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Interference phenomenon for the Faddeevian regularization of 2D chiral fermionic determinants
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The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes
according to the number of second-class constraints, including the new Faddeevian regularization, is examined
and extended. We find a new and important result that the Faddeevian class, with three second-class con-
straints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the
parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied
the restriction imposed by the interference of right-left modes of the chiral Schwinger model (xQED2) using
Stone’s soldering formalism. The interference effects between right and left movers, producing the massive
vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class
which is the only nonambiguous class with a unique regularization parameter.

PACS number~s!: 11.10.Ef, 11.15.2q, 11.30.Rd, 11.40.Ex
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I. INTRODUCTION

It is often claimed that the chiral interaction of two
dimensional fermionic gauge models poses an obstructio
gauge symmetry. In this paper we clarify several aspect
this question for different regularizations of the chiral ferm
onic determinant, including the new Faddeevian regular
tion case proposed by Mitra@1#, under the point of view of
the Stone’s soldering formalism@2#. It is worth mentioning
that understanding the properties of two-dimensional~2D!
fermionic actions is crucial in several aspects. For instan
the one-cocycle necessary in recent discussions on sm
functional bosonization@3,4#, which is just an expression o
the 2D anomaly, is known to be the origin of highe
dimensional anomalies through a set of descent equat
@5#. Incidentally, the anomaly phenomenon still defies
complete explanation.

This paper is devoted to analyzing and exploring the
strictions that the soldering mechanism@2,6–8# imposes over
the regularization ambiguity of 2D chiral fermionic determ
nants. The soldering technique that is dimensionally in
pendent and designed to work with dual manifestations
some symmetry is well suited to deal with the chiral char
ter of 2D anomalous gauge theories. Recently@9# a new in-
terpretation for the phenomenon of dynamical mass gen
tion known as the Schwinger mechanism@10#, has been
proposed which explores the ability of the soldering form
ism to embrace interference effects. In that study the in
ference of right and left gauged Floreanini-Jackiw chi
bosons@11# was shown to lead to a massive vectorial mo
for the special case where the Jackiw-Rajaraman~JR! regu-
larization parameter isa51 @12,13#.
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After the discovery that the two-dimensional chiral QE
(xQED2! could be consistently quantized if the regulariz
tion ambiguity were properly taken into account, the inve
tigation of this subject has received considerable atten
and emphasis@14,15#. The quantization of the model wa
considered from different points of view, both canonical a
functional and the spectrum and unitarity was analyzed
distinct techniques, including the gauge invariant We
Zumino formulation@16#, with results consistent with Ref
@12#. Despite this spate of interest, a surprising new res
was reported recently by Mitra@1# showing that a different
regularization prescription was yet possible, leading to n
consequences. He proposed a new~Faddeevian! regulariza-
tion class, materialized by a unique and conveniently cho
mass term leading to a canonical description with three c
straints. Recall that in Refs.@12# and @13#, the Hamiltonian
framework was structured in terms of two classes with t
(a.1) and four (a51) second-class constraints, respe
tively. Mitra’s work brings a clear interpretation for the re
sons leading the bosonization ambiguity to fit into three
stead of two distinct classes, classified according to
number of constraints present in the model.

It is the main goal of this paper to study the restrictio
posed by the soldering formalism over this new regulari
tion class. Since soldering has ruled out the two-constr
class solution of Jackiw and Rajaraman being able to
namically generate mass via right-left interference, we
led to ask if the new Faddeevian class of chiral bosons p
posed by Mitra interfere constructively to produce a mass
vectorial mode. To find an answer to this question we
view, in Sec. II, the procedure of Ref.@17# to obtain the
multiparametric regularization effective action based on
Pauli-Villars regularization proposed in Ref.@18#. This effec-
tive action is the point of departure for an extension of t
ambit of Ref.@1# that is needed to our purpose in this pap
and to be developed in Sec. III. The bosonized theory sa
fying Faddeev’s structure for the constraint algebra is stud
in the canonical approach. The mass of the photon sc
©1999 The American Physical Society14-1
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field is computed and its dependence on the ambiguity
rameter is shown to be tantamount to that in Ref.@12#; the
massless sector, however, is more constrained than its c
terpart in Ref.@12#, corroborating the results of Ref.@1#. The
restrictions imposed by the soldering are worked out in S
IV. We find the striking new result that the interference e
fects lift the parameter dependence by discriminating
value of the only nonambiguous class. Our results giv
clear interpretation for the Schwinger mechanism as a l
right interference phenomenon, as suggested by Jackiw@5#.
Our findings are further discussed in the final section.

