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Remark on the Neves-Wotzasek constraints conversion method
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In this work we give an alternative way which generalizes the recently implemented Neves-Wotzasek
method of conversion from second to first-class systems. We have proved that this generalization is correct
reproducing the results given in the literature using the case of a sphere with an antisymmetric generator as an
example.

PACS numbsds): 11.10.Lm

I. INTRODUCTION 1. _
L= Equ kmOm » ()]
Recently, Neves and WotzasékW) [1] have developed
a method to convert a second-class system into a first-clagghere the gauge invariant projector
one. The NW formalism is mainly an extension of the itera-
tive Wess-Zumino constraint conversion formaligai used tetm
previously to deal with anomalous gauge theories. The NW Mym= Skm= — t?=tpt,. 2
procedure brings also a two-way mapping which provides a t
relationship between the first and second-class theories. Thjlsne vector
mapping produces a noninvariant theory without performing
the gauge fixing operatiof8].
The NW method extends the Kovner-Rosenstdintech-
nique, which discloses a hidden symmetry of the nonlineajpare d=ald,, is normal to the constraint surfac® and

sigma model, including WZ fields to convert the spherical .5 pe interpreted as a singular metric in Raf. It also

constraints. Now, this extension introduces a new geometzgrovides the link between the invariant and noninvariant as-
f

tk=¢9kQ, (3)

cal interpretation for the WZ gauge orbits. The geometrical,ots of a theory. It appears as
features of the WZ gauge theory are disclosed by the set
linear-momentum first-class constraints whose gauge orbits te="F(q) TerrGm» (4)
are orthogonal to the original set of second-class surfaces.

Such an identification could be made with the partial ﬁXingwheref(q) is some function of the coordinates and the ma-
of the WZ symmetries, leading to an identification of the y 1 “(symmetric or antisymmetric in the coordinate indi-

first-class constraint models with the singular metric modelsces) is the surface generator element defining its properties.
In this work we want to comment on a shortcoming of theyith these ingredients the computation of the sympletic ma-
NW paper regarding the elimination of the WZ sector whichyjy s an easy taskl]. For the case of spherical models with

is crucial for the geometrical interpretation proposed thereunitary radius,Q=q2— 1, we propose to deform the con-
In this paper we propose an alternative method for SUCRyqint in the fé)llowing fashion:

elimination which is quite unique instead of the case by case
analysis of Ref[1] and to do this we have organized the P?=1(0), (5)
paper in the following sequence. In Sec. Il we have intro-
duced our generalization followed by an application accomyyhich is the generalized form of a spherical constraint. The
plished in Sec. III; the conclusion is the last section. f( ) is still an arbitrarily function of a new variablé that

will play the role of WZ variable in the sequel. Differentiat-

ing this constraint we have that
Il. THE GENERALIZATION OF THE NEVES-WOTZASEK

METHOD . 19f(6).
. . . q9=5 —5 ¢ (6)
To this end we shall start with the theory with the gauge
projector ) ) _ _ _
and with this equation we can write the actid as
2
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with X\ imposing the ansats). We can see that a proper Finally the Lagrangian is
choice off (9) affords a general study of various models. For
example, if we choosé(6)=e’, we can obtain easily the 1.. 1(qeq)? 1

. 1 ..
invariant theory proposed by Barcelos-Neto and OlivEiija L= qu— 5= qu— quaz—)\(ﬂ-i- 6), (13
q

With f=c—26 we can reproduce the results obtained for the
Skyrme mode(6].

Another interesting generalization is, to the case of differwhich agrees with WZ model presented in Rgff] for the
ent geometries of degree two, rewriting the constrébitas  antisymmetric case.

Ak TkmAm=f(0),
IV. CONCLUSION
whereT,,,, in this case, is obviously a symmetrical generat-

ing matrix. More general cases, even that with antisymmetric Concluding this Brief Report we can say that the NW

generators, as shown in E@l), can be obtained using that method brings a relationship between gauge theories and
nonlinear models of the second-class type that levels gauge

Q(q)=1(6), and nongauge theories. The geometrical interpretation of the
_ _ . . _ WZ orbits as trajectories crossing orthogonally the nonlinear
where Q(q) is a function which details the kind of con- surface promotes a new understanding of the gauge symme-

straint. In its differential form we can write try. Now we can see the gauge symmetry as a transformation
L : that translates the physical space from one nonlinear surface
f'(6) