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Ambiguity in the evaluation of the effective action on the cone
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An ambiguity in the computation of the one-loop effective action for fields living on a cone is illustrated. It
is shown that the ambiguity arises due to the noncommutativity of the regularization of ultraviolebaih)
boundary divergencie$S0556-282(199)02122-0

PACS numbdis): 04.62:+v, 04.70.Dy

[. INTRODUCTION the global approach it behaves & Finally, in the global
approach the divergences can be renormalized into the bare

Recently there has been much interest in computations ddravitational actior{2,10,11, whereas such a procedure is
one-loop effects for quantum fields living in backgroundsnot possible in the context of the local appro42h].
with conical singularities, especially in the context of quan- Considering these facts, it can be said that there is an
tum corrections to the Bekenstein-Hawking entrgpy?]. In ~ ambiguity in the computation of one-loop effects on the
this context, conical singularity methogi2—16] have been cone. As different uv regularization techniques have been
shown to be a powerful tool. There is, nevertheless, a cortsed in the literatur¢for example, the/ function procedure
troversy in the literature concerning two possible kinds of[12,21 in the case of the local approach, and the Schwinger
approaches to computing one-loop effects on the cone, leagoper-time[3,6,10,11,15,1por the Pauli-Villars[9] proce-
ing to different resultgfor a review, se¢17]). dures in the case of the global approaah was not clear

In thelocal approacf’{4,5,1a, one starts regu|arizing and whether the origin of the ambiguity had to do with their
renormalizing local quantities, such as the effective Lagrangdifferent features or some other reason. In this paper we
ian density or the energy-momentum tensor. Global quantishow that the origin of the ambiguity is not in the uv regu-
ties, for example the effective action, are then obtained byarization employedsince it appears within any regulariza-
integrating the local ones over the background. Local quantion scheme as will be shownbut that it arises from a con-
tities show a nonintegrable singularityrat 0, wherer is the  flict between regularization of uv and horizon divergencies.
proper distance from the apex of the cone. For a massleggne may say, from the mathematical point of view, that the
field in D dimensions, for example, simple dimensional con-conflict is simply due to the fact that the uv regulatband
siderations determine the dependence of the effective Lghe horizon cutoffe appear as ine?/s, and therefore the
grangian density om as beingr‘D_ Therefore, integration result depends radically on the order in which these regula-
over the background usually requires the introduction of &0rs are sent to zero.
cutoff at a proper distance from the tip of the cone. The next section illustrates the ambiguity by employing

In the global approach[3,6,10,11,13,15,16 integration  the Schwinger proper-time regularization. A discussion fol-
over the background is performed before ultraviolet regularlows where we give a particle-loop interpretation to the two
ization, resulting that the volume cutoffis not required. At ~approaches and argue that the local approach seems to be
this point it should be remarked that the local and globalsupported by physical considerations. In Appendixes A and
approaches are equivalent to each other when the back., the ambiguity is considered in the context of a point-
ground is a smooth manifold. splitting regularization, and in a wide class of Schwinger-like

In the context of quantum fields at finite temperature infeégularizations, respectively.
Rindler space-timéor near the horizon of a black hg)éoth

approaches lead to a divergent en@ropy. Hoyvever the origin Il LOCAL VS GLOBAL APPROACH
of the divergences seems quite different—in the local ap-
proach the divergence is associated with(tigergenj local Let us see how the ambiguity arises. For simplicity a sca-

temperature on the horizdd 8], contrasting with the ultra- lar field will be considered, but the argument is essentially
violet (uv) nature of the divergence in the global approach.the same for higher spins. The starting point is a representa-
Another important difference concerns dependence on thion of the local heat kernel for minus the Laplace-Beltrami
temperaturel of the thermodynamical quantiti¢$9,12,14. operatorA=—A; on the four-dimensional flat con€g,
In the local approach the free energy, at high temperaturess R? with metric ds’=r2d%+dr?+dy?+dz?, where 7
shows a leading contribution proportional T8, whereas in  €[0,8], r e R" andy,ze R. The deficit angle of the cone is
27— B. In the context of finite temperature theory in the
Rindler space-timéor near the horizon of a black hojeg~*
*Electronic address: devis.iellici@telital.com is the temperature. A useful representation of the heat kernel
TElectronic address: moreira@cpd.efei.br is given by[22-24.9
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1 (=dt