II. THE EFFECTIVE ACTION

In a gauge invariant theory, free of anomalies, the cano
cal description reveals a couple of first-class constraints, w
the Gauss lawG(x) appearing as the secondary constra
for the momentump0(x) corresponding to the scalar pote
tial A0(x). In an anomalous gauge theory, on the contra
gauge invariance is lost and the constraint algebra for
gauge generator becomes afflicted by the presence
Schwinger term

@G~x!,p0~y!#50,

@G~x!,G~y!#5ı\Cd8~x2y!, ~1!

where C is some constant. This structure introduces ex
degrees of freedom into the quantum theory as argued
Faddeev@19#. The quantum chiral Schwinger model with th
usual regularization (a>1) does have more degrees of fre
dom than its classical counterparts, as expected, but doe
fit into Faddeev’s scheme above due to the functional dep
dence of the Gauss generator on the scalar potential, w
leads to a different constraint algebra than Eq.~1!,

@G~x!,p0~y!#5” 0,

@G~x!,G~y!#50. ~2!

The second-class nature of the set is then due to the
commutative character of the primary and secondary c
straints.

The new regularization class for the fermionic determ
nant proposed by Mitra has the virtue of fitting perfectly in
Faddeev’s picture. In this section we shall review the co
putation of the fermionic determinant leading to this ne
scheme. Our starting point is the action for fermionic sec
of the chiral Schwinger model,

S5E d2x c̄~x!@ i ]”2qApA” ~x!~11 ig5!#c~x!, ~3!

wherec(x) is a fermionic field andAm is the vector gauge
field in a ~111!-dimensional spacetime. From this classic
action we obtain the following effective action@18#:
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exp$ iSeff
(0)@A~x!#%

5E Dc~x!Dc̄~x!exp$ iS@c̄~x!,c~x!,A~x!#%.

~4!

In a formal level this is a nonlocal action that reads

exp$ iSeff
(0)@A~x!#%52q2E d2x Am~x!~hma1ema!

3
]a]b

]2
~hbn2ebn!An~x!, ~5!

but there is an ambiguity related to the regularization pro
dure adopted. Let us discuss the regularization proced
proposed by Frolov and Slavnov@18#. To this end we add a
multiparametric regularizing action

Sreg@A~x!#5 (
r 51

2n21 E d2x c̄ r~x!

3@ i ]”2mr2qApAm~x!G r
m#c r~x!, ~6!

where

G r
m5@arK

mn~11 ig5!1brS
mn~12 ig5!#gn . ~7!

Here c r(x) are the regulators fields with massmr whose
couplingsG r

m ~or Kmn, andSmn) are matrices which will be
determined later. These regulators bring up the follow
partition function:

exp~ iSreg
eff @A# !5E P rDc~x!Dc̄~x!

3exp$ iSreg@c̄ r~x!,c r~x!,A~x!#%, ~8!

which can be solved to@17#

Sreg
eff @A#52q2

p

2E d2x Am~x!Gmn~x,y!An~y! ~9!

with

Gmn~x,y!5E d2p

~2p!2
Ḡmn~p!exp@2 i •p~x2y!#. ~10!

Now Ḡmn(p) is found to be

Ḡmn
(r )~p!5

1

p H ~ar
2Tmnlk

1 1br
2Tmnlk

1 !

