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Class of self-dual models in three dimensions
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In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the
original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful
property of the duality transformations in order to generate a new field. The generalized propagator can be
written in terms of the primitive onéfirst ordey, and also the respective order and disorder correlation
functions. Some conclusions about the “charge screening” and magnetic flux were established.

PACS numbsefs): 11.10.Ef, 11.10.Kk, 11.15.q

From the mathematical point of view, topological theories AN = Ewﬁ(gaA(ﬁNH), (1)
in three dimensions contain a rich variety of models which #
have received much attention in the last years. One of thefyhere the indeN is an integer which identifies the family of
is the self-dual moddl1], which presents a close connection the respective self-dual field. The relati¢t) gives rise to
with the well established Chern-Simof@S) theory[2]. This  the possibility of generating a class of Lagrangian densities
fact could be confirmed in different ways: for instance, byindexed byN.
comparing the Green functions of the Maxwell-Chern- Let us start our study by considering the following La-
Simons(MCS) theory and the self-duaSD) model[2,3], by  grangian density:
inspecting the constraint structure of each mopal or
through the bosonization of the massive Thirring model in a ) ) ”
three dimensions, which is related to the MCS theory in the Li=— Z(FMV)ZJF bd, FHI"F ,\+ 0e*"Pd,A,d,0°A,,
large mass limiff4]. In this last case, the equivalence be- (2
tween both models has been obtained starting from a careful
analysis of the partition function and was improved laterwhich has been examined recent8}, with a, b, and 6 de-
through the calculation of higher order derivative tefs  fined in it. Now, we are going to show that the Lagrangian
In the present work, we shall introduce a hierarchical fam-density appearing in Eq2) is a higher order extension from
ily of dual models in three dimensions, related to the originafthe Proca-Chern-Simons one:
SD model. The mathematical structure of the SD theory of-
fers an alternat.ive way of building up families of QUaI LO= _ EA(O)A,L(O)Jr E(F(O))2+66“”PA(°)aVA(°). &)
models. In the final step, a master Lagrangian density corre- " 2w # P
sponding to a higher order derivative model is generated. A
very interesting aspect of this model is the existence of afBy using the transformatio(l), with N=0, it is lengthy but
isomorphism between its observables and those obtained Riraightforward to show that we arrive at the Lagrangian den-
its first order form. This fact can be proved through differentsity (2). The propagators can be related among them, since
procedures: first, in the canonical analysis of the fields andAf)A(VO))Z —Ewﬁfyab<<9aA%1)ﬁaA§;1)>-
their momenta, by using the treatment of order redudi@jn From the above considerations it becomes clear that the
In what follows, we will use a method developed in a seriesresults obtained here can be generalized fromNiweder to
of papers[7] (see alsq8] for related worky in order to the (N+1) one. Therefore, from the basic Lagrangian den-
describe the magnetic flux and charge on the plaext) sity given by Eq.(3), we can build up the following generic
through two dual operatorgu, o), called disorder and order higher-order Lagrangian density:
operators, respectively.

In order to implement our alternative model, let us begin ™) (—1)(N-D (N)—(N-1) WN)
exploring the mathematical structure of the self-dual fields. L= Fo U (alJ+b)F*
In this sense, let us consider the duality transformation of the
primary fieldAQY, — (=1 DgerrrAlN g, OMNAN (4)

The above Lagrangian density belongs to a class such that
*Email address: dutra@feg.unesp.br the first one is related to the bosonization of the massive

0556-2821/99/6(2)/0277014)/$15.00 61027701-1 ©1999 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 61 027701

Thirring model[5]. In order to simplify the calculation of the -1 b

canonical momenta, we are going to define the quantities DELNV)(k): m[ (a+ — | Puvt 2i e#xykk]
=V A, §,=0"TA,, ) £ ok,

whered "= [[d3k/(27)%](k?) ~"e'**. Now, if we take the fenee D

rescalingd] "— (O —-Q) ", and takeQQ—0 at the end of

the calculations, the expansion in powers of the o )
d’Alambertian can be employed by acting on the fields. ConWhere the last term corresponds to a gauge fixing. By using
sequently, we can derive the canonical momenta associaté@Urier transform we can obtain the equivalent propagator in

: . PR the coordinate space. Here, we adBpt,= kzgw— k,k,and
to independent variables {,f,,) in a natural way, f=b—ak?. Hence, if we fix some parameters in the original

o Lagrangian density given by E¢4) like a=44a?, b=1 and
5S(n):J d3x2 E(W(n)afy_,_s(n) éfy) N=1, we obtain the photon correlation function
n=0 dt v v '

where now the actior8(™=[dtL(™ is the reduced form (AL()A(y)=[(1—-4a?0)P,,+i0€,,,0°]
from those in Eq(4). Therefore, the momenta become

