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Coordinate-space Faddeev-Hahn-type approach to three-body charge-transfer reactions
involving exotic particles

Renat A. Sultanov and Sadhan K. Adhikari
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, 01405-900 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 22 February 1999; published 12 January 2000!

Low-energy muon-transfer cross sections and rates in collisions of muonic atoms with hydrogen isotopes are
calculated using a six-state close-coupling approximation to coordinate-space Faddeev-Hahn-type equations. In
the muonic case satisfactory results are obtained for all hydrogen isotopes and the experimentaly observed
strong isotopic dependence of transfer rates is also reproduced. A comparison with results of other theoretical
and available experimental works is presented. The present model also leads to good transfer cross sections in
the well-understood problem of antihydrogen formation in antiproton-positronium collision.

PACS number~s!: 34.70.1e, 36.10.Dr
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I. INTRODUCTION

Charge-transfer reactions involving few particles
atomic physics are very challenging and interesting fr
both theoretical and experimental points of view and
study here the problem of charge transfer in some ato
reactions involving exotic particles. Specifically, we stu
muon transfer in D-Hm , T-Hm , and T-Dm systems where the
suffix m denotes a muonic atom with the electron replaced
a muon (m2). We also study the problem of antihydrohe

(H̄) formation in antiproton-positronium collision with th
positronium~Ps! in an initial 1s state.

On the theoretical side, in these transfer reactions
needs to consider rearrangement of a charged particle.
cause of the Coulomb interaction one needs a careful tr
ment of the dynamics for a correct description. If one c
identify the basic dynamical ingredients necessary for a
isfactory description of these processes involving a sm
number of particles, such a study will help us to formula
models in more complex situations. On the experimen
side, the present study involving muon and positron tran
is of current interest in the muon-catalyzed fusion cy
@1–6# and in the formation and study of the antihydrog
atom @7,8#.

Although there are some experimental measurements
several theoretical investigations of these processes, t
still remain discrepancies among various studies. Here
use a different theoretical approach based on a detailed
body dynamical consideration for a careful reinvestigation
these three-body charge-transfer reactions. Traditiona
such problems are investigated by a tractable approxima
scheme in the Schro¨dinger framework, without explicitly
considering a few-body dynamical equation. In addition
variational calculations, these schemes include clo
coupling, hyperspherical, and adiabatic approximatio
Here we would like to point out that the processes of muo
transfer reactions and antihydrogen formation are three-b
Coulombic rearrangement collisions. Consequently, it se
reasonable that, in addition to approximations based on
Schrödinger equation, a detailed few-body consideration
useful. In what follows we develop a method, which is bas
on detailed few-body equations rather than the effective
1050-2947/2000/61~2!/022711~7!/$15.00 61 0227
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tential treatment employed in alternative investigations.
For the three-charged-particle system, say TDm, only two

asymptotic configurations are possible, i.e., (Dm) T and
(Tm)D. This suggests to write down a set of two coupl
equations for componentsC1 andC2 of the wave function
C5C11C2 @9,10#, with each component carrying th
asymptotic boundary condition for a specific configuratio
One such equation with two components for the thr
particle system was first written by Hahn@9#, following the
most general decomposition of the three-body wave func
into three components suggested by Faddeev@11#, and is
usually referred to as the Faddeev-Hahn equation@12#. We
solve the integro-differential form of this equation by a si
state close-coupling approximation scheme that consist
expanding the wave-function componentsC1 and C2 in
terms of eigenfunctions of subsystem Hamiltonians in init
and final channels, respectively. The resultant coupled eq
tion is then projected on the expansion functions. Afte
partial-wave projection this leads to a set of one-dimensio
coupled equations for the expansion coefficients, which
solved numerically.

Recently, there have been considerable theoretical and
perimental interests in the study of the muon-transfer re
tions between hydrogen isotopes in the muon-catalyzed
sion cycle

D1Hm→Dm1H,

T1Hm→Tm1H, ~1!

T1Dm→Tm1D.

The measurements for the transfer rates

l tr5s trvN0 , ~2!

with s tr being the transfer cross section,v the relative veloc-
ity of the incident particles, andN054.2531022 cm23 the
liquid hydrogen density, are listed in Table I together w
©2000 The American Physical Society11-1
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recent theoretical calculations. One can see differences
tween various experimental data@13–19# and theoretical re-
sults @20–25#.