3F2~11Ar !S hlk2
plpk

p2 D 1Arh
lkG

12ArarbrMmnJ ,
4-2
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where

Ar512
i

yr
ln~21!1O~yr ! ~11!

and also

Tmnlk
1 5Kmr~dl

r1ek
s!Kns~dk

s1ek
s!,

Tmnlk
2 5Smr~dl

r1ek
s!Sns~dk

s1ek
s!,

Mmn5@Kml~hlk2elk!Snk1Sml~hlk2elk!Knk#,

yr
25

p2

mr
2

. ~12!

Imposing the conditions@18#

(
r

e rar
25(

r
e rbr

250,

(
r

e rmrar
25(

r
e rmrbr

25(
r

e rmrarbr50,

2(
r

e rarbr51, ~13!

wheree r5(21)r 11 is the Grassman parity of the regulari
ing field c r . Then lettingmr→` we get

Sreg
eff @A#5q2

1

2E d2x Am~x!Mmn~x,y!An~y!. ~14!

Jackiw and Rajaraman found a regularized solution wit
diagonal choice for the matrix

Mmn5S a 0

0 aD d~x2y!, ~15!

with a>0, corresponding to the cases with two and fo
constraint’s classes. The physical content of these case
disclosed by them, was found to correspond to
a-dependent massive photon field and a massless fermio
the former, while in the latter the photon field was abse
Mitra noticed that the alternative choice

Mmn5S 1 21

21 23D d~x2y!, ~16!

leads to a new class of solutions with three second-c
constraints and found that the physical spectrum of
model contains a chiral fermion and a photon field with m
m54q2. To work out the soldering formalism and obtain th
interference contribution coming from the chiral fermions w
need to generalize the regularization dependence of the
fective action. This is done in the next section.
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III. HAMILTONIAN ANALYSIS AND SPECTRUM

In their seminal work Jackiw and Rajaraman@12# showed
that thexQED2 could be consistently quantized by includin
the bosonization ambiguity parameter satisfying the con
tion a>1 to avoid tachyonic excitations. Later on, workin
out the canonical structure of the model, Rajaraman@13#
showed that the casesa.1 anda51 belonged to distinct
classes: thea51 case represents the four-constraints cla
while thea.1 class presents only two constraints. The lat
is a continuous one-parameter class, while the former cla
nonambiguous containing only one representative. The c
sequences of these distinct constraint structures are tha
a.1 class presents, besides the massless excitation a
massive scalar excitation@m25e2a2/(a21)# that is not
found on the other case. In the canonical approach the c
mutator between the primary and the secondary constra
vanishes in the first case. The emergence of two more c
straints completes the second-class set. Mitra found
amazing fact that with an appropriated choice of the regu
ization mass term it is possible to close the second-c
algebra with only three constraints. His model is not ma
festly Lorentz invariant, but the Poincare´ generators have
been constructed@1# and shown to close the relativistic alge
bra on-shell. The main feature of this new regularization
the presence of a Schwinger term in the Poisson brac
algebra of the Gauss law, which limits the set to only thr
second-class constraints. To see this let us write thexQED2
Lagrangian, with Faddeevian regularization but with Mitra
regulator properly generalized to meet our purposes:

L52
1

4
FmnFmn1

1

2
]mf]mf1q~gmn1bemn!]mfAn

1
1

2
q2AmMmnAn , ~17!

where Fmn5]mAn2]nAm ; gmn5diag(11,21), and e01

52e105e1051. b is a chirality parameter, which can as
sume the valuesb561. The mass-term matrixMmn is de-
fined as

Mmn5S 1 a

a b D d~x2y!. ~18!

Notice that we have chosen unity coefficient forA0
2 term. In

a sense, this choice resembles Rajaraman’sa51 class and is
the trademark of the Faddeevian regularization. In fact,
jaraman’s class is a singular point in the ‘‘space of para
eters.’’ Its canonical description has the maximum numbe
constraints with no massive excitation. Such a case is fo
in Eq. ~17! if we makea50 in Eq. ~18!. The appearance o
a new class needs a nonvanishing value fora. With Mitra’s
choice,a521 and b523, the photon becomes massiv
(m254q2), but the remaining massless fermion has a d
nite chirality, opposite to that entering the interaction w
the electromagnetic field. This choice is, however, too
strictive and may be relaxed leading to new and interes
consequences. In this work the coefficientsa and b are in
4-3
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principle arbitrary, but the mass spectrum will impose a c
straint between them. This is best seen in the Hamilton
formalism.

