PHYSICAL REVIEW A, VOLUME 61, 022711

Coordinate-space Faddeev-Hahn-type approach to three-body charge-transfer reactions
involving exotic particles
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Low-energy muon-transfer cross sections and rates in collisions of muonic atoms with hydrogen isotopes are
calculated using a six-state close-coupling approximation to coordinate-space Faddeev-Hahn-type equations. In
the muonic case satisfactory results are obtained for all hydrogen isotopes and the experimentaly observed
strong isotopic dependence of transfer rates is also reproduced. A comparison with results of other theoretical
and available experimental works is presented. The present model also leads to good transfer cross sections in
the well-understood problem of antihydrogen formation in antiproton-positronium collision.

PACS numbd(s): 34.70+€, 36.10.Dr

[. INTRODUCTION tential treatment employed in alternative investigations.
For the three-charged-particle system, sayuTDnly two
Charge-transfer reactions involving few particles inasymptotic configurations are possible, i.e.,u()DT and
atomic physics are very challenging and interesting from(Tux)D. This suggests to write down a set of two coupled
both theoretical and experimental points of view and weequations for component®, and ¥, of the wave function
study here the problem of charge transfer in some atomid =¥;+%¥, [9,10, with each component carrying the
reactions involving exotic particles. Specifically, we studyasymptotic boundary condition for a specific configuration.
muon transfer in D-H, T-H,,, and T-D, systems where the One such equation with two components for the three-
suffix 4 denotes a muonic atom with the electron replaced bypPticle system was first written by Hall, following the
a muon ). We also study the problem of antihydrohen most general decomposition of the three-body wave fu_nctlon
— o . L . . into three components suggested by Fadddey, and is
(H).forrr)atlon in anuprgt.on-posnromum collision with the usually referred to as the Faddeev-Hahn equaftic). We
positronium(Ps in an initial 1s state. _ solve the integro-differential form of this equation by a six-
On the theoretical side, in these transfer reactions ongiate close-coupling approximation scheme that consists in
needs to consider rear_rangem_ent of a charged patrticle. B%Xpanding the wave-function components, and ¥, in
cause of the Coulomb interaction one needs a careful treaferms of eigenfunctions of subsystem Hamiltonians in initial
ment of the dynamics for a correct description. If one canand final channels, respectively. The resultant coupled equa-
identify the basic dynamical ingredients necessary for a sation is then projected on the expansion functions. After a
isfactory description of these processes involving a smalpartial-wave projection this leads to a set of one-dimensional
number of particles, such a study will help us to formulatecoupled equations for the expansion coefficients, which is
models in more complex situations. On the experimentakolved numerically.
side, the present study involving muon and positron transfer Recently, there have been considerable theoretical and ex-
is of current interest in the muon-catalyzed fusion cycleperimental interests in the study of the muon-transfer reac-
[1-6] and in the formation and study of the antihydrogentions between hydrogen isotopes in the muon-catalyzed fu-
atom[7,8]. sion cycle
Although there are some experimental measurements and
several theoretical investigations of these processes, there
still remain discrepancies among various studies. Here we
use a different theoretical approach based on a detailed few-
body dynamical consideration for a careful reinvestigation of
these three-body charge-transfer reactions. Traditionally, THH =T, +H, @
such problems are investigated by a tractable approximation
scheme in the Schdinger framework, without explicitly T+D —T +D.
considering a few-body dynamical equation. In addition to oo
variational calculations, these schemes include close-
coupling, hyperspherical, and adiabatic approximationsThe measurements for the transfer rates
Here we would like to point out that the processes of muonic
transfer reactions and antihydrogen formation are three-body Ae=oVN )
Coulombic rearrangement collisions. Consequently, it seems e
reasonable that, in addition to approximations based on the
Schralinger equation, a detailed few-body consideration iswith o, being the transfer cross sectianthe relative veloc-
useful. In what follows we develop a method, which is basedty of the incident particles, antllo=4.25< 10?2 cm 2 the
on detailed few-body equations rather than the effective poliquid hydrogen density, are listed in Table | together with