One of the most attractive reactions for H¯formation is the
three-body positron-transfer process

p̄1Ps →H̄1e2. ~3!

Although no experimental cross sections are available,
process is being used at CERN for the production and st
of antihydrogen. A number of calculations have recen
been carried out to calculate the cross section of reaction~3!
as a function of the incident Ps energy. The calculations w
performed by different methods; for instance, with hyp
spherical coupled-channel expansions@26# and close-
coupling approximations~CCA’s! @27#. As an additional test
of the present method, calculations for theS-wave antihydro-
gen formation~3! at low energies are also performed.

In Sec. II we develop the formalism. The results obtain
for reactions~1! and ~3! are given in Sec. III. Finally, we
present some concluding remarks in Sec. IV.

II. THEORETICAL FORMULATION

Let us take the system of units to bee5\5mm51 and
denote, say, T by1, D by 2, and muon by 3. Below the
three-body breakup threshold, the following two-clus
asymptotic configurations are possible in the syst
~123!: ~23!21 and ~13!22. These configurations, denote
simply by 1 and 2, respectively, are determined by the Jac
coordinates (rW j 3 ,rW k)

rW j 35rW32rW j , rW k5~rW31mjrW j !/~11mj !2rWk , j 5” k51,2,

~4!

rW j , mj being coordinates and masses of the particlej
51,2,3, respectively.

Let us introduce the total three-body wave function a
sum of two components

C~rW1 ,rW2 ,rW3!5C1~rW23,rW 1!1C2~rW13,rW 2!, ~5!

TABLE I. Experimental and theoretical results for the muon
transfer ratesl tr/108 s21 given for low energies (E,0.1 eV).

Reaction Experiment Theory

D1Hm→Dm1H 95634 @13# 140 @20# 159 @21#

143613 @14# 133a

84613 @15#

T 1Hm→Tm1H 58.6610 @16# 55 @20# 71.7 @21#

61a

T 1Dm→Tm1D 2.960.4@17# 3.5 @20# 2.26 @21#

2.860.3@18# 1.5b @22# 2.8 @23#

2.860.5@19# 2.39b @24# 0.93b @25#

3.560.5@19# 2.3a

aPresent results.
bRates reproduced from cross sections.
02271
e-

is
y

y

re
-

d

r

bi

a

whereC1(rW23,rW 1) is quadratically integrable over the var
able rW23, and C2(rW13,rW 2) over the variablerW13. To define
C l ( l 51,2) a set of two coupled equations can be written

~E2H02V23!C1~rW23,rW 1!5~V231V12!C2~rW13,rW 2!,
~6!

~E2H02V13!C2~rW13,rW 2!5~V131V12!C1~rW23,rW 1!,

whereE is the center-of-mass energy,H0 is the total kinetic
energy operator, andVi j (r i j ) are pair-interaction potential
( i 5” j 51,2,3). Equations~6! satisfy the Schro¨dinger equa-
tion exactly, and for energies below the three-body brea
threshold they possess the same advantages as the Fa
equations, since they are formulated for the wave-funct
components with correct physical asymptotes.

In the general case a component of the three-body w
function has the asymptotic form that includes all open ch
nels: elastic/inelastic, transfer, and breakup. In this case e
component of the total wave function carries a spec
asymptotic behavior. The componentC1 carries the
asymptotic behavior in elastic and inelastic channels:

C1~rW23,rW 1!r1→1`
; eik1

(1)zw1~rW23!

1(
n

An
el/in~Vr1

!eikn
(1)r1/r1wn~rW23!. ~7!

The componentC2 carries the asymptotic behavior in th
transfer channels:

C2~rW13,rW 2!r2→1`
; (

m
Am

tr ~Vr2
!eikm

(2)r2/r2wm~rW13!, ~8!

where eik1
(1)zw1(rW23) is the incident wave,wn(rW j 3) the nth

excited bound-state wave function of pair (j 3), and kn
( i )

5A2Mi(E2En
( j )) with Mi

215mi
211(11mj )

21 . HereEn
( j )

is the binding energy of (j 3), iÞ j 51,2, andAel/in(Vr1
) and

Atr(Vr2
) are the scattering amplitudes in the elastic/inelas

and transfer channels. This approach simplifies the solu
procedure and simultaneously provides a correct asymp
behavior for the solution below the three-body break
threshold.

Let us write Eqs.~6! in terms of the adopted notations

FE1
¹rW k

2

2Mk
1

¹ rW j 3

2

2m j
2Vj 3GCk~rW j 3 ,rW k!