The canonical Hamiltonian is readily computed:

H5E dxH 1

2
~p1!21

1

2
pf

2 1p1A081
1

2
f821q~bf82pf!A0

1q~f82bpf!A11q2~b2a!A0A11
1

2
q2~12b!A1

2J .

~19!

The stationarity algorithm leads a set of three constraints

V15p0,

V25~p1!81q~pf2bf8!2q2~b2a!A1 , ~20!

V352~b2a!p112aA081~11b!A18 ,

which are easily seen to be second-class, viz.,

$V1~x!,V3~y!%52a
]

]x
d~x2y!,

$V2~x!,V2~y!%522q2a
]

]x
d~x2y!,

$V2~x!,V3~y!%5q2~b2a!2d~x2y!

2~11b!
]2

]x]y
d~x2y!,

$V3~x!,V3~y!%522~b2a!~11b!
]

]x
d~x2y!, ~21!

with the other brackets vanishing. This is in sharp contr
with the usual regularization possessing two or four seco
class constraints. To perform quantization we compute
Dirac brackets

$f~x!,f~y!%D52
1

4a
u~x2y!,

$f~x!,A1~y!%D52
1

2qa
d~x2y!,

$f~x!,p1~y!%D52
q

4a
~b2a!u~x2y!,

$A1~x!,A1~y!%D5
1

2q2a

]

]x
d~x2y!, ~22!

$p1~x!,A1~y!%D52S b1a

2a D d~x2y!,

$p1~x!,p1~y!%D52
q2

4a
~b2a!2u~x2y!.
02501
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The reduced Hamiltonian is obtained by strongly elim
natingp0, A08 , andpf from the constraints~20! and substi-
tuting in the canonical Hamiltonian~19!:

Hr5E dxH 1

2
~p1!22ap1A181q~12ba!A1f81f82

2
b

q
f8~p1!81

1

2q2
~p1!821

1

2
q2~a22b!A1

2J .

~23!

Making use of Eqs.~22! and~23! we get the following equa-
tions of motion for the remaining fields:

ḟ5bf82
1

q
~p1!81

q

2a
~122a21b!A1 , ~24!

ṗ152b~p1!81
q2

2a
@~b2a!~12a2!

2~b1a!~a22b!#A1 , ~25!

Ȧ15S a1b

2a Dp12S 11b

2a DA18 . ~26!

We are now ready to determine the spectrum of
model. Isolatingp1 from Eq. ~26! and substituting in Eq.
~25!, we will have

S 2a

a1bD Ä11bS 11b

a1bDA1952S 2ba

a1b
1

11b

a1bD Ȧ18

1
q2

2a
@~b2a!~12a2!

2~b1a!~a22b!#A1 .

~27!

To get a massive Klein-Gordon equation for the photon fi
we must set

~11b!1b~2a!50, ~28!

which relatesa andb and shows that the regularization am
biguity adopted in Ref.@1# can be extended to a continuou
one-parameter class~for a chosen chirality!. We have, using
Eqs.~27! and~28!, the following mass formula for the mas
sive excitation of the spectrum:

m25q2
~11ba!2

ba
. ~29!

Note that to avoid tachyonic excitations,a is further re-
stricted to satisfyba5uau, so a→2a interchanges from
one chirality to another. Observe that in the limita→0 the
massive excitation becomes infinitely heavy and decoup
from the spectrum. This leads us back to the four-constra
class. It is interesting to see that the redefinition of the
rameter asa511uau leads to
4-4
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m25
q2a2

a21
~30!

which is the celebrate mass formula of the chiral Schwin
model, showing that the parameter dependence of the m
spectrum is tantamount to both the Jackiw-Rajaraman
the Faddeevian regularizations.