D+H,—D,+H,
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TABLE I|. Experimental and theoretical results for the muonic Whereq’l(Fzs,Ii) is quadratically integrable over the vari-

1 . < = i«
transfer rates.,/10° s~ ! given for low energiesE<0.1 eV). able s, andW,(F1s,p,) Over the variablg ;5. To define
V¥, (1=1,2) a set of two coupled equations can be written as

Reaction Experiment Theory
D+H,—D,+H 95+34[13] 140[20]  159[21] (E—Hg— Vo)W 1(F23,p1) = (Vast+ Vi) Wo(F13,p2),
143+13[14] 133 (6)
84+13[15] (E—=Ho=V13)Wa(riz,p2) = (Viat+ Vi) Wi(ras,p1),
T+H,—T,+H 58.6+10[16] 55[20] 71.7[21]
612 whereE is the center-of-mass enerdyl, is the total kinetic
T+D,—T,+D 2.9+0.417] 3.5[20] 2.26[21] energy operator, an¥;(r;;) are pair-interagtion potentials
2.8+0.918] 1.5 [22] 2.8[23] (i#)=1,2,3). Equationg6) satisfy the Schrdinger equa-
2.8+0.919] 2.39[24] 0.92[25] tion exactly, and for energies below the three-body breakup
35+0.519] 2.3 threshold they possess the same advantages as the Faddeev
equations, since they are formulated for the wave-function
%Present results. components with correct physical asymptotes.
bRates reproduced from cross sections. In the general case a component of the three-body wave

function has the asymptotic form that includes all open chan-
recent theoretical calculations. One can see differences beels: elastic/inelastic, transfer, and breakup. In this case each
tween various experimental dgti3—-19 and theoretical re- component of the total wave function carries a specific
sults[20-25. B asymptotic behavior. The componen¥; carries the
One of the most attractive reactions forfétmation is the ~ asymptotic behavior in elastic and inelastic channels:

three-body positron-transfer process L W _
o o W1(ros,p1)y e 1 % (1 29)

p+Ps —H+e™. 3

elfin ik(Mp by
Although no experimental cross sections are available, this +; An (82, ) €70 2 prpn(rag). 0
process is being used at CERN for the production and study
of antihydrogen. A number of calculations have recentlyThe component¥, carries the asymptotic behavior in the
been carried out to calculate the cross section of rea¢8pn transfer channels:
as a function of the incident Ps energy. The calculations were
erformed by different methods; for instance, with hyper- gl Y tr ik® >

gpherical cgupled-channel expansiofi26] and clos)g-) Wa(l13:p2) g, % Am( £y, €7 72l p2m(T13), ®
coupling approximation§CCA’s) [27]. As an additional test
of the present method, calculations for B@/ave antihydro-  \yhere ek{"2¢, (f ) is the incident wavep(rjs) the nth

gen formation(3) at low energies are also performed. excited bound-state wave function of paif3j, and kﬂ)

In Sec. Il we develop the formalism. The results obtained_ i . 11 1 )
. . . . —\/ZMi(E—En( 5) with M “=m; “+(1+m;)"". HereE,
for reactions(1) and (3) are given in Sec. lll. Finally, we is the binding energy ofj@), i #]=1,2, andAe"'”(Qpl) and

present some concluding remarks in Sec. V. . . ] ] 1 ]
A'(Q Pz) are the scattering amplitudes in the elastic/inelastic

and transfer channels. This approach simplifies the solution

procedure and simultaneously provides a correct asymptotic
Let us take the system of units to ke=Ai=m,=1 and behavior for the solution below the three-body breakup

denote, say, T byi, D by 2, and muon by 3. Below the threshold.