5~Vj 31Vjk!C j~rWk3 ,rW j !. ~9!

Here j Þk51,2 and Mk
215mk

211(11mj )
21, m j

2151
1mj

21 .
For solving Eq.~9! we expand the wave-function compo

nents in terms of bound states in initial and final channe
and project this equation on these bound states. This
scription is similar to that adopted in the close-coupling a
proximation. Specifically, we use the following partial-wav
expansion:
1-2
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Ck~rW j 3 ,rW k!5 (
LMl l

FLMl l
(k) ~rk ,r j 3!$Yl~ r̂k! ^ Yl~ r̂ j 3!%LM ,

~10!

$Yl~ r̂k! ^ Yl~ r̂ j 3!%LM5 (
m8m

Clm8 lm
LM Ylm8~ r̂k!Ylm~ r̂ j 3!, ~11!

whereC’s are the Clebsch-Gordon coefficients,Y’s are the
usual spherical harmonics, andL,l,l and M ,m8,m are the
appropriate angular-momentum variables and their pro
tions. Next we make the following close-coupling-type a
proximation for the radial part in terms of the bound-sta
wave functions in the initial and final channels:

FLMl l
(k) ~rk ,r j 3!'

1

rk
(

n
f nll

(k)LM~rk!Rnl
(k)~r j 3!, ~12!

where radial components of the bound-state wave funct
Rnl

(k)(r j 3) satisfy

H En
(k)1

1

2m j r j 3
2 F ]

]r j 3
S r j 3

2 ]

]r j 3
D2 l ~ l 11!G2Vj 3J

3Rnl
(k)~r j 3!50. ~13!

Then we substitute Eqs.~10!–~12! into Eq. ~9!, multiply
the resultant equation by the appropriate biharmonic fu
tions and the corresponding radial functionsRnl

(k)(r j 3), and
integrate over the corresponding angular coordinates of
vectorsrW j 3 andrW k . Then we obtain a set of integral differ
ential equations for the unknown functionsf nll

(k) (rk),

2Mk~E2En
( j )! f a

(k)~rk!1H ]2

]rk
2

2
l~l11!

rk
2 J f a

(k)~rk!

52Mk(
a8

E
0

`

dr j 3r j 3
2 E dr̂ j 3E dr̂k

rk

r j
Rnl

(k)~r j 3!$Yl~ r̂k!

^ Yl~ r̂ j 3!%LM* ~Vj 31Vjk!$Yl8~ r̂ j !

^ Yl 8~ r̂ k3!%LMRn8 l 8
( j )

~r k3! f a8
( j )

~r j !. ~14!

For brevity we have defineda[nll and a8[n8l 8l8, and
omit the conserved total angular-momentum labelLM. The
functions f a

(k)(rk) depend on the scalar argument, but E
~14! is not yet one-dimensional. We are using the Jac
coordinates

rW j5rW j 32bkrWk3 , rW j 35
1

g
~bkrW k1rW j !,

rW jk5
1

g
~s jrW j2skrW k!, ~15!

with

bk5
mk

11mk
, sk512bk , g512bkb j , j 5” k51,2.

~16!
02271
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This shows that the modulus ofrW j depends on two vectors
rW j5grW j 32bkrW k . The integration in the right-hand side o
Eq. ~14! is done over these two vectors.

To obtain one-dimensional integral differential equation
corresponding to Eq.~14!, we proceed with the integration
over variables$rW j ,rW k%, rather than$rW j 3 ,rW k%. The Jacobian of
this transformation isg23 . Thus, we come to a set of one
dimensional integral differential equations

2Mk~E2En
( j )! f a

(k)~rk!1H ]2

]rk
2

2
l~l11!

rk
2 J f a

(k)~rk!

5
Mk

g3 (
a8

E
0

`

dr jSaa8
(k j)

~rk ,r j ! f a8
( j )

~r j !, ~17!

where functionsSaa8
(k j) (rk ,r j ) are defined as follows:

Saa8
(k j)

~rk ,r j !52rkr jE dr̂ jE dr̂kRnl
(k)~r j 3!$Yl~ r̂k!

^ Yl~ r̂ j 3!%LM* ~Vj 31Vjk!$Yl8~ r̂ j !

^ Yl 8~ r̂ k3!%LMRn8 l 8
( j )

~r k3!. ~18!

The fourfold multiple integration in Eqs.~18! leads to a
singlefold integral and the expression~18! for any value or-
bital momentumL becomes

Saa8
(k j)

~rk ,r j !5
4p

2L11
@~2l11!~2l811!#1/2rkr j

3E
0

p

dv sinvRnl
(k)~r j 3!@Vj 3~r j 3!1Vjk~r jk!#

3Rn8 l 8
( j )

~r k3! (
mm8

Dmm8
L

~0,v,0!Cl0lm
Lm Cl80l 8m8

Lm8

3Ylm~n j ,p!Yl 8m8
* ~nk ,p!, ~19!

where Dmm8
L (0,v,0) are Wigner functions,v is the angle

betweenrW j andrW k , n j the angle betweenrWk3 andrW j , andnk

the angle betweenrW j 3 andrW k .
Finally, the set of integro-differential equations for th

unknown functionsf nll
(k) (rk) can be written as

F ~kn
( i )!21

]2

]r i
2

2
l~l11!

r i
2 G f a

( i )~r i !

5gi(
a8

A~2l11!~2l811!

2L11 E
0

`

dr i 8 f a8
( i 8)

~r i 8!

3E
0

p

dv sinvRnl
( i )~ urW i 83u!F2

1

urW i 83u
1

1

urW i i 8u
G

3Rn8 l 8
( i 8)

~ urW i3u!r ir i 8 (
mm8

Dmm8
L

~0,v,0!
1-3
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TABLE II. Cross sectionss(D-Hm)5s tr/10220 cm2 and ratesl(D-Hm)5l tr/1010 s21 for them-transfer
reaction D1Hm→Dm1H, at different energies.

s(D-Hm) l(D-Hm) s(D-Hm) l(D-Hm) s(D-Hm) l(D-Hm)
E ~eV! 1s 1s12s 1s12s12p

0.001 292.6 0.64 412.8 0.91 604.8 1.33
0.01 92.3 0.64 130.0 0.90 190.0 1.32
0.04 46.0 0.64 64.7 0.90 94.3 1.31
0.1 29.0 0.64 40.8 0.90 59.4 1.31
1.0 9.0 0.63 12.8 0.90 19.4 1.30
o
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Cl0lm
Lm Cl80l 8m8

Lm8 Ylm* ~n i ,p!Yl 8m8~n i 8 ,p!. ~20!

Here

i 5” i 851,2, gi54pMi /g3, kn
( i )5A2Mi~E2En

( i 8)!,

v is the angle between the Jacobi coordinatesrW i andrW i 8 , n i

is the angle betweenrW i 83 andrW i andn i 8 is the angle between
rW i3 andrW i 8 with

sinn i5
r i 8

gr i 83

sinv, and cosn i5
1

gr i 83

~b ir i1r i 8cosv!.

~21!

To find a unique solution to system~20!, appropriate
boundary conditions need to be considered. First we imp
f nl

( i )(0)50. For the present scattering problem with 11~23!
as the initial state, in the asymptotic region two solutions
Eq. ~20! satisfy the following boundary conditions:

f 1s
(1)~r1!r1→1`

; sin~k1
(1)r1!1K11cos~k1

(1)r1!,

f 1s
(2)~r2!r2→1`

; Av1 /v2K12cos~k1
(2)r2!, ~22!

where 1 refers to channel11~23!, 2 to channel21~13! and
K denotes the corresponding on-shellK matrix @28#. For
scattering with21~13! as the initial state, we have the fo
lowing conditions:

f 1s
(1)~r1!r1→1`

; Av2 /v1K21cos~k1
(1)r1!,

f 1s
(2)~r2!r2→1`

; sin~k1
(2)r2!1K22cos~k1

(2)r2!, ~23!

wherev i , i 51,2 are velocities in channeli. With the fol-
lowing change of variables in Eqs.~20!:

f1s
(1)~r1!5 f 1s

(1)~r1!2sin~k1
(1)r1!,

f1s
(2)~r2!5 f 1s

(2)~r2!2sin~k1
(2)r2!, ~24!

we can obtain two sets of inhomogeneous equations tha
solved numerically. The cross sections are given by
02271
se
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4p

k1
( i )2 U K

12 iKU2

5
4p

k1
( i )2

d i j D
21Ki j

2

~D21!21~K111K22!
2

,

~25!

wherei 5 j 51,2 refer to the two channels and

D5detK5K11K222K12K21. ~26!