" 1 L 4a?
71,IJ(N):(_ 1)N—l{bf0v(N)+a(aka)\fg(N)éll(/_&Oa)\f;(N)) E(l—az)r ?
—20e"9,0"f ), a\” g
—(0la)(1— a?16%)R
s" M) = (—1)N"12a(3, T4 M) — 553, 190MN) — 9O g f ) «© b
(6) 47R 4
which relates physical quantities frofd theory with the X €0 aV(Za— E) (12)
first-order one. From the above equations we conclude that . 4

the basic commutators of the present theory in the Coulomb
gauge are _ _
with 6=i6, 4a?< #? and “dual’ stands for the generalized
£ N, 7N Two- 0= VTZEDTAMN (3, 7N () 0 model defined through the propagator of the Lagrangian den-
LEE00, M) oo LA, mc(y) ho-yo sity. The above equation represents the photon correlation
=—i(=1)N HYbs,2(x—y) function of the problem mentioned in ReB]. _ _
o At this point, we are able to extract a very interesting and
+(b+av?)g,0G(x—y)}, (70  useful result about the order-disorder correlation functions,
starting from Eq.(12). We remember to the reader that the
P ) Fows i 4\N-1 27T N order-disorder formalism has been introduced first by
(1100, 87 () o= yo (=)™ boyd™(x=y) Kadanoff and Cevl0] in order to discuss the existence of a
= JVZE=Dr AN () sN (V) To0_ 0, gengralized statistics.. Posteriorly this was extended to the
A0, ST (Y) Jo-ye continuum quantum field theorj11]. This procedure has
(8)  been applied to some models in€2) dimensions by using
a new interpretation of the operators that generate the statis-

and also tics. Now, over the planext,x?), the Maxwell theory has a
nontrivial value for the topological charge associated with
[77|(N>(7)’7T(kN)(y)]XO:yO: —i6(—1)N"Yb+av?d) the identically conserved curredt'=¢€“*?9,A,. The mag-
o netic flux content correspondentdd is described by a non-
X €09 52(X—Y), (9) local operator(vortex operator u(x) defined on a certain

curve C. The correlation functiofu(1)w(2)) of the disor-
der operator is given as Euclidean functional integrals. In the
same way, we can define the charge bearing opesdgtor as
being a dual version of..

In order to give a better understanding of the role of
o ) order-disorder correlation functions, we will take as an ex-
Here we remark that the application of the expansion ofmple the case of the Maxwell-Chern-Simons theory, since
VO on the above brackets, extracts the temporal part oits photon propagator in the coordinate space will be useful
the d’Alambertian operator. in the following.

The Lagrangian densit{4) permits us to infer the corre- The order correlation function for the MCS theory is de-
sponding form of the photon propagator in momentum spacéned in terms of the following Euclidean functional integral:

whereG(x,y) obeys the equation

(b+aV?)V2G(x,y)= 84(x—Y). (10)
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. 5 Now, going back to our model, we begin considering the
(o(x)o*(y))=Z f DA, ex _f d°z limit which excludes the Podolsky termd?>o?, in Eq.(12),
! Y4 GCHY 4 GV n (ALOAL(Y)YIA=[P  +2i0e,,,0°] Y
X EA’M(P +0CH'+G )Av+ CMA " ALY &=0—" 2% e,uva 52
(13 ( 4)\e R
X\ =75 (18
where P#'=—[16*"+ g*9", C*'=—ie**"d, and G*” is 6?)AmR
tche usual gauge fixing term. Here we adopt an external f|eI<|jn order to compare it with results of the MCS case. By
Integrating overA,, we readily obtain examining the diagonal part of the above propa_gator we have
1 (AL(X)A,(y))dve=6 ! 1 Ale ™
X = — =
(a(x)a*(y)>=exp{§J d*z z'C,(2) ALY e 6?) 4mR
1 e*;R
X[PMV‘FQC’MD‘FG’“D]lCV(Z')] (14) = ?—1 47TR+extraterms
with [P#¥+ gCH"+GH] 1=(A (X)A,(Y))mcs being the 2 VA on
Euclidean propagator of th&,, field in MCS theory. Its ex- RV (ALIALY ) ucs
plicit expression in the coordinate space is given by (19)
1—e (R where “extra terms” are proportional to thé-functions.
(ALOOALY))mcs=[P* +i60e"“"d,] A7 R From Egs.(15) and(17) we expect that
o
-1
1
1 R X)ogk (y))d¥¥=exg | = —1
— lim g#4” ———}. (15 (or() o (¥)) p[(az ) ]
m—0 m 87T

X(or(X)orx (Y))mcs, (20
Before going on, we should remark that(x) o*(y)) is not f
K . K . rR—w
a gauge invariant quantity. The reason is that under a formal
gauge transformatiomA,—A +A, the charge operator (or(X)or* (y))4U3— const. (21

changes tar’ =exp(27iA(X))o. In this way, going back to . _ L _
Eq. (14), we must extract the gauge independent part 0f'l'herefore the order correlation function, which is associated