three-body breakup threshold, the following two-cluster Let us write Eqs(6) in terms of the adopted notations

asymptotic configurations are possible in the system

Il. THEORETICAL FORMULATION

(123): (23)—1 and (13)—2. These configurations, denoted VIZS Vr%_

simply by 1 and 2, respectively, are determined by the Jacobi E+ 2Mk +2—M‘f—vj3 Wi(Fi3,0)
coordinates I(;3, i) k J

R =(VjztVj)¥(rys,pj). 9

rjsts_Fja Ek:(F3+ijj)/(1+mj)_Fku j#+k=1,2,
(4) Here j#k=12 and My '=m, "+ (1+m)~",  u;'=1

) +m; L.
ri, m; being coordinates and masses of the partigles For solving Eq.(9) we expand the wave-function compo-
=1,2,3, respectively. nents in terms of bound states in initial and final channels,
Let us introduce the total three-body wave function as aand project this equation on these bound states. This pre-
sum of two components scription is similar to that adopted in the close-coupling ap-
o o L proximation. Specifically, we use the following partial-wave
W(ry,ra,r3)=Wy(rag,p1) +Wa(ris.pa), (5)  expansion:
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> - (K) _ - ~ This shows that the modulus pf depends on two vectors:
wk(r]g"pk)_u_%| RUNCRURIR R IUEETE pj=Tjs— Bxpk. The integration in the right-hand side of
(10 Eqg. (14) is done over these two vectors.

To obtain one-dimensional integral differential equations,
corresponding to Eq(14), we proceed with the integration
over variabledp; ,p\}, rather thar{r;s, p,}. The Jacobian of
this transformation isy” 2. Thus, we come to a set of one-
dimensional integral differential equations

M@Y= 2 CrpimYam (P Yim(Tja), (1)

whereC'’s are the Clebsch-Gordon coefficient¥s are the
usual spherical harmonics, amd\,l andM,m’,m are the
appropriate angular-momentum variables and their projec- _ # A\+1)

tions. Next we make the following close-coupling-type ap- 2Mk(E—EE1]))f(ak)(pk)+[—2——2} £(py)
proximation for the radial part in terms of the bound-state Ipi Py

wave functions in the initial and final channels:

Mk % Ki .
© L o o o == 2 fo do; Sy (piop) T (o)), (17
(DLMM(Pk,rjs)*azn: fan (PR (rjz), (12 DA
: __where functionsst*))
where radial components of the bound-state wave functions aa
RU)(r5) satisfy

(pk.pj) are defined as follows:

Sk (P pj) = 2040, f dp; f dpRID(rja){Ya(pi)

gl 1 [i(r?gi)—l(wl) ~Vi3 . .
T 2urilargs| s ) @Y i(Fja)}Em(Via+ Vi)Yo (p))
XRA(rj3)=0. (13 OV (PR, (o). (18

Then we substitL_Jte Eq$10)—(12) intq Eq. (_9), multi_ply The fourfold multiple integration in Eqg18) leads to a
the resultant equation by the appropriate biharmonic funCSingIefoId integral and the expressiéis) for any value or-
tions and the corresponding radial functiolﬁgf)(rjs), and  pital momentunL becomes

integrate over the corresponding angular coordinates of the

e o e 1 3= 120128 410

2Mk(E—E9’>f£,k><pk)+[%—mp—gl)}fg”(pk) | Tdo sinwRE )0V + Vit
=om, 3, | ararts | o | dh R0 Yo X (1) 2 Dl (00,01 5inCy
BY(Fa)Hu(Viat Vio{Ya (p)) XY i) )Yy (Vi ), (19

®YI’(?k3)}LMRE1j')|f(rk3)fgr)(pi)‘ (14)  Where DLTm,(O,a:,O) are Wigner functicinsw isathe angle
betweerp; andpy, v; the angle between; andp;, andvy
the angle between;; and p.