When k1
(1)→0, K125K21;k1

(1) , K11;k1
(1) ; in this case

s tr[s12;1/k1
(1) andsel5s11; const. For comparison with

experimental low-energy data it is very useful to calcula
the transfer rates~2! becausel tr(k1

(1)→0); const.

III. NUMERICAL RESULTS

To solve the integro-differential equation, one has to c
culate the angle integrals in Eq.~20! that are independent o
the energyE. One needs to calculate them only once a
store them on a hard disk for the calculation of other obse
ables; for instance, the cross sections at different energ
Subintegrals in Eq.~20! have a strong dependence onr i and

r i 8 ( iÞ i 851,2). To calculateSaa8
( i i 8)(r i ,r i 8) at different co-

ordinates an adaptable algorithm has been used. In this c
using the relation

cosv5
x22b i

2r i
22r i 8

2

2b ir ir i 8

, ~27!

the angle-dependent part of Eq.~20! can be written as the
following integral:

Saa8
( i i 8)

~r i ,r i 8!5
4p

b i

@~2l11!~2l811!#1/2

2L11

3E
ub ir i2r i 8u

b ir i1r i 8
dxRnl

( i )~x!F211
x

r ii 8~x!
G

3Rn8 l 8
( i 8)

„r i3~x!…(
mm8

Dmm8
L

„0,v~x!,0…Cl0lm
Lm

3Cl80l 8m8
Lm8 Ylm* „n i~x!,p…Yl 8m8„n i 8~x!,p….

~28!

Note that the expression~28! differs from zero only in a
narrow strip whenr i'r i 8 .
1-4
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TABLE III. Cross sectionss(T-Hm)5s tr/10220 cm2 and ratesl(T-Hm)5l tr/1010 s21 for them-transfer
reaction T1Hm→Tm1H, at different energies.

s(T-Hm) l(T-Hm) s(T-Hm) l(T-Hm) s(T-Hm) l(T-Hm)
E ~eV! 1s 1s12s 1s12s12p

0.001 204.2 0.42 249.4 0.52 294.4 0.61
0.01 64.3 0.42 78.5 0.51 92.6 0.60
0.04 31.9 0.42 38.9 0.51 45.8 0.60
0.1 19.9 0.41 24.3 0.50 28.6 0.60
1.0 5.50 0.36 6.70 0.44 8.0 0.52
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We employ a muonic atomic unit: distances are measu
in units of am , wheream is the radius of the muonic hydro
gen atom. The integro-differential equations were solved
the usual numerical procedure by discretizing them int
linear system of equations, which are subsequently solve
the Gauss elimination method. In solving these equatio
distances up to 50am were considered and 400–600 poin
were used in the discretization. The following mass valu
are used in the unit of electron mass:mH51836.152,mD
53670.481, andmT55496.918, and the muon mass ismm
5206.769.

Tables II, III, and IV include our results for the muon
transfer cross sections and rates for all hydrogen isotope~1!
using different approximation schemes. We present res
for the two-, four-, and six-state approximations where
include 1s, 1s12s, and 1s12s12p states of the muonic
atoms in the initial and final channels, respectively. In so
ing the equations, we employed only the lowest partial wa
e.g.,L50. As we shall mainly be concerned with the expe
mental muon transfer rates at very low energies, the hig
partial waves are expected to have a negligible contribut
The 2p states are found to contribute significantly in T-Dm ,
moderately in D-Hm , and little in T-Hm systems. This is in
agreement with a similar conclusion in Ref.@24# for the
T-Dm system. This could be understood qualitatively fro
the following consideration. At zero incident energy the re
tive velocity in the final state after muon transfer is the hig
est in the case of T-Hm , lowest in the case of T-Dm , and
intermediate in the case of D-Hm . It is expected that the
polarization potential arising out of a 1s12s12p calcula-
tion will have the largest effect on convergence when
final-state velocity is the lowest. Hence the necessity of
higher-order states is more pronounced in the case of Tm
and less pronounced in the case of T-Hm . We also find that
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as energy decreases the transfer cross sections increas
the transfer rates attain a constant value. These transfer
are essentially constant below 0.1 eV and are also meas
experimentally, so that we can compare our rates with ot
experimental and theoretical results.

