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Interference phenomenon for the Faddeevian regularization of 2D chiral fermionic determinants
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The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes
according to the number of second-class constraints, including the new Faddeevian regularization, is examined
and extended. We find a new and important result that the Faddeevian class, with three second-class con-
straints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the
parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied
the restriction imposed by the interference of right-left modes of the chiral Schwinger mg@E}) using
Stone’s soldering formalism. The interference effects between right and left movers, producing the massive
vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class
which is the only nonambiguous class with a unique regularization parameter.

PACS numbgs): 11.10.Ef, 11.15-q, 11.30.Rd, 11.40.Ex

I. INTRODUCTION After the discovery that the two-dimensional chiral QED
(xQED,) could be consistently quantized if the regulariza-
It is often claimed that the chiral interaction of two- tion ambiguity were properly taken into account, the inves-
dimensional fermionic gauge models poses an obstruction ttigation of this subject has received considerable attention
gauge symmetry. In this paper we clarify several aspects aind emphasi$14,15. The quantization of the model was
this question for different regularizations of the chiral fermi- considered from different points of view, both canonical and
onic determinant, including the new Faddeevian regularizafunctional and the spectrum and unitarity was analyzed by
tion case proposed by Mitfd ], under the point of view of distinct techniques, including the gauge invariant Wess-
the Stone’s soldering formalisfi2]. It is worth mentioning  Zumino formulation[16], with results consistent with Ref.
that understanding the properties of two-dimensiof2d))  [12]. Despite this spate of interest, a surprising new result
fermionic actions is crucial in several aspects. For instanceyas reported recently by Mitrel] showing that a different
the one-cocycle necessary in recent discussions on smootbgularization prescription was yet possible, leading to new
functional bosonizatiofi3,4], which is just an expression of consequences. He proposed a n@&addeevianregulariza-
the 2D anomaly, is known to be the origin of higher- tion class, materialized by a unique and conveniently chosen
dimensional anomalies through a set of descent equationaass term leading to a canonical description with three con-
[5]. Incidentally, the anomaly phenomenon still defies astraints. Recall that in Ref§12] and[13], the Hamiltonian
complete explanation. framework was structured in terms of two classes with two
This paper is devoted to analyzing and exploring the re{a>1) and four @=1) second-class constraints, respec-
strictions that the soldering mechani$?6—8 imposes over tively. Mitra’s work brings a clear interpretation for the rea-
the regularization ambiguity of 2D chiral fermionic determi- sons leading the bosonization ambiguity to fit into three in-
nants. The soldering technique that is dimensionally indestead of two distinct classes, classified according to the
pendent and designed to work with dual manifestations ofiumber of constraints present in the model.
some symmetry is well suited to deal with the chiral charac- It is the main goal of this paper to study the restrictions
ter of 2D anomalous gauge theories. Receffilya new in-  posed by the soldering formalism over this new regulariza-
terpretation for the phenomenon of dynamical mass generaion class. Since soldering has ruled out the two-constraint
tion known as the Schwinger mechanigi0], has been class solution of Jackiw and Rajaraman being able to dy-
proposed which explores the ability of the soldering formal-namically generate mass via right-left interference, we are
ism to embrace interference effects. In that study the interled to ask if the new Faddeevian class of chiral bosons pro-
ference of right and left gauged Floreanini-Jackiw chiralposed by Mitra interfere constructively to produce a massive
bosong11] was shown to lead to a massive vectorial mode vectorial mode. To find an answer to this question we re-
for the special case where the Jackiw-Rajararfi#® regu-  view, in Sec. I, the procedure of Reff17] to obtain the
larization parameter ia=1 [12,13. multiparametric regularization effective action based on the
Pauli-Villars regularization proposed in RgL8]. This effec-
tive action is the point of departure for an extension of the

*Email address: everton@feg.unesp.br ambit of Ref.[1] that is needed to our purpose in this paper
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field is computed and its dependence on the ambiguity pa- exp{isg?f)[A(x)]}

rameter is shown to be tantamount to that in Ré&g]; the

massless sector, however, is more constrained than its coun- — ar T

terpart in Ref[12], corroborating the results of Réfl]. The :j Dip(X) Dip(x) exp{iS[ #(X), p(X), A(X) ]}
restrictions imposed by the soldering are worked out in Sec.