Finally, the set of integro-differential equations for the

‘unknown functionsf ) (p) can be written as

For brevity we have defined=nIN anda’=n’l'\’, and
omit the conserved total angular-momentum labigl. The
functions f¥(p,) depend on the scalar argument, but Eq

(14) is not yet one-dimensional. We are using the Jacobi n
coordinates
(12 3 AAN+1) )
T ()2~ == | 10(p0)
Pj=Trj3— Bilka: rjsz;(ﬁkpk+Pj)y i i

V2N+1) (2N +1) (= y
R =02 — 511 JO dpi 15 (pir)
rjk:;(Uij—UkPk). (15 @
™ ) N - 1 1
with Xf de|an§1',)(|ri/3|){— o ]
0 Iriral  [rii/]

myg .
ﬁk:1+—mk: o=1-B¢, vy=1-BB;, j#k=1.2

16 xR (Tis))pipir 2 Dy (0,0,0)
mm’
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TABLE II. Cross sectiongr(D-H,) = 0,/10"%° cn? and rates\(D-H,) =\/10'° s~* for the u-transfer
reaction D+H,—D,+H, at different energies.

o(D-H,) AN(D-H,) a(D-H,) N(D-H,) a(D-H,) A(D-H,)
E (eV) 1s 1s+2s 1s+2s+2p
0.001 292.6 0.64 412.8 0.91 604.8 1.33
0.01 92.3 0.64 130.0 0.90 190.0 1.32
0.04 46.0 0.64 64.7 0.90 94.3 1.31
0.1 29.0 0.64 40.8 0.90 59.4 1.31
1.0 9.0 0.63 12.8 0.90 19.4 1.30
CEm G Vi (v, ) Yo (v, 7). (20) Am| K |? 4x 8;D2+K3
TiT L 02|1=iK| k02 (p_1)2 2
ki ki’ (D—=1)+ (K11t Ky
Here (25)
i#£i'=1,2, g=47M,/*, kﬂ)= /2Mi(E—E§f’)), wherei=j=1,2 refer to the two channels and
D=detK= KllKZZ_ K12K21. (26)

w is the angle between the Jacobi coordingteandp;,, v;

is the angle betweer) ; andp; andv;. is the angle between Whenk{V—0, Ky,=Ky~k{?, Ky;~k{?; in this case
Oy=015~ 1/k(11) andog= 0411~ const. For comparison with

experimental low-energy data it is very useful to calculate
the transfer rate€?) because,(k{*’—0)~ const.

riz andp;, with

i’

siny; = P sinw, and coy;= (B;pi+ picoSw).
Yrirs Yrirs 21) Ill. NUMERICAL RESULTS
To solve the integro-differential equation, one has to cal-
To find a unique solution to systerf20), appropriate culate the angle integrals in E(0) that are independent of
boundary conditions need to be considered. First we imposghe energyE. One needs to calculate them only once and
fﬁ,',)(O)=0. For the present scattering problem with (23) store them on a hard disk for the calculation of other observ-
as the initial state, in the asymptotic region two solutions toables; for instance, the cross sections at different energies.

Eq. (20) satisfy the following boundary conditions: Subintegrals in Eq(20) have a strong dependence grand
" 0 " pir (I#i'=12). To calculatéSS;’,)(pi ,pi+) at different co-
f15'(p1) s —+= Sin(ki’p1) +Kyicodkivpy), ordinates an adaptable algorithm has been used. In this case,
using the relation
f(lzs)(Pz)p'z_:Tac VW1 v K cogk{p,), (22 X2 BpP— p?
COSw = #, (27
where 1 refers to channé&h-(23), 2 to channeR+(13) and 2B,pipi

K denotes the corresponding on-shkll matrix [28]. For ]
scattering with2+(13) as the initial state, we have the fol- the angle-dependent part of E@0) can be written as the

lowing conditions: following integral:
47 [(2N+1) (2N +1)]Y?

f(lls)(Pl)p'l:Too \/V2/V1K210051k(11)l)1), S(C:L/)(Pi :Pi’):E L+1
F2(p2) 5,7 Sin(kED pa) + K008 kiPpa), (23 “ f PO xR0l =1+
|Bipi—pir| rii (X)
wherev;, i=1,2 are velocities in channel With the fol-
lowing change of variables in Eq&0): % RS,I),(“S(X))EI Danm, (O,w(x),O)Ck[}]m
mm

1200 =110(p) —sin(k{Vpy), o
XCrorm Yimi(X), MYy (v (X), 7).

