @see Eq.~2!#, and there-
fore can be renormalized away by redefining the b
Newton constant in the gravitational action@2,9–11#. In the
local approach no such renormalization is possible, since
conical contribution is not proportional to geometrical term
which can be found in the gravitational action. This is co
sistent with the statement above that, in the local appro
all regularizations lead to the same result. These facts il
trate the different physical nature of the local and glo
results. In the context of the computation of quantum corr
tions to the Bekenstein-Hawking entropy, it follows that
the global approach the entropy remains in the formS
5AH/4G, which is finite even after quantum correction
have been considered, provided thatG is the renormalized
Newton constant@2#. In the local approach, on the contrar
quantum corrections result in a divergent total entro
@1,18#.

III. DISCUSSION

It is clear that the ambiguity considered in this pap
arises due to the fact that the order in which uv and hori
divergences are isolated~regularized! matters. Let us discus
the subject further.

According to a path integral interpretation associated w
the heat kernel, the one-loop effective action is obtained
summing over all particle loops. In the local approach, o
considers a particular point and the one-loop contribution
the effective Lagrangian is obtained by summing over
loops starting and ending at that point. The effective actio
then obtained by integrating the effective Lagrangian o
the space. In the global approach, instead, one sums ove
possible closed loops without having to consider local qu
tities.

In this scenario, uv divergences originate from infinite
mal loops about to contract to a point. There are two kinds
loops on a cone. Loops that do not wind around the con
singularity probe only flat-space. Infinitesimal loops of th
kind give essentially the usual uv divergence contributions
flat space, which is the same in both approaches. They
respond to the first term on the right-hand side of Eqs.~6!
and ~7!. Loops of the other kind are those that wind arou
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the conical singularity. They detect the conical singular
and give rise to the second terms on the right-hand side
Eqs.~6! and~7!. In the local approach, these loops cannot
contracted to a point and so they do not give ultravio
divergences in the local quantities~they are responsible fo
the conical part in Eq.~6! which is, in fact, uv finite!. How-
ever, by considering points closer and closer to the ape
the cone, one picks up contributions corresponding
smaller and smaller loops encircling the singularity, a
which give rise to the divergence ase→0. In the global
approach, on the contrary, by summing over all loops o
considers also infinitesimally small loops winding around t
singularity. Thus an uv divergent contribution, which d
pends on the deficit angle, arises in Eq.~7!. It is then clear
that horizon divergences in the local approach and uv div
gences in the global approach are different manifestation
the same phenomenon.

At this point an inescapable question is posed: which o
of these conical contributions is the correct one? Mathem
cally, the origin of the ambiguity is clear, resulting that bo
approaches seem to be equally correct. Therefore the an
to the question above should come from physical argume
From this point of view the result given by the local a
proach seems to be supported by the fact that, before d
mining global quantities, one would like to know corre
sponding local quantities~such as the energy-momentu
tensor, for example!. In order to be meaningful, these loc
quantities should have their uv divergences appropria
regularized. It is important to stress that no such calculat
is possible in the context of the global approach, since
regularization is performed only after integration over t
background.

There are also some facts supporting the local appro
Statistical mechanics models for quantum fields vibrat
near the horizon, e.g., the brick wall model@1,2#, fix a
Planckian behavior for the free energy (1/b4). As mentioned
previously, the corresponding local approach result fits t
behavior, at least at high temperatures. According to the
bal approach the free energy has a non-Planckian beha
(1/b2). Furthermore one expects the divergence in the f
energy to be related with the divergence in the local tempe
ture on the horizon@18#. This correspondence holds in th
local approach result.

Before closing, we would like to comment on some pr
vious works@17,27,28#. The authors of@17# mention that the
local approach~roughly speaking local and global ap
proaches correspond, respectively, to ‘‘volume cutoff’’ a
‘‘ultraviolet limit’’ in the terminology of @17#! does not cor-
respond to a complete theory on the cone for the follow
fact. Since the integration overr stops at an infinitesima
distancee from the horizon (r 50), and the quantities in the
local approach carry the cutoffe, in the local approach one i
in fact working in an ‘‘incomplete background’’—the hori
zon ~apex of the cone! is missing. That is not quite correc
In this paper we have shown that in both approaches
uses the same heat kernel, which is well defined on
whole cone and built up with eigenmodes which are requi
to be finite on the horizon. By stopping the integration over
at a certain distance from the horizon one is simply isolat
5-3
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the horizon divergences, and not truncating the cone as
authors of@17# seem to suggest.

Entropy corresponding to the effective actions conside
in this paper is often identified~for b52p) as quantum
correction to the Bekenstein–Hawking entropy of
Schwarzschild black hole. However we should recall t
such effective actions have been obtained in Rindler sp
time. When compared with results obtained by working
black hole background itself~see, for example,@27# where
WKB approximation is applied in the context of the bric
wall model @1#, leading to an expression for the effectiv
action involving the Epstein–Hurwitzz function!, they
present the correct leading divergence on the black hole
rizon @see, e.g., Eq.~A8!#, but fail to reproduce amassless
logarithmic ~subleading! divergence which arises due to th
nontrivial topology of the black hole@29#. In semiclassical
approaches topology manifests itself when integration o
the background is performed@30#.

It would be worth investigating the issues considered h
in the context of the approach in@28#, where a method for
determining heat kernel involving a partial resummation
the Schwinger–DeWitt series is presented.
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APPENDIX A: POINT-SPLITTING PROCEDURE

In this appendix we show how the ambiguity arises wh
a point-splitting regularization procedure is used.

