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Class of self-dual models in three dimensions

A. de Souza Dutra*
UNESP/Campus de Guaratingueta´-DFQ, Av. Dr. Ariberto Pereira da Cunha, 333 Guaratingueta´, São Paulo, Brazil

C. P. Natividade
UNESP/Campus de Guaratingueta´-DFQ, Av. Dr. Ariberto Pereira da Cunha, 333 Guaratingueta´, São Paulo, Brazil

and Instituto de Fı´sica–Universidade Federal Fluminense, Av. Litoraˆnea S/N, Boa Viagem, Nitero´i,
Rio de Janeiro, Rio de Janeiro, Brazil

~Received 26 June 1998; published 21 December 1999!

In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the
original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful
property of the duality transformations in order to generate a new field. The generalized propagator can be
written in terms of the primitive one~first order!, and also the respective order and disorder correlation
functions. Some conclusions about the ‘‘charge screening’’ and magnetic flux were established.

PACS number~s!: 11.10.Ef, 11.10.Kk, 11.15.2q
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From the mathematical point of view, topological theori
in three dimensions contain a rich variety of models wh
have received much attention in the last years. One of th
is the self-dual model@1#, which presents a close connectio
with the well established Chern-Simons~CS! theory@2#. This
fact could be confirmed in different ways: for instance,
comparing the Green functions of the Maxwell-Cher
Simons~MCS! theory and the self-dual~SD! model@2,3#, by
inspecting the constraint structure of each model@3#, or
through the bosonization of the massive Thirring model
three dimensions, which is related to the MCS theory in
large mass limit@4#. In this last case, the equivalence b
tween both models has been obtained starting from a ca
analysis of the partition function and was improved la
through the calculation of higher order derivative terms@5#.

In the present work, we shall introduce a hierarchical fa
ily of dual models in three dimensions, related to the origi
SD model. The mathematical structure of the SD theory
fers an alternative way of building upN families of dual
models. In the final step, a master Lagrangian density co
sponding to a higher order derivative model is generated
very interesting aspect of this model is the existence of
isomorphism between its observables and those obtaine
its first order form. This fact can be proved through differe
procedures: first, in the canonical analysis of the fields
their momenta, by using the treatment of order reduction@6#.
In what follows, we will use a method developed in a ser
of papers@7# ~see also@8# for related works!, in order to
describe the magnetic flux and charge on the plane (x1,x2)
through two dual operators (m,s), called disorder and orde
operators, respectively.

In order to implement our alternative model, let us beg
exploring the mathematical structure of the self-dual fiel
In this sense, let us consider the duality transformation of
primary fieldAm

(N) ,
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(N)5emab]aAb

(N11) , ~1!

where the indexN is an integer which identifies the family o
the respective self-dual field. The relation~1! gives rise to
the possibility of generating a class of Lagrangian densi
indexed byN.

Let us start our study by considering the following L
grangian density:

L152
a

4
~Fmn!21b]mFml]nFnl1uemnr]sAm]n]sAr ,

~2!

which has been examined recently@9#, with a, b, andu de-
fined in it. Now, we are going to show that the Lagrangi
density appearing in Eq.~2! is a higher order extension from
the Proca-Chern-Simons one:

L1
(0)52

a

2
Am

(0)Am(0)1
b

2
~Fmn

(0)!21uemnrAm
(0)]nAr

(0) . ~3!

By using the transformation~1!, with N50, it is lengthy but
straightforward to show that we arrive at the Lagrangian d
sity ~2!. The propagators can be related among them, s
^Am

(0)An
(0)&52emabenàb̀^]aAb

(1)]àAb̀
(1)

&.
From the above considerations it becomes clear that

results obtained here can be generalized from theN order to
the (N11) one. Therefore, from the basic Lagrangian de
sity given by Eq.~3!, we can build up the following generic
higher-order Lagrangian density:

L (N)5
~21!(N21)

4
Fmn

(N)h (N21)~ah1b!Fmn(N)

2~21!(N21)uemnrAm
(N)]nh (N)Ar

(N) . ~4!