For the D-Hm system the present low-energy muon tran
fer rate of 1333108 s21 is in agreement with both experi
ments@13,14#. The present rate is slightly smaller than th
theoretical studies of Refs.@20# and @21# and this makes the
agreement with experiment better. For the T-Hm system
again the present result of 613108 s21 is in better agree-
ment with experiment@16# than the other theoretical studie
In case of T-Dm , the present result 2.33108 s21 is also in
very good agreement with experiment.

Within the six-state approximation our cross sections
low-energy elastic scattering in the case of the T-Dm system
are presented in Table V together with other theoretical
sults. The present cross sections attain a constant valu
low energies and are in fairly good agreement with the
sults of other studies.

As a futher test of the present few-body approach,
have also calculatedS-wave cross sections of antihydroge
formation in antiproton-positronium low-energy collision
~3!. In Table VI our results within the six-state approxim
tion (Ps@1s12s12p#,H̄@1s12s12p#) are compared with
calculations based on the hyperspherical coupled-cha
method@26#. Considering that the present calculation is lim
ited to only the lowest partial wave (L50) and to a trun-
cated basis set (1s12s12p), the agreement is reasonab
for energies below 1 eV. However, at 2 eV the agreemen
not so good. The reason for this is not clear at present. F
ther theoretical investigation including higher partial wav
with an extended basis set could reveal the trend of the c
verged cross sections.
TABLE IV. Cross sectionss(T-Dm)5s tr/10220 cm2 and ratesl(T-Dm)5l tr/108 s21 for them-transfer
reaction T1Dm→Tm1D, at different energies.

s(T-Dm) l(T-Dm) s(T-Dm) l(T-Dm) s(T-Dm) l(T-Dm)
E ~eV! 1s 1s12s 1s12s12p

0.001 4.58 0.77 5.05 0.84 13.7 2.3
0.01 1.44 0.76 1.60 0.84 4.3 2.3
0.04 0.71 0.75 0.78 0.83 2.14 2.26
0.1 0.44 0.73 0.48 0.81 1.32 2.21
1.0 0.1 0.44 0.1 0.5 0.3 1.5
1-5
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IV. CONCLUSION

The study of three-body Coulombic systems has been
subject of this work. We have formulated a method for
few-body description of the rearrangement scattering pr
lem by solving the Faddeev-Hahn-type equations in coo
nate space. It is shown that within this formalism the app
cation of a close-coupling-type ansatz leads to satisfac
results already in low-order approximations for~i! muon-
transfer reactions between hydrogen isotopes and~ii ! antihy-
drogen formation in the antiproton-positronium collisio
Because of computational difficulties, in this preliminary a
plication we have considered up to six states in the exp
sion scheme (1s12s12p on each center!, which may not
always be adequate. Further calculations with larger b
sets are needed to obtain the converged results.

The present model leads to a reduction of the usual te
nical effort and is definitely worth using for investigations
larger systems. It seems reasonable to suppose tha
method should be an effective tool for the description
other muonic and atomic few-body collisions. For instan
one could study using the present approach the follow
muon-transfer reactions to elements withZ>2:

~Hm!1s1XZ→Xm
Z1H, ~29!

TABLE V. Elastic cross sections for T-Dm collision in units of
10220 cm2 at different energies.

E ~eV!
Present results
1s12s12p @22# @24# @25#

0.001 1.2 1.7 1.63 2.014
0.01 1.3 2.3 2.15 3.605
n
k-
g,
M

vo
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A
A
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J
t,

.
A

ler
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g

where the cross section depends in a complicated manne
the chargeZ @5#.

Theoretically, the reaction~29! is of much interest as an
example of low-energy rearrangement scattering in a sys
of three charged particles with Coulomb repulsion in t
final state. Evidently it makes additional difficulties for
correct theoretical description of Eq.~29! @12#. The Faddeev-
Hahn-type approach seems to be suitable for the stud
such reactions and would be a topic of future investigati
We are presently in the process of studying reaction~29!
with the present method forZ52 and 3. We also plan to
employ an extended basis set with more basis function
the future. Also, the excited-state muon-transfer reaction
recent experimantal and theoretical interest@29,30# could be
studied with the present model.
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TABLE VI. Cross sections in unit ofpa0
2 for the positron trans-

fer reactionp̄1Ps→H̄1e2 .

E ~eV!
Present results
1s12s12p @26# E(eV)

Present results
1s12s12p @26#

0.1 1.5 2.3a 1.0 3.2 3.5a

0.5 2.0 2.6a 2.0 1.7 3.7a
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