12(p2) =% (po) —sin(kPpo), (24) 29

we can obtain two sets of inhomogeneous equations that afdote that the expressiof28) differs from zero only in a
solved numerically. The cross sections are given by narrow strip whermp;=~p; .
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TABLE Ill. Cross sectionsr(T-H,,) = /10" ?° cn? and rates\(T-H,) =\,/10%° s™* for the u-transfer
reaction T+H,—T,+H, at different energies.

o(T-H,) N(T-H,) o(T-H,) N(T-H,) o(T-H,) N(T-H,)
E (eV) 1s 1s+2s 1s+2s+2p
0.001 204.2 0.42 249.4 0.52 294.4 0.61
0.01 64.3 0.42 78.5 0.51 92.6 0.60
0.04 31.9 0.42 38.9 0.51 45.8 0.60
0.1 19.9 0.41 24.3 0.50 28.6 0.60
1.0 5.50 0.36 6.70 0.44 8.0 0.52

We employ a muonic atomic unit: distances are measureds energy decreases the transfer cross sections increase and
in units ofa,, , wherea,, is the radius of the muonic hydro- the transfer rates attain a constant value. These transfer rates
gen atom. The integro-differential equations were solved byare essentially constant below 0.1 eV and are also measured
the usual numerical procedure by discretizing them into @xperimentally, so that we can compare our rates with other
linear system of equations, which are subsequently solved bgxperimental and theoretical results.
the Gauss elimination method. In solving these equations, For the D-H, system the present low-energy muon trans-
distances up to 50, were considered and 400-600 points fer rate of 13% 10® s ! is in agreement with both experi-
were used in the discretization. The following mass valuegnents[13,14]. The present rate is slightly smaller than the
are used in the unit of electron masay=1836.152,mp theoretical studies of Ref§20] and[21] and this makes the
=3670.481, andn;=5496.918, and the muon massnis, agreement with experiment better. For the T-lystem
=206.769. again the present result of 81LC® s™! is in better agree-

Tables I, 1ll, and 1V include our results for the muonic ment with experimen16] than the other theoretical studies.
transfer cross sections and rates for all hydrogen isottpes In case of T-D,, the present result 2810° s ' is also in
using different approximation schemes. We present resultgery good agreement with experiment.
for the two-, four-, and six-state approximations where we Within the six-state approximation our cross sections for
include 1Is, 1s+2s, and Is+2s+2p states of the muonic low-energy elastic scattering in the case of the Jdystem
atoms in the initial and final channels, respectively. In solv-are presented in Table V together with other theoretical re-
ing the equations, we employed only the lowest partial wavesults. The present cross sections attain a constant value at
e.g.,L=0. As we shall mainly be concerned with the experi-low energies and are in fairly good agreement with the re-
mental muon transfer rates at very low energies, the highesults of other studies.
partial waves are expected to have a negligible contribution. As a futher test of the present few-body approach, we
The 2p states are found to contribute significantly in T-D  have also calculate§-wave cross sections of antihydrogen
moderately in D-H , and little in T-H, systems. This is in formation in antiproton-positronium low-energy collisions
agreement with a similar conclusion in RéR4] for the  (3). In Table VI our results within the six-state approxima-
T-D, system. This could be understood qualitatively fromtion (P$1s+2s+2p],H[1s+2s+2p]) are compared with
the following consideration. At zero incident energy the rela-calculations based on the hyperspherical coupled-channel
tive velocity in the final state after muon transfer is the high-method[26]. Considering that the present calculation is lim-
est in the case of T-H, lowest in the case of T-D, and ited to only the lowest partial waveL&0) and to a trun-
intermediate in the case of D;H It is expected that the cated basis set &+ 2s+2p), the agreement is reasonable
polarization potential arising out of as* 2s+2p calcula-  for energies below 1 eV. However, at 2 eV the agreement is
tion will have the largest effect on convergence when thenot so good. The reason for this is not clear at present. Fur-
final-state velocity is the lowest. Hence the necessity of theher theoretical investigation including higher partial waves
higher-order states is more pronounced in the case of, T-Dwith an extended basis set could reveal the trend of the con-
and less pronounced in the case of T-HNe also find that verged cross sections.