KE(x,X|A) = f we (s o Ler(X)=— 5 J —KE(x.x|A),

1672 ' 32m Bt2 B’ 5 1

() -
resulting in

where the contour’ consists of two branches intersecting the
real axis very close to the origin. One branch goes from W B_AHJ er _K,g (r|A).
—m+i® to —m—iw, and the other one fromr—ix to S

+io. An advantage of this representation is that the flat-

space heat kernégthe first term on the right-hand sidap- By using Eq.(1), one integrates overandr (note that if the
pears isolated from the conical singularity contribution. Thisregulatorss ande are not set equal to zero in an early stage,
feature will show clearly that the ambiguity arises due to thethe order in which the integrations are performed is not rel-

presence of a conical singularity. evanj, resulting in
The local heat kerndll) can be integrated over the back-
ground to yield the well-known integrated heat kerf23] AnV(Cp) iAy

M 6ar?s?  12872€?

KA="loz Yaemtl g 2 @ -
cot—
2
whereV(C,) = BR?/2 is the (infinite) area of a cone of ra- Xf dw—- (e e (FIOSITWI2) 1), )
dius R, and Ay is the (infinite) area of the transverse r sm“—

dimensions—the horizon area. The above integration has
been performed by using formulas computed by Dowker |n

[23] (see alsd24]). Defining Clearly as the regulators appear in the ratfos, the (regu-

larized effective action depends on the order in which the
-n regulators are sent to zero. Note that the first term on the
Con(B 4,3f dwcot( B )(smz ) , (3)  right-hand side of Eq(5) encodes essentially the flat-space
ultraviolet divergencdwhich can be renormalized by rede-
fining the bare cosmological constgnivhereas the second

one has, fon=1, 2, term encodes the conical singularity contribution. Now, no-

27 B ticing that if the horizon cutoft is kept fixed then the coni-
Cy(B)= 3,8( 3 E) cal contribution in Eq(5) is uv finite, and observing Eq&3)
and(4), when 5§—0 one is led taup to e <10 terms
2
C C — +11f. 4 AuV(C A
4(B)= 15 2(B) B (4 Wi — HV( ,8) BAY Cu(B). ®
64mw26%  32m€’

Let us focus on the computation of the one-loop effective
action for a neutral massless scalar field on the cghe Apart from the uv divergent terrtwhich is irrelevant, since
massive case is treated in Appendix, Aoting that the am- it can be renormalized awayhis result is exactly that ob-
biguity should also be present in the computation of othefained in thelocal approachby means of local function
global quantities. The effective action is determined by inte{12], dimensiona[20], and point-splitting regularizatiofsee

grating the effective Lagrangian over the background Appendix A). Interpreting Wi/ as a free energy, the
Planckian term (18%) reproduces precisely the one in the

_ ‘g result by Susskind and Uglufi2], which was obtained by
Wegs d™X VgL counting eigenmodes and employing a WKB approximation.

There is also agreement with respect to the mass corrections

Since, from dimensional considerations, it is expected that1/8%) (see Appendix A and17]). Nevertheless, Eq(6)
Le#(X) behaves as ™4, in the integration over above one leads to a non-Planckian contribution g% in the free en-
introduces a cutoff at a distance from the horizon ¢ ergy, which is absent if2]. The source of this discrepancy is
=0). The effective Lagrangian can be computed by integrathot well understood as yet, but it seems to be related to the
ing over the proper-timethe product of the local heat kernel presence of a conical singularity in the procedures yielding
by t %, and since it is uv divergent some regularization pro-Eg. (6), and to the very interpretation o/./3 as a free
cedure is required. Here we will apply the Schwinger regu-energy in the present contexsee [26], and references
larization which is widely used in the literature. Note how- thereir). Note that according to E@6), uv divergences affect
ever that the results hold for any regularization procedurenly the temperature-independent contribution in the corre-
(see the Appendixes sponding free energy, as usually is the case.