IV. We find the striking new result that the interference ef-

fects lift the parameter dependence by discriminating then a formal level this is a nonlocal action that reads
value of the only nonambiguous class. Our results give a

clear interpretation for the Schwinger mechanism as a left- . (0) o o

right interference phenomenon, as suggested by Ja&iw exp{iSer[A(X) ]} =0 f dX A ) (Mpat €ua)
Our findings are further discussed in the final section.

4

9“9k ,
X_Z(nﬁv_ EB]/)A (X)l (5)
Il. THE EFFECTIVE ACTION J

In a gauge invariant theory, free of anomalies, the canonibut there is an ambiguity related to the regularization proce-
cal description reveals a couple of first-class constraints, witlijure adopted. Let us discuss the regularization procedure
the Gauss lawG(x) appearing as the secondary constraintproposed by Frolov and Slavng#8]. To this end we add a
for the momentumry(x) corresponding to the scalar poten- multiparametric regularizing action
tial Ag(x). In an anomalous gauge theory, on the contrary,
gauge invariance is lost and the constraint algebra for the g —
gauge generator becomes afflicted by the presence of a  Sred A(X)]= er fd X i (X)
Schwinger term -

2n—1

X[ig—m,—qymA, ()T 1 (x),  (6)

[G(X),mo(Y)]=0,
where

[G(X),G(y)]=14CS" (x~Y), &) If=[a,K*(1+iys) +b, 2 (1=iys)ly,. (V)

where C is some constant. This structure introduces extrd ©'¢ ¥ "(X) Mare thevregulatois fields W'.th mass Wh_ose
degrees of freedom into the quantum theory as argued b§PUPIiNgsI's (or K*”, and%*") are matrices which will be
Faddee\[19]. The quantum chiral Schwinger model with the détermined later. These regulators bring up the following
usual regularizationg=1) does have more degrees of free- Partition function:

dom than its classical counterparts, as expected, but does not o

fit into Faddeev’s scheme above due to the functional depen- exr(ngfJA]) = J I1, Dy(X) Dis(X)

dence of the Gauss generator on the scalar potential, which

leads to a different constraint algebra than Eq, ><exp[iSreg{Er(x),z,/xr(x),A(x)]}, )
[G(X),mo(y)]#0, which can be solved tfl7]
[G(x),G(y)]=0. v SHAl= -5 f dX A, ()G (XY)AY)  (9)

The second-class nature of the set is then due to the nomvith
commutative character of the primary and secondary con-

straints. d’p — .
The new regularization class for the fermionic determi- G’”(x,y)=f 5 ;G (p)exd —i-p(x—y)]. (10
nant proposed by Mitra has the virtue of fitting perfectly into (2m)

Faddeev’s picture. In this section we shall review the com-l\I G is found to b
putation of the fermionic determinant leading to this newNOW G.(P) is found to be
scheme. Our starting point is the action for fermionic sector

. . — 1
of the chiral Schwinger model, GSL(D)= ;[ (ag-rlleerrlele)
S=f d?x () [1 6=y mAC)(L+iye) ]p(x), () p*p*
> X|2(1+A,) 77)\'(—? +Ar77)\K

where #/(x) is a fermionic field andA, is the vector gauge
field in a (1+1)-dimensional spacetime. From this classical +2A,a,b,M
action we obtain the following effective actig@8]:

%
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where I1l. HAMILTONIAN ANALYSIS AND SPECTRUM

i In their seminal work Jackiw and Rajaramfdr?] showed
A=1——In(—1)+O(y,) (11)  thattheyQED, could be consistently quantized by including