The above Lagrangian density belongs to a class such
the first one is related to the bosonization of the mass
©1999 The American Physical Society01-1
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Thirring model@5#. In order to simplify the calculation of the
canonical momenta, we are going to define the quantitie

f m[AhN21Am , ḟ m[AhN21Ȧm , ~5!

whereh2n5*@d3k/(2p)3#(k2)2neikx. Now, if we take the
rescalingh2n→(h2V)2n, and takeV→0 at the end of
the calculations, the expansion in powers of t
d’Alambertian can be employed by acting on the fields. C
sequently, we can derive the canonical momenta assoc
to independent variables (f m , ḟ m) in a natural way,

dS(n)5E d3x(
n50

`
d

dt
~pn

(n)d f n1Sn
(n)d ḟ n!,

where now the actionS(n)5*dtL(n) is the reduced form
from those in Eq.~4!. Therefore, the momenta become

pn(N)5~21!N21$b f0n(N)1a~]k]l f l
0(N)dk

n2]0]l f l
n(N)!

22uemln]l]n f m%,

sn(N)5~21!N212a~]m f mn(N)2d0
n]r f 0r(N)!2ue0ln]0f l

(N) ,
~6!

which relates physical quantities fromN theory with the
first-order one. From the above equations we conclude
the basic commutators of the present theory in the Coulo
gauge are

@ f l
~N!~ x̄!,pk

(N)~ ȳ!#x05y05A¹2(N21)@Al
~N!~ x̄!,pk

~N!~ ȳ!#x05y0

52 i ~21!N21$bd lkd2~ x̄2 ȳ!

1~b1a¹2!] l]kG~ x̄2 ȳ!%, ~7!

@ ḟ l~ x̄!,sk
(N)~ ȳ!#x05y052 i ~21!N21bd lkd2~ x̄2 ȳ!

5A¹2(N21)@Ȧl
~N!~ x̄!,sk

(N)~ ȳ!#x05y0,

~8!

and also

@p l
~N!~ x̄!,pk

(N)~ ȳ!#x05y052 iu~21!N21~b1a¹2!

3e ik] l]
id2~ x̄2 ȳ!, ~9!

whereG( x̄,ȳ) obeys the equation

~b1a¹2!¹2G~ x̄,ȳ!5d2~ x̄2 ȳ!. ~10!

Here we remark that the application of the expansion
Ah

N21
on the above brackets, extracts the temporal par

the d’Alambertian operator.
The Lagrangian density~4! permits us to infer the corre

sponding form of the photon propagator in momentum sp
02770
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Dmn
(N)~k!5

21

k2N~ f 224u2k2!
H S a1

b

k2D Pmn12i emlnklJ
2

j

f

kmkn

k2N12
, ~11!

where the last term corresponds to a gauge fixing. By us
Fourier transform we can obtain the equivalent propagato
the coordinate space. Here, we adoptPmn5k2gmn2kmkn and
f [b2ak2. Hence, if we fix some parameters in the origin
Lagrangian density given by Eq.~4! like a[4a2, b51 and
N51, we obtain the photon correlation function

^Am~x!An~y!&dual5@~124a2h !Pmn1 i ūemna]a#

3S 1

F ū

a S 12
a2

ū2 D G 2 21D S 4a2

ū2 D
3

e2~ ū/a!(12 a2/ ū2)R

4pR
2

1

4p

3j]m]nS 2a2
R

4 D ~12!

with ū[ iu, 4a2, ū2 and ‘‘dual’’ stands for the generalize
model defined through the propagator of the Lagrangian d
sity. The above equation represents the photon correla
function of the problem mentioned in Ref.@9#.