(a(x)a*(y)). This will be achieved by inserting the gauge with charge screening, in our model has a similar behavior to
independent part ofA,(x)A*(y))ucs, Namely 5*” and that of the MCS theory. The resqlt given by E(q.£_3) ex-
e*“” proportional terms. At the end of the calculations, it canPresses the charge screening, which in this case is

be shown that only the diagonal part @& ,(X)A} (Y))mcs o

proportional to 8**0] contributes to the order correlation Qdual:j d’z Jozaf d?zVied,A(z,6), (22

function. Therefore we obtain the following expression:
which differs from the usual MCS charge by a second order

(a(X)o* (Y))mcs derivative operator. Heré, =¢"J,,, defined in Eq(23) be-
R low. Note that the presence of the differential operators in
. e dual ; ;
_ * diag Q does not alter the long range distance behavior of the
eXp{(AL(OA, (y)>§=0}ex;{ 47-rR) (16) order correlation function when compared with MCS theory.

Now, in order to build the disorder correlation function

ra? — (m(1)u(2)) in our model, we begin defining the vortex op-

=exp —[e R—1]=(or(X)orx (¥)) erator which is associated to the magnetic flux on the plane
o (x*,x?). This is obtained by coupling a certain external field
2 W, to the dual current through
_ E —6R 17)
=eX E e ( o] etve
J'=FH— —————A,, (23
(1-4a°0)

. . 259
where the renormalizationrg= oce™ 120 \was adopted and ] ) ) ]
is a charge parameter. As a consequenceWh'Ch comes from the equation of motion. The generalized

lim_  (or(X)or*(y))=1, which reflects the screening of disorder operator can be written as

R—ox

the charge associated with the mass generation for the gauge dualyon . 3 quv
field induced by the CS term. pp (X)=exp —ib | d°z J"W,, 1, (24)
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where W*” is an external tensor fieldW,,=d,W,  where(A, (x)A* L(y))dualis given by Eq.(12). Now, if we

—3,W,, which would be coupled to the conserved currentnow turn our attention to the fact that in the limite>4a2,

Jgin order to obtain the correct correlation function the photon correlation function is given by E48) and the
field U, will not depend on the factord?, we will have

A,u,DdUa|AV

<,U«0(X)M*0(Y)>dual DA exp{ fd3

1 1 , ~
(o0 p* o(y))RE1 =€ p{z 1—?) f ¢’z 22, +U,)

1
+AD, ceg W’ + Z(WW)2 ] B
X (A A )MCYZ,+U,)
(29)
1
with G CSstanding for generalized Chern-Simons, &rfff*' - Z(WW)Z} , (29)
is given by
DiSM=(1=4a’0)P,,,— £0,0,~ 060,00, with T, = 6/, d\"e,,,,0*T183(z—\).
Ges. N b Now, we note that up ta] term intoU, field, the inte-
D5y "=Puy— Oeq, 0" U(1-4a’) 7, (26) grand of the above equation corresponds to the correlation

_ . . . function of MCS theory. However, singé ,(x) A* ,(Y))mcs
whereP,,,==6,,+ 9,0, . NOV\L’ if we consider the action depends on 1Z— 7| the contractions which involve the field
of the operators,, and fe,,,d“[1 overW,,, this gives
fise to U, give rise to delta functiong®(z—\) and 5°(z— ) such

that the line integral oved\ , andd 5, vanishes. This means

that the integrand of the E@30) corresponds to that of the
PMVWM_}ZVZJ dn, 8%(z—)), MCS theory or,
o€, d WH X) dual_ gyf1-1/6%) X) ke MCS
u SU,=0| dte,,,0"0(1—4a?00) (o(X)u* oY) s (mo(X)ux o(y)) (30
(1—4a?0) .

X 83(z—\). (27) Therefore, since the behavior of the vortex correlation func-
tion operator in the MCS theory for very large distances
Therefore, after integration over the fied, in Eq. (22) we  [Xx—Yy|— is a constant, indicating that, does not create
get genuine vortex excitations, we expect the same behavior for
the dual theory.

For a future program, we intend to investigate the possible
connection with the interesting formalism developed by
Barciet al, where a mapping was made among some models
+U L(ZX V)AL () A (y))dua! in three dimensiongl2]. This was done by using a nonlinear

: . redefinition of the gauge field, in contrast to the linear self-
X (22 XY) U2 XY) dual transformation used in this work.

— E(W )2 (29) The authors are grateful to CNPq and FAPESP for partial
A financial support, and to D. Dalmazi for discussions.

(o) p* (YN = exp[ fd3z 2(Z,(z,x.y)
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