Yr the bosonization ambiguity parameter satisfying the condi-
tion a=1 to avoid tachyonic excitations. Later on, working
out the canonical structure of the model, Rajarama]
showed that the cases>1 anda=1 belonged to distinct
classes: tha=1 case represents the four-constraints class,
while thea>1 class presents only two constraints. The latter
is a continuous one-parameter class, while the former class is
nonambiguous containing only one representative. The con-

and also

Th o= Koup (4 €DK, (87+€)),

,uV}\K:

Thne= S pp( €2 057+ €0),

MVNK

M, =[K (7= eM)Z A3 0 (7 = €K, ], sequences of these distinct constraint structures are that the
a>1 class presents, besides the massless excitation also a
, P massive scalar excitatiohm?=e?a?/(a—1)] that is not
Yr :F' (12)  found on the other case. In the canonical approach the com-
r

mutator between the primary and the secondary constraints
vanishes in the first case. The emergence of two more con-
straints completes the second-class set. Mitra found the
amazing fact that with an appropriated choice of the regular-
E Erar2:2 Erbr2=0, ization mass term it is possible to close the second-class
r r algebra with only three constraints. His model is not mani-
festly Lorentz invariant, but the Poincagenerators have
been constructedl] and shown to close the relativistic alge-
bra on-shell. The main feature of this new regularization is
the presence of a Schwinger term in the Poisson brackets
algebra of the Gauss law, which limits the set to only three
2> eab,=1, (13)  second-class constraints. To see this let us writey@Q&D,

r Lagrangian, with Faddeevian regularization but with Mitra’s
regulator properly generalized to meet our purposes:

Imposing the conditionfl18]

E GrmrarzzE Grmrbrzzz em.a b, =0,
T T T

wheree,=(—1)"*! is the Grassman parity of the regulariz-
ing field ¢, . Then lettingm,— > we get

1 1

. L=— ZFMVF”V+§&#¢a“¢+q(gW+ be*”)d, PA,

S?éfJAqugf d?x AL, OMA (YA ). (14) 1
+§q2AMM EYA (17)

Jackiw and Rajaraman found a regularized solution with a

diagonal choice for the matrix where F,,=d,A,—d,A,; g,,=diag(+1,—1), and €01

=—¢e%=¢,;=1. b is a chirality parameter, which can as-

a 0 sume the valueb=*1. The mass-term matrik ,, is de-
mv— _ - nv
M (o a) o(x=y), (15 fined as
with a=0, corresponding to the cases with two and four- v 1 «
constraint’s classes. The physical content of these cases, as M#¥= a B S(x=y). (18)

disclosed by them, was found to correspond to an

a-dependent massive photon field and a massless fermion f@{qtice that we have chosen unity coefficient £ term. In
the former, while in the latter the photon field was absenty sense, this choice resembles Rajaramar'd class and is
Mitra noticed that the alternative choice the trademark of the Faddeevian regularization. In fact, Ra-
jaraman’s class is a singular point in the “space of param-
M,“,:( 1 _1) S(x—y) (16) eters.” Its canonical description has the maximum number of
-1 -3 ' constraints with no massive excitation. Such a case is found
in Eq. (17) if we makea=0 in Eq.(18). The appearance of
leads to a new class of solutions with three second-clasa new class needs a nonvanishing valuedolith Mitra’s
constraints and found that the physical spectrum of thehoice,a=—1 and 8= -3, the photon becomes massive
model contains a chiral fermion and a photon field with masgm?=4q?), but the remaining massless fermion has a defi-
m=4q?. To work out the soldering formalism and obtain the nite chirality, opposite to that entering the interaction with
interference contribution coming from the chiral fermions wethe electromagnetic field. This choice is, however, too re-
need to generalize the regularization dependence of the estrictive and may be relaxed leading to new and interesting
fective action. This is done in the next section. consequences. In this work the coefficientsand 8 are in
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principle arbitrary, but the mass spectrum will impose a con-
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The reduced Hamiltonian is obtained by strongly elimi-

straint between them. This is best seen in the Hamiltoniamating 7°, Ay, and, from the constraint$20) and substi-

formalism.
The canonical Hamiltonian is readily computed:

H= | d 1 12+1 2+ 1A’+1 "2rq(be’ —m,)A

2 1, 2
+q(¢'—bmy)A1+q (b_a)AoAl"‘Eq (1-B)AT;.