At this point, we are able to extract a very interesting a
useful result about the order-disorder correlation functio
starting from Eq.~12!. We remember to the reader that th
order-disorder formalism has been introduced first
Kadanoff and Ceva@10# in order to discuss the existence of
generalized statistics. Posteriorly this was extended to
continuum quantum field theory@11#. This procedure has
been applied to some models in (211) dimensions by using
a new interpretation of the operators that generate the st
tics. Now, over the plane (x1,x2), the Maxwell theory has a
nontrivial value for the topological charge associated w
the identically conserved currentJm5emnr]nAr . The mag-
netic flux content correspondent toJm is described by a non
local operator~vortex operator! m(x) defined on a certain
curveC. The correlation function̂m(1)m(2)& of the disor-
der operator is given as Euclidean functional integrals. In
same way, we can define the charge bearing operators(x) as
being a dual version ofm.

In order to give a better understanding of the role
order-disorder correlation functions, we will take as an e
ample the case of the Maxwell-Chern-Simons theory, si
its photon propagator in the coordinate space will be use
in the following.

The order correlation function for the MCS theory is d
fined in terms of the following Euclidean functional integra
1-2



e

m
r

o
e

an

n

c
f

au

he

y
ave

ted
r to

der

in
the
ry.
n
-

ane
ld

ed

BRIEF REPORTS PHYSICAL REVIEW D 61 027701
^s~x!s* ~y!&5Z21E DAm expH 2E d3z

3F1

2
Am~Pmn1uCmn1Gmn!An1CmAmG J

~13!

where Pmn[2hdmn1]m]n, Cmn[2 i eman]a and Gmn is
the usual gauge fixing term. Here we adopt an external fi
Cm .

Integrating overAm we readily obtain

^s~x!s* ~y!&5expH 1

2E d3z d3z8Cm~z!

3@Pmn1uCmn1Gmn#21Cn~z8!J ~14!

with @Pmn1uCmn1Gmn#215^Am(x)An(y)&MCS being the
Euclidean propagator of theAm field in MCS theory. Its ex-
plicit expression in the coordinate space is given by

^Am~x!An~y!&MCS5@Pmn1 iueman]a#F12e2uR

4pu2R
G

2 lim
m→0

j]m]nF 1

m
2

R

8pG . ~15!

Before going on, we should remark that^s(x)s*( y)& is not
a gauge invariant quantity. The reason is that under a for
gauge transformationAm→Am1L, the charge operato
changes tos85exp„2p iL(x)…s. In this way, going back to
Eq. ~14!, we must extract the gauge independent part
^s(x)s*( y)&. This will be achieved by inserting the gaug
independent part of̂ Am(x)An* (y)&MCS, namely dmn and
eman proportional terms. At the end of the calculations, it c
be shown that only the diagonal part of^Am(x)An* (y)&MCS

proportional todmnh contributes to the order correlatio
function. Therefore we obtain the following expression:

^s~x!s* ~y!&MCS

5exp$^Am~x!An* ~y!&j50
diag%expS e2uR

4pRD ~16!

5expH pa2

ū
@e2 ūR21#J ⇒^sR~x!sR* ~y!&

5expH pa2

ū
e2 ūRJ ~17!

where the renormalizationsR[sepa2/2ū was adopted anda
is a charge parameter. As a consequen
lim

R→`
^sR(x)sR* (y)&51, which reflects the screening o

the charge associated with the mass generation for the g
field induced by the CS term.
02770
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Now, going back to our model, we begin considering t
limit which excludes the Podolsky term,ū2@a2, in Eq.~12!,

^Am~x!An~y!&j50
dual>@Pmn12i ūemna]a#S 1

ū2
21D

3S 4

ū2D e2 ūR

4pR
, ~18!

in order to compare it with results of the MCS case. B
examining the diagonal part of the above propagator we h

^Am~x!An~y!&dual>hdmnS 1

ū2
21D S 4

ū2D e2 ūR

4pR

>S 1

ū2
21D e2 ūR

4pR
1extra terms

52S 1

ū2
21D ^Am~x!An~y!&MCS

~19!

where ‘‘extra terms’’ are proportional to thed-functions.
From Eqs.~15! and ~17! we expect that

^sR~x!sR* ~y!&dual>expF S 1

ū2
21D 21G

3^sR~x!sR* ~y!&MCS, ~20!

for R→`

^sR~x!sR* ~y!&dual→const. ~21!