TABLE IV. Cross sectionsgr(T-D,,) = 5,/10"2° cn? and rates\(T-D,,) =\,/10° s™* for the u-transfer
reaction T+D,—T,+D, at different energies.

o(T-D,) N(T-D,) o(T-D,) N(T-D,) o(T-D,) N(T-D,)
E (eV) 1s 1s+2s 1s+2s+2p
0.001 4.58 0.77 5.05 0.84 13.7 2.3
0.01 1.44 0.76 1.60 0.84 4.3 2.3
0.04 0.71 0.75 0.78 0.83 2.14 2.26
0.1 0.44 0.73 0.48 0.81 1.32 2.21
1.0 0.1 0.44 0.1 0.5 0.3 1.5
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TABLE V. Elastic cross sections for T-Dcollision in units of
10 20 cn? at different energies.

PHYSICAL REVIEW A 61022711

TABLE VI. Cross sections in unit ofra2 for the positron trans-
fer reactionp+Ps—H+e .

Present results

E (eV) 1s+2s+2p [22] [24] [25]
0.001 1.2 1.7 1.63 2.014
0.01 1.3 2.3 2.15 3.605

Present results Present results

E(eV) 1s+2s+2p [26] E(eV) 1s+2s+2p [26]
0.1 15 23 10 3.2 3.5
0.5 2.0 26 20 1.7 3.7

IV. CONCLUSION

The study of three-body Coulombic systems has been th&here the cross section depends in a complicated manner on

#The cross sections estimated from Fig. 1 of R26].

subject of this work. We have formulated a method for athe chargeZ [5]. . . _
few-body description of the rearrangement scattering prob- Theoretically, the reactio29) is of much interest as an

lem by solving the Faddeev-Hahn-type equations in coordi€*@mple of low-energy rearrangement scattering in a system
nate space. It is shown that within this formalism the appli-Of three charged particles with Coulomb repulsion in the
cation of a close-coupling-type ansatz leads to satisfactoriin@l state. Evidently it makes additional difficulties for a
results already in low-order approximations féy muon-  correct theoretical description of EQ9) [12]. The Faddeev-

transfer reactions between hydrogen isotopes(andntihy- ~ Hahn-type approach seems to be suitable for the study of
drogen formation in the antiproton-positronium collision. Such reactions and would be a topic of future investigation.

Because of computational difficulties, in this preliminary ap-We are presently in the process of studying reacti29)
plication we have considered up to six states in the expandith the present method faf=2 and 3. We also plan to

sion scheme (4+2s+2p on each centg¢r which may not

employ an extended basis set with more basis functions in

always be adequate. Further calculations with larger basi§1€ future. Also, the excited-state muon-transfer reactions of

sets are needed to obtain the converged results.

recent experimantal and theoretical intefe,30 could be

The present model leads to a reduction of the usual tecritudied with the present model.

nical effort and is definitely worth using for investigations of

larger systems. It seems reasonable to suppose that the

method should be an effective tool for the description of
other muonic and atomic few-body collisions. For instance,
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