Let us next discuss the massless sector of the spect
To disclose the presence of the chiral excitation we nee
diagonalize the reduced Hamiltonian~23!. This procedure
may, at least in principle, impose further restrictions overa.
This all boils down to find the correct linear combination
the fields leading to the free chiral equation of motion.
this end we substitutep1 from its definition andA1 from the
Klein-Gordon equation into Eq.~24! to obtain

05
]

]t H f1
q

2a S 212ba2a2

m2 D Ȧ11
1

q S a

a1bDA18J
2

]

]x H bf2
1

q S a

a1bD Ȧ11F q

2a S 212ba2a2

m2 D
2

1

q S 2ba

a1bD G J . ~31!

This expression becomes the equation of motion for a s
dual bosonx

ẋ2bx850 ~32!

if we identify the coefficients forȦ1 and A18 in the two in-
dependent terms of Eq.~31! with

x5f1
1

q S a

a1bD ~A182bȦ1!. ~33!

This field redefinition, differently from the case of the ma
sive field whose construction imposed condition~28!, does
not restrain the parametera any further. Using Eqs.~20! and
~32!, all the fields can be expressed as functions of the
massive scalarA1 and the free chiral bosonx, interpreted as
the bosonized Weyl fermion. The main result of this sect
is now complete, i.e., the construction of the one-param
class regularization generalizing Mitra’s proposal. The st
is now set to study the interference of chiral actions w
~one-parameter! Faddeevian regularization.

IV. EFFECTS OF INTERFERENCE

In this section we use the soldering formalism introduc
in Ref. @2# to examine the restriction imposed by chiral i
terference over the regularization ambiguity parameter w
the Faddeevian approach is adopted. This study, taken in
framework of the usual JR regularization, establishes
strong restriction over the parameter’s values and gives
to a new interpretation for the mechanism of dynamical m
generation occurring in the Schwinger model. This study
meaningful and necessary since a new class of theories
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three second-class constraints has emerged: it must be
fied if new solutions resulting from interference will lead
a gauge invariant massive excitation. To begin with, let
rewrite explicitly the two chiral actions presented in Eq.~17!
in the appropriate light-cone variables

L15]1r]2r1
1

2
~]2A12]1A2!212q]2rA1

22q2uauA2
2 1q2~11uau!A2A1, ~34!

L25]1w]2w1
1

2
~]2A12]1A2!212q]1wA2

22q2uāuA1
2 1q2~11uāu!A2A1 , ~35!

where we have used the conventionL65Lub . For clarity,
we have used different fields (w,r) for opposite chiralities
and the corresponding mass-term parameters (a,ā) to make
clear that these chiral theories are uncorrelated. However
making use of soldering formalism we will get a meaning
combination of these components.

The main point of soldering is to lift the global Nothe
symmetry of each chiral component to a local symmetry
the system as a whole. Showing only the main parts of
soldering formalism we can see that the axial transforma
(dw5dr5h) leads to

dL15]2hJ1~r!,

dL25]1hJ2~w!, ~36!

where J2(w)52(]2w1qA2) and J1(r)52(]1r1qA1)
are the Noether’s currents andh is the gauge paramete
Next we introduce the soldering fieldB6 appropriately
coupled to the Noether currents to obtain the once itera
chiral actions as

L1
(0)→L1

(1)5L1
(0)1B1J2~w!,

L2
(0)→L2

(1)5L2
(0)1B2J1~r!. ~37!

The soldering fields act as partial compensators for
variance~36!, transforming vectorially under the axial sym
metry, dB65]6h. It is now possible to define an effectiv
Lagrangian invariant under the combined transformation
the chiral fields and compensators as

Leff5L1
1 1L2

1 12B1B2 . ~38!

The soldered action is obtained using the fact thatB6 are
auxiliary fields. Their elimination may be done altogeth
from their field equations but the effects of soldering w
persist as a residual symmetry for the remaining fields. T
4-5
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will naturally cohere the otherwise independent chiral fie
w andr in the form of a soldered Lagrangian for a collecti
field F as

Leff5]1F]2F22q~A1]2F2A2]1F!

1
1

2
~]1A22]2A1!21

q2

2
@aA1

2 2āA2
2

2~a2ā !A1A2#, ~39!

where F5w2r. Notice that except for the last term, th
soldered action describes the massive gauge inva
bosonized version of the Schwinger model, with the gau
invariant collective fieldF playing the role of the photon
field. Gauge invariance imposes a strong constraint over
parameters as

a5ā50. ~40!

This value corresponds to thea51, four-constraints regular
ization class. This is a remarkable result, consistent with R
@9#.

A notable feature of the present analysis is the disclos
of a new class of parametrizations and their dependence
the number of constraints. Different aspects of this feat
were elaborated and the consequences of interference
puted. To discuss further the implications of interference
chiral actions it is best to compare with the existing lite
ture. This also serves to put the present work in a pro
perspective. To be precise, it was initially shown that in
Faddeevian approach there are actually three second-
constraints with a real parameter dependence. To disc
this one-parameter dependence of the Faddeevian regula
tion is a new interesting result. The counting of constrai
explains the presence of only one chiral excitation in
spectrum~besides the massive mode!. This is in contrast
with the usual JR regularization where the massless ex
tion is scalar, and is essentially tied to the fact that this re
larization is less constrained.

The restrictions of soldering however confine the appe
ance of a massive vector excitation to the interference
modes belonging to thea51 class that, being more con
strained, has only a massless scalar in the spectrum.
might raise questions about the interference of the ch
modes in this class. It should be noticed however that the
of light-cone variables in the soldering constrains even f
ther these chiral actions. Both the two and the fo
constraints classes display chiral excitations instead of m
less scalars. The original chiral mode of the Mitra’s cla
therefore disappear in the presence of the extra light-c
constraint and there appears to exist an ambiguity challe
ing the real meaning of the soldering. In fact there are
massless particles in the spectrum of Eqs.~34!,~35! for the
light-cone setting. However, what is important to observe
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this scenario is that the whole process of soldering is don
the Lagrangian framework, such that the limita→1 is well
defined. This is also valid for the JR regularization. The lim
leads to thea51 action and the canonical analysis may
done unambiguously. Oppositely, the Hamiltonian formu
tion has thea51 point as a singularity, as shown in Eq.~22!.

V. CONCLUSIONS

In this work we studied the bosonized form of thexQED2
fermionic determinant adopting the three-constraints regu
ization parametrized by a single real number. This exte
early regularizations proposed by JR and Mitra. Our res
display a clear-cut separation of the existing classes show
depend only on the number of second-class constraints.
new class with Faddeevian regularization and three seco
class constraints has been worked out in great detail.
spectrum has been shown to consist of a chiral boson a
massive photon field. The mass formula for the scalar e
tation was shown to reproduce the JR result. Considerat
of unitarity therefore restrain the range of the regularizat
parameter similarly. The use of the soldering formalis
supplemented by gauge invariance restricts the otherwise
bitrary ambiguity parameter to the specific valuea51,
which corresponds to the four-constraints class. This is a n
result that discriminates the special character of this un
biguous regularization point and gives a precise interpre
tion of the Schwinger dynamical mass generation mechan
as a consequence of right and left interference. To concl
we stress that the formalism and analysis proposed here
minates the close connection among anomalous gauge t
ries, the interference phenomenon and the mechanism o
namical mass generation, providing a variety of ne
possibilities with practical applications.

Note added. After the conclusion of this paper we learne
about a paper by Niemi and Semenoff@20# where the quan-
tum spectrum of the model is obtained without recourse
bosonization techniques. The fermionic Fock space is c
tructed as a functional of the electromagnetic potential tha
quantized in the Schro¨dinger picture. The gauge anoma
appears as a consequence of a nontrivial holonomy of
quantum configuration space producing the appearance
Schwinger term in the commutation relation of the Gau
law as foreseen by Faddeev. The authors of Ref.@20# con-
structed a regularized Gauss law operator that is nonano
lous taking advantage of the fact that in thexQED2 the
anomaly is a trivial two-cocycle, i.e., the coboundary of
one-cochain, leading to a consistent gauge invariant quan
theory albeit not Lorentz invariant.
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