(19

tuting in the canonical Hamiltoniaf19):

1 1,2 N ’ 12
H,= | dx 5(77) —amAI+q(l-ba)A1¢d' + ¢

b 1 1
Y INr g & N2y T N2( 2 2
3¢ (7 () e pIAT

(23

The stationarity algorithm leads a set of three constraints: Making use of Eqs(22) and(23) we get the following equa-

Ql: 7TO,
Qy=(m) +q(my—bed")—g*(b—a)A;, (20)
Qz=—(b—a)7t+2aAl+(1+ B)A],

which are easily seen to be second-class, viz.,

J
{Q41(x),Q5(y)} = 2“5 o(X—y),

14
{9200,95(y)}= ~2¢%a - 5(x-y),

{Q5(x),Q3(y)}=g*(b—a)?8(x—y)
52

tions of motion for the remaining fields:
=bd — (7 + A (1-202+ p)AL, (24
q 7 2a @t A,

} q?
at=—b(7h) + P [(b—a)(1—a?)
a

—(b+a)(a®—B) 1A, (25
+b 1+
= aza e ZaB Al (26)

We are now ready to determine the spectrum of the
model. Isolatingz* from Eq. (26) and substituting in Eq.
(25), we will have

200 | .. 1+ 2ba  1+pB).
—(1+p) a(x=y), = il PN el Y
IXdy a+b Artb a+b Ax a+b  a+b AL
d q? )
1Q3(x),Q3(y)}=—2(b=a)(1+p) -~ 5(x—y), (21 +o, (b~ a)(1—a%)
with the other brackets vanishing. This is in sharp contrast —(b+a)(a®=B)]A;.
with the usual regularization possessing two or four second- (27)

class constraints. To perform quantization we compute the

Dirac brackets

1
{6(x),d(Y)}o=— EG(X—y),

1
{6(x),A1(Y)}p=— zq—a5(X_Y),

{600, 7 Y)}o=— 5= (b= @) 0(x—Y),

Jd
{AL1(x),A1(Y)}p= 2 SX=Y), (22

20%a

+a

{7 (x),Ar(y)} =—(b—> S(x—y)
yA1 D 2a ,

2
{700, 7))o= 5= (b= @)?0(x—y).

To get a massive Klein-Gordon equation for the photon field
we must set

(1+B8)+b(2a)=0, (28

which relatese and 8 and shows that the regularization am-
biguity adopted in Ref[1] can be extended to a continuous
one-parameter clagfor a chosen chirality We have, using
Egs.(27) and(28), the following mass formula for the mas-
sive excitation of the spectrum:

2_

,(1+ba)?
me=q-——.

ba (29
Note that to avoid tachyonic excitationg, is further re-
stricted to satisfyba=|al|, so a— —« interchanges from
one chirality to another. Observe that in the limit-0 the
massive excitation becomes infinitely heavy and decouples
from the spectrum. This leads us back to the four-constraints
class. It is interesting to see that the redefinition of the pa-
rameter aa=1+|«a| leads to
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) g°a? three second-class constraints has emerged: it must be veri-
m=-"1 (30  fied if new solutions resulting from interference will lead to
a gauge invariant massive excitation. To begin with, let us

which is the celebrate mass formula of the chiral SchwingefeWrite explicitly the two chiral actions presented in Etj7)
model, showing that the parameter dependence of the mals the appropriate light-cone variables
spectrum is tantamount to both the Jackiw-Rajaraman and
the Faddeevian regularizations. 1
Let us next discuss the massless sector of the spectrum. L,=d,pd_p+ E(a_A+—(9+A_)2+ 2q9_pA,
To disclose the presence of the chiral excitation we need to
diagonalize the re_du_ced _Hamiltonia(3). This_ p_rocedure —2q2|a|AE+q2(1+|a|)A,A+, (34)
may, at least in principle, impose further restrictions ower
This all boils down to find the correct linear combination of 1
the fields leading to the free chiral equation of motion. To L_=0,0d_¢+=(I_A.—d,A_)?+2qd, oA_
this end we substitute from its definition andA; from the 2
Klein-Gordon equation into Eq24) to obtain