According to the Schwinger regularization procedure, an The global approachcorresponds to removing the hori-
infinitesimal uv cutoffs is introduced in the integration over zon cutoff (€—0) from Eq.(5) keeping the uv regulatod
t, fixed, resulting in
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AWNV(Cy)  BAy the cc_mica_l singularity. They detect the co_nical singul_arity
o= — o > C,(B), (7) and give rise to the second terms on the right-hand side of
64775 32776 Eqgs.(6) and(7). In the local approach, these loops cannot be
contracted to a point and so they do not give ultraviolet
which is in agreement with early resu(t3,6,10,11. divergences in the local quantitié¢ghey are responsible for

There are some important remarks to be made concerninge conical part in Eq(6) which is, in fact, uv finit¢. How-
the dependence of the results on the regularization procedutger, by considering points closer and closer to the apex of
employed. In the local approach the conical contribution inthe cone, one picks up contributions corresponding to
Weyr is independent of the regularization employeeée the smaller and smaller loops encircling the singularity, and
Appendixes. This is not the case in the global approach,which give rise to the divergence as—-0. In the global
which does depend on the regularization procedure. As iapproach, on the contrary, by Summing over all |00p3 one
shown in Appendix B, in the context of the global approach,considers also infinitesimally small loops winding around the
the conical contribution iWey vanishes in botf{ function  singularity. Thus an uv divergent contribution, which de-
and dimensional regularizations, whereas it consists of an Ugends on the deficit angle, arises in Eg). It is then clear
divergent term according to the Schwinger regularizationthat horizon divergences in the local approach and uv diver-
procedure. There is no contradiction though, once one realyences in the global approach are different manifestations of
izes that the divergent term is proportional to the Seeleythe same phenomenon.
DeWitt coefficientA; = 8.A,,C,(B) [see Eq(2)], and there- At this point an inescapable question is posed: which one
fore can be renormalized away by redefining the baref these conical contributions is the correct one? Mathemati-
Newton constant in the gravitational actif®,9-11. In the  cally, the origin of the ambiguity is clear, resulting that both
local approach no such renormalization is possible, since thgpproaches seem to be equally correct. Therefore the answer
conical contribution is not proportional to geometrical termsto the question above should come from physical arguments.
which can be found in the gravitational action. This is con-From this point of view the result given by the local ap-
sistent with the statement above that, in the local approacltproach seems to be supported by the fact that, before deter-
all regularizations lead to the same result. These facts illusmining global quantities, one would like to know corre-
trate the different physical nature of the local and g|0ba|sponding local quantitiegsuch as the energy-momentum
results. In the context of the computation of quantum correctensor, for example In order to be meaningful, these local
tions to the Bekenstein-Hawking entropy, it follows that in quantities should have their uv divergences appropriately
the global approach the entropy remains in the foBm regularized. It is important to stress that no such calculation
=An/4G, which is finite even after quantum corrections is possible in the context of the global approach, since uv
have been considered, provided ti@ats the renormalized regularization is performed only after integration over the
Newton constanf2]. In the local approach, on the contrary, background.
quantum corrections result in a divergent total entropy There are also some facts supporting the local approach.
[1,18]. Statistical mechanics models for quantum fields vibrating
near the horizon, e.g., the brick wall modgl,2], fix a
Planckian behavior for the free energy g1y. As mentioned
previously, the corresponding local approach result fits this

It is clear that the ambiguity considered in this paperbehavior, at least at high temperatures. According to the glo-
arises due to the fact that the order in which uv and horizorbal approach the free energy has a non-Planckian behavior
divergences are isolatétegularized matters. Let us discuss (1/82). Furthermore one expects the divergence in the free
the subject further. energy to be related with the divergence in the local tempera-

According to a path integral interpretation associated withture on the horizof18]. This correspondence holds in the
the heat kernel, the one-loop effective action is obtained byocal approach result.
summing over all particle loops. In the local approach, one Before closing, we would like to comment on some pre-
considers a particular point and the one-loop contribution tovious works[17,27,28. The authors of17] mention that the
the effective Lagrangian is obtained by summing over alllocal approach(roughly speaking local and global ap-
loops starting and ending at that point. The effective action iproaches correspond, respectively, to “volume cutoff” and
then obtained by integrating the effective Lagrangian ovef‘ultraviolet limit” in the terminology of [17]) does not cor-
the space. In the global approach, instead, one sums over aispond to a complete theory on the cone for the following
possible closed loops without having to consider local quanfact. Since the integration over stops at an infinitesimal
tities. distancee from the horizon (=0), and the quantities in the

In this scenario, uv divergences originate from infinitesi-local approach carry the cutoff in the local approach one is
mal loops about to contract to a point. There are two kinds ofn fact working in an “incomplete background”—the hori-
loops on a cone. Loops that do not wind around the conicaton (apex of the coneis missing. That is not quite correct.
singularity probe only flat-space. Infinitesimal loops of thisIn this paper we have shown that in both approaches one
kind give essentially the usual uv divergence contributions iruses the same heat kernel, which is well defined on the
flat space, which is the same in both approaches. They cowhole cone and built up with eigenmodes which are required
respond to the first term on the right-hand side of E$. to be finite on the horizon. By stopping the integration aver
and (7). Loops of the other kind are those that wind aroundat a certain distance from the horizon one is simply isolating

Ill. DISCUSSION

124015-3



DEVIS IELLICI AND EDISOM S. MOREIRA, JR. PHYSICAL REVIEW D60 124015

the horizon divergences, and not truncating the cone as th@ns. E.M. is grateful to George Matsas for valuable discus-

authors of[17] seem to suggest. sions and to FAPESRthrough Grant No. 96/12259) for
Entropy corresponding to the effective actions consideredinancial support.

in this paper is often identifiedfor S=2m) as quantum

correction to the Bekenstein—Hawking entropy of a

Schwarzschild black hole. However we should recall that

such effective actions have been obtained in Rindler space- In this appendix we show how the ambiguity arises when

time. When compared with results obtained by working ina point-splitting regularization procedure is used.

black hole background itselsee, for example,27] where In the following we sketch the evaluation of

WKB approximation is applied in the context of the brick

wall model [1], leading to an expression for the effective 1 wdt

action involving the Epstein—Hurwitz function), they Len(X)=— 5 lim f TKtﬁ(X,X'|A) (A1)

present the correct leading divergence on the black hole ho- X' —x”©

rizon [see, e.g., Eq(A8)], but fail to reproduce anassless

logarithmic (subleading divergence which arises due to the in an N dimensional cone and then the associated effective

nontrivial topology of the black holg29]. In semiclassical —action. The heat kernel for a massive scalar field can be read

approaches topology manifests itself when integration ovefrom the integrand of the proper-time representation of the

APPENDIX A: POINT-SPLITTING PROCEDURE

the background is performd@0]. Feynman propagator ir81],
It would be worth investigating the issues considered here
in the context of the approach [28], where a method for 5 b < _
determining heat kernel involving a partial resummation ofK’(A)= e ™ > lonpoyp(r22t)el2mare,
the Schwinger—DeWitt series is presented. B(4mt) =T (A2)
ACKNOWLEDGMENTS

Here A:=7— 7' and the coordinates of pointsandx’ have
D.l. is grateful to Emilio Elizalde, Valter Moretti, and, in correspondingly been identified, except the angular coordi-
particular, Sergio Zerbini for useful discussions and suggesaates. Usind32] one finds

>dt 2 . I'[N/2+ v, ]T[(1—N)/2 1-N 2—N 2—N
J —KF(A):—W X g!2mnAlp [ Znll 1€ 2] 1 2[ ; — vy, +vp;(mr)?
ot B2mYHNIN " n==e T2[(2=N)/2+ v,] 2 2 2
T[—N/2—v,] 1 N+2
—2vy N+2v, - . . 2
+274"n(mr) NEETN X 1Fo 2+un,vn+—2 A+ 2w, (mr)c| ¢, (A3)

wherev,:=2|n|/8 and ;F,[a;b,c;z] denotes the general- Inserting Eq.(A5) in Eq. (A4), the ultraviolet divergences in
ized hypergeometric functiof83] which converges for all the limit A—0 may be eliminated by subtracting the contri-
values ofz. Keeping mass corrections in EGA3) up to  bution corresponding to some particujgr 3, ,

second order imr, Eq. (Al) yields

. 1
' N-2)? Le(r)= [F(B)—(Bo)] (A6)
Leg(r)=———=Ilim &2+(—) eff 2.4 o/ls
eff(F) TNy > 247
+ﬂ(mr)2}p D), (Ad)  With f(B)s=—4m*/158"~ 272362+ w?(mr)%I B2 The ef-
2 fective action is obtained by integrating the effective La-

grangian over the background
whereD ~(A) is the massless Feynman propagadfi,34.
WhenN=4, expansion oD »(A) in powers ofA is given

by B R
Weﬁ=AHJO dTJ drrlgq(r), (A7)
( 2 2m% 2q4°
A% 3p% 1584

A%+ 0O(A®) |. ,
where e andR are the horizon and volume cutoffs, respec-
(A5) tively. Finally replacing Eq(A6) in Eq. (A7) one finds
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A2 Ay Apym? ize the divergence at=0. Among possible regularizing
W= — — - Inme+ CBO:B' functions one has the proper-time cutgsf,6,t) =0 (t— )
180628 72 248 (considered previously in this work¢ function, p(8,t)
(A8)  —(d/d&)[t9IT(5)], dimensional regularization,p(3,t)

=(4mt)"° and Pauli-Villars regularizationp(s,t)=(1

—e Y93 (in four dimensions Effective actions computed
using different regularizing functions differ by terms which
are divergent as— 0, but proportional to the Seeley-DeWitt
coefficientsAy, A, andA,. Therefore these terms can be
Yenormalized away by redefining the bare coupling constants
in the gravitational actiof39].

Let us then consider a cone as background. Employing an
bitrary regularizing function(flat-space contributions,
hich can be renormalized away, will be droppésh. (5)
comes

where Cg, denotes a constant which ensures tig=0

when 8= ,. In Eq. (A8) the upper cutoff contribution has
been omitted.

Whenm=0, Eg.(A8) is in agreement with Eq6), and
the mass correction is in agreement with that computed b
other method$35,21]. It is worth remarking that the result
above differs from that obtained by Dowkpt], where the
expectation value of the energy density is integrated over thg{r
background to give the internal energy. The difference is in
the non-Planckian massless term in the corresponding freg
energies. As mentioned previously, there has not appeare
yet a satisfactory explanation for these low temperature dis-

crepanciegsee[26,20). i cotW—W

If in Eq. (A7), by settinge=0 andR=, the integration ~ y, _ _ A f dw B fwﬂ (8,1) (2sirPw2)
over the background is performed before the integration over = " 12872)r . w)o 27 '
t, then one is led to the global approach regult Note that s>
in this case the splitting = 7— 7’ is not enough to handle uv (B1)
divergences, and a further regulat@.g., the proper-time
cutoff 9) is required. In the local approach one sets—0, so thatp(s,t)—1.

After integrating overt one is left with Eq.(6), whichever
APPENDIX B: GENERALIZED regularizing function one chooses. In the global approach, on
SCHWINGER REGULARIZATION the other hand, one sets-0 first, so that

This appendix considers the ambiguity in the context of a A dt
wide class of Schwinger type regularizations. In general the W= — ch(mf —p(81). (B2)
effective action can be computed from the heat-kernel as 3272 0 t?

follows (see, e.qg.[36-39)
The integral ovet depends on the regularizing function. It is
Woe — Elim Jmﬂ (8.K(A) divergent in some regularizatiofigroper-time cutoff, Pauli-
eff 2 g PLOPRER) Villars regularizationsand vanishing in otherglimensional,
¢ function regularizations But as the result is proportional
where the regularizing functiop(§,t) has to satisfy some to the Seeley-DeWitt coefficierk, = B8.44C,(B), it can be
requirements. For example, it is assumed thaf ligp(J,t) renormalized away into the bare gravitational action. This
=1 and that(for sufficiently larges) p(45,t) has to regular- fact ensures equivalence of different regularizing functions.
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