In the following we sketch the evaluation of

Leff~x!52
1

2
lim

x8→x

E
0

`dt

t
Kt

b~x,x8uA! ~A1!

in an N dimensional cone and then the associated effec
action. The heat kernel for a massive scalar field can be r
from the integrand of the proper-time representation of
Feynman propagator in@31#,

Kt
b~D!5

2p

b~4pt !N/2
e2r 2/2t2m2t (

n52`

`

I 2punu/b~r 2/2t !ei2pnD/b.

~A2!

HereDªt2t8 and the coordinates of pointsx andx8 have
correspondingly been identified, except the angular coo
nates. Using@32# one finds
E
0

`dt

t
Kt

b~D!5
2p

b~2p1/2!Nr N
3 (

n52`

`

ei2pnD/bH G@N/21nn#G@~12N!/2#

p1/2G@~22N!/21nn#
31F2F12N

2
;
22N

2
2nn ,

22N

2
1nn ;~mr!2G

1222nn~mr!N12nn
G@2N/22nn#

G@11nn#
31F2F1

2
1nn ;nn1

N12

2
,112nn ;~mr!2G J , ~A3!
ri-

a-

c-
wherennª2punu/b and 1F2@a;b,c;z# denotes the genera
ized hypergeometric function@33# which converges for all
values of z. Keeping mass corrections in Eq.~A3! up to
second order inmr, Eq. ~A1! yields

Leff~r !5
i

~12N!r 2
lim
D→0

F]D
2 1S N22

2 D 2

1
12N

2
~mr!2GDF~D!, ~A4!

whereDF (D) is the massless Feynman propagator@31,34#.
WhenN54, expansion ofDF (D) in powers ofD is given
by

DF ~D!5
i

8p2r 2 S 2
2

D2
2

2p2

3b2
2

2p4

15b4
D21O~D3!D .

~A5!
Inserting Eq.~A5! in Eq. ~A4!, the ultraviolet divergences in
the limit D→0 may be eliminated by subtracting the cont
bution corresponding to some particularb5bo ,

Leff~r !5
1

24p2r 4
@ f ~b!2 f ~bo!#, ~A6!

with f (b)ª24p4/15b422p2/3b21p2(mr)2/b2. The ef-
fective action is obtained by integrating the effective L
grangian over the background

Weff5AHE
0

b

dtE
e

R

drrL eff~r !, ~A7!

wheree and R are the horizon and volume cutoffs, respe
tively. Finally replacing Eq.~A6! in Eq. ~A7! one finds
5-4
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Weff52
A Hp2

180e2b3
2

A H

72e2b
2

A Hm2

24b
ln me1Cbo

b,

~A8!

where Cbo
denotes a constant which ensures thatWeff50

whenb5bo . In Eq. ~A8! the upper cutoff contribution ha
been omitted.

Whenm50, Eq. ~A8! is in agreement with Eq.~6!, and
the mass correction is in agreement with that computed
other methods@35,21#. It is worth remarking that the resu
above differs from that obtained by Dowker@4#, where the
expectation value of the energy density is integrated over
background to give the internal energy. The difference is
the non-Planckian massless term in the corresponding
energies. As mentioned previously, there has not appe
yet a satisfactory explanation for these low temperature
crepancies~see@26,20#!.

If in Eq. ~A7!, by settinge50 andR5`, the integration
over the background is performed before the integration o
t, then one is led to the global approach result@7#. Note that
in this case the splittingD5t2t8 is not enough to handle u
divergences, and a further regulator~e.g., the proper-time
cutoff d) is required.

APPENDIX B: GENERALIZED
SCHWINGER REGULARIZATION

This appendix considers the ambiguity in the context o
wide class of Schwinger type regularizations. In general
effective action can be computed from the heat-kernel
follows ~see, e.g.,@36–38#!

Weff52
1

2
lim
d→0

E
0

`dt

t
r~d,t !Kt~A!,

where the regularizing functionr(d,t) has to satisfy some
requirements. For example, it is assumed that limd→0r(d,t)
51 and that~for sufficiently larged) r(d,t) has to regular-
12401
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ize the divergence att50. Among possible regularizing
functions one has the proper-time cutoff,r(d,t)5Q(t2d)
~considered previously in this work!, z function, r(d,t)
5(d/dd)@ td/G(d)#, dimensional regularization,r(d,t)
5(4pt)2d, and Pauli-Villars regularization,r(d,t)5(1
2e2t/d)3 ~in four dimensions!. Effective actions computed
using different regularizing functions differ by terms whic
are divergent asd→0, but proportional to the Seeley-DeWi
coefficientsA0 , A1, and A2. Therefore these terms can b
renormalized away by redefining the bare coupling consta
in the gravitational action@39#.

Let us then consider a cone as background. Employing
arbitrary regularizing function~flat-space contributions
which can be renormalized away, will be dropped! Eq. ~5!
becomes

Weff52
iA H

128p2EG
dw

cot
pw

b

sin2
w

2

E
0

`dt

t2
r~d,t !e2(e2/t)sin2(w/2).

~B1!

In the local approach one setsd→0, so thatr(d,t)→1.
After integrating overt one is left with Eq.~6!, whichever
regularizing function one chooses. In the global approach
the other hand, one setse→0 first, so that

Weff52
bA H

32p2
C2~b!E

0

`dt

t2
r~d,t !. ~B2!

The integral overt depends on the regularizing function. It
divergent in some regularizations~proper-time cutoff, Pauli-
Villars regularizations! and vanishing in others~dimensional,
z function regularizations!. But as the result is proportiona
to the Seeley-DeWitt coefficientA15bAHC2(b), it can be
renormalized away into the bare gravitational action. T
fact ensures equivalence of different regularizing function
D

s.
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