—29%a]AZ +9%(1+|a))A_A,, (35

a q [2+2ba—a?|. 1 )
0=-1¢" 3, 2 |MTylare Ay where we have used the conventién = £|,. For clarity,
we have used different fieldsp(p) for opposite chiralities
d 1/ a . q (2+2ba—a? and the corresponding mass-term parameters) to make
T ax bep— a m) Art 2a T clear that these chiral theories are uncorrelated. However, by
making use of soldering formalism we will get a meaningful
1/ 2ba combination of these components.
S _) ] (31) The main point of soldering is to lift the global Nother
qlatb symmetry of each chiral component to a local symmetry of

) ) ) ) the system as a whole. Showing only the main parts of the
This expression becomes the equation of motion for a selfso|gering formalism we can see that the axial transformation
dual bosony (6¢=6p=n) leads to

x—bx'=0 (32)
oL =d_-n3(p),

if we identify the coefficients fo; andA; in the two in-

dependent terms of E¢31) with 0L_=d,nd_(¢), (36)
1 .
Y=+ - L)(Ai_bAl)- (33 WhereJ_(¢)=2(d-@+gA_) and J.(p)=2(d+p+0A.)
qla+b are the Noether’'s currents amgl is the gauge parameter.

Next we introduce the soldering fiel@.. appropriately

This field redefinition, differently from the case of the mas- ¢qpled to the Noether currents to obtain the once iterated
sive field whose construction imposed conditi@8), does  .hiral actions as

not restrain the parametarany further. Using Eqg20) and
(32), all the fields can be expressed as functions of the free

massive scalaf; and the free chiral bosog, interpreted as LO—P=0+B.I_(¢),
the bosonized Weyl fermion. The main result of this section
is now complete, i.e., the construction of the one-parameter LO-O=rO1B 3, (p). (37)

class regularization generalizing Mitra’s proposal. The stage
is now set to study the interference of chiral actions with The soldering fields act as partial compensators for the

(one-parametgrFaddeevian regularization. variance(36), transforming vectorially under the axial sym-
metry, 6B =d. 5. It is now possible to define an effective
IV. EFFECTS OF INTERFERENCE Lagrangian invariant under the combined transformation of

] ] ) o the chiral fields and compensators as
In this section we use the soldering formalism introduced

in Ref.[2] to examine the restriction imposed by chiral in-

terference over the regularization ambiguity parameter when _ 1

the Faddeevian approach is adopted. This study, taken in the Le=Ly+Lo+2B.B-. (38)
framework of the usual JR regularization, establishes a

strong restriction over the parameter’s values and gives ris€he soldered action is obtained using the fact that are

to a new interpretation for the mechanism of dynamical massuxiliary fields. Their elimination may be done altogether
generation occurring in the Schwinger model. This study isfrom their field equations but the effects of soldering will
meaningful and necessary since a new class of theories withersist as a residual symmetry for the remaining fields. This
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will naturally cohere the otherwise independent chiral fieldsthis scenario is that the whole process of soldering is done in

¢ andp in the form of a soldered Lagrangian for a collective the Lagrangian framework, such that the lirait-1 is well

field ® as defined. This is also valid for the JR regularization. The limit
leads to thea=1 action and the canonical analysis may be
done unambiguously. Oppositely, the Hamiltonian formula-

Lei=d . Pd_P—-2q(A,d_P—A_9,.PD) tion has thea=1 point as a singularity, as shown in Eg2).
1 2 O e
+ E(a+A_—a_A+) + E[aAJr—aA_
_ V. CONCLUSIONS
—(a—a)A A_] (39

In this work we studied the bosonized form of th@ED,
fermionic determinant adopting the three-constraints regular-
ization parametrized by a single real number. This extends

where ® = ¢ —p. Notice that except for the last term, the o .
$ P P garly regularizations proposed by JR and Mitra. Our results
i

soldered action describes the massive gauge invaria
bosonized version of the Schwinger model, with the gaug
invariant collective field® playing the role of the photon
field. Gauge invariance imposes a strong constraint over th
parameters as

splay a clear-cut separation of the existing classes shown to
depend only on the number of second-class constraints. The
ew class with Faddeevian regularization and three second-
class constraints has been worked out in great detail. The
spectrum has been shown to consist of a chiral boson and a
massive photon field. The mass formula for the scalar exci-
— tation was shown to reproduce the JR result. Considerations
a=a=0. 40 of unitarity therefore restrain the range of the regularization
parameter similarly. The use of the soldering formalism
supplemented by gauge invariance restricts the otherwise ar-
itrary ambiguity parameter to the specific valae=1,
hich corresponds to the four-constraints class. This is a new
(91 . . result that discriminates the special character of this unam-
A notable feature of the present analysis is the disclosur iguous regularization point and gives a precise interpreta-

of a new class of parametrizations and their dependence witf : - ; :
: . . ion of the Schwinger dynamical mass generation mechanism
the number of constraints. Different aspects of this featur ger cy g

This value corresponds to tlee= 1, four-constraints regular-
ization class. This is a remarkable result, consistent with Re

chiral actions it Is best to compare with the existing IItera'ries, the interference phenomenon and the mechanism of dy-
ture. This also serves to put the present work in a prope

; - P L . hamical mass generation, providing a variety of new
perspective. To be precise, it was initially shown that in thepoSSibiIitieS with practical applications.

Faddeevian approach there are actually three second-classNOte addedAfter the conclusion of this paper we learned

constraints with a real parameter dependence. To disclos{;Dout a paper by Niemi and Semenf##0] where the quan-
this one-parameter dependence of the Faddeevian regulari im spectrum of the model is obtained without recourse of

tion is. a new interesting result. The copnting Qf qonsFraimSoosonization techniques. The fermionic Fock space is con-
explains the presence of Omy one ch|r_al excitation n thetructed as a functional of the electromagnetic potential that is
spectrum(besides the massive modeThis is in contrast _quantized in the Schdinger picture. The gauge anomaly
S . ) . i aa{ppears as a consequence of a nontrivial holonomy of the
tlon |s.sca.lar, and is essgntlally tied to the fact that this regu@antum configuration space producing the appearance of a
larization is .Iegs constralneq. . Schwinger term in the commutation relation of the Gauss
The restrictions of soldering however confine the appear, w as foreseen by Faddeev. The authors of Ref] con-
ance of a massive vector excitation to th? interference oLy, toq 5 regularized Gauss law operator that is nonanoma-
modgs belonging to tha=1 class that., being more con- lous taking advantage of the fact that in th&QED, the
strained, has only a massless scalar in the spectrum. Th omaly is a trivial two-cocycle, i.e., the coboundary of a

might raise questions about the interference of the chir ne-cochain, leading to a consistent gauge invariant quantum
modes in this class. It should be noticed however that the u%‘ﬁeory albeit not Lorentz invariant

of light-cone variables in the soldering constrains even fur-
ther these chiral actions. Both the two and the four-
constraints classes display chiral excitations instead of mass-
less scalars. The original chiral mode of the Mitra's class
therefore disappear in the presence of the extra light-cone This work was supported in part by CNPg, FINEP,
constraint and there appears to exist an ambiguity challengzAPES, FAPESP, and FUJBrazilian Research Agencies
ing the real meaning of the soldering. In fact there are nd.M.C.A. was financially supported by Fun@aale Amparo
massless particles in the spectrum of E@),(35) for the  a Pesquisa do Estado dé@®aulo(FAPESP, Grant No.
light-cone setting. However, what is important to observe in99/03404-6.
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