Therefore the order correlation function, which is associa
with charge screening, in our model has a similar behavio
that of the MCS theory. The result given by Eq.~18! ex-
presses the charge screening, which in this case is

Qdual5E d2z J05uE d2z ¹j
2e i j ]z

i Ai~z,j!, ~22!

which differs from the usual MCS charge by a second or
derivative operator. HereJm[]nJmn defined in Eq.~23! be-
low. Note that the presence of the differential operators
Qdual does not alter the long range distance behavior of
order correlation function when compared with MCS theo

Now, in order to build the disorder correlation functio
^m(1)m(2)& in our model, we begin defining the vortex op
erator which is associated to the magnetic flux on the pl
(x1,x2). This is obtained by coupling a certain external fie
Wm to the dual current through

Ju
mn[Fmn2

uhemna

~124a2h !
Aa , ~23!

which comes from the equation of motion. The generaliz
disorder operator can be written as

mu
dual~x!5expH 2 ibE d3z Ju

mnWmnJ , ~24!
1-3
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where Wmn is an external tensor field,Wmn[]mWn

2]nWm , which would be coupled to the conserved curre
Ju

mn in order to obtain the correct correlation function

^mu~x!m* u~y!&dual5E DAm expH 2E d3zF1

2
AmDmn

dualAn

1AmDmn(GCS)W
n1

1

4
~Wmn!2G J ,

~25!

with GCSstanding for generalized Chern-Simons, andDmn
dual

is given by

Dmn
dual[~124a2h !Pmn2j]m]n2ueman]ah,

Dmn
GCS[Pmn2uean]ah~124a2h !21, ~26!

wherePmn[2hdmn1]m]n . Now, if we consider the action
of the operatorsPmn and ueman]ah over Wmn , this gives
rise to

PmnWm→Zn5E dln d3~z2l!,

uheman]aWm

~124a2h !
→Un5uE dlm eman]ah~124a2h !21

3d3~z2l!. ~27!

Therefore, after integration over the fieldAm in Eq. ~22! we
get

^mu~x!m* u~y!&N51
dual5expH 1

2E d3z d3ź„Zm~z,x,y!

1Um~z,x,y!…^Am~x!A* n~y!&dual

3„Zn~ ź,x,y!1Un~ ź,x,y!…

2
1

4
~Wmn!2J , ~28!
ys

A

02770
t
where^Am(x)A* n(y)&dual is given by Eq.~12!. Now, if we
now turn our attention to the fact that in the limitu@4a2,
the photon correlation function is given by Eq.~18! and the
field Un will not depend on the factor 4a2, we will have

^mu~x!m* u~y!&N51
dual5expH 1

2 S 12
1

ū2D E d3z d3ź~Zm1Ũm!

3^AmA* n&
MCS~Zn1Ũn!

2
1

4
~Wmn!2J , ~29!

with Ũn5u*x,Ldlmeman]ahd3(z2l).
Now, we note that up toh term into Ũn field, the inte-

grand of the above equation corresponds to the correla
function of MCS theory. However, since^Am(x)A* n(y)&MCS
depends on 1/uz2 źu the contractions which involve the fiel
Ũn give rise to delta functionsd3(z2l) andd3(z2h) such
that the line integral overdlm anddhm vanishes. This mean
that the integrand of the Eq.~30! corresponds to that of the
MCS theory or,

^mu~x!m* u~y!&dual5exp(121/u2)^mu~x!m* u~y!&MCS.
~30!

Therefore, since the behavior of the vortex correlation fu
tion operator in the MCS theory for very large distanc
ux2yu→` is a constant, indicating thatmu does not create
genuine vortex excitations, we expect the same behavior
the dual theory.

For a future program, we intend to investigate the poss
connection with the interesting formalism developed
Barci et al., where a mapping was made among some mod
in three dimensions@12#. This was done by using a nonlinea
redefinition of the gauge field, in contrast to the linear se
dual transformation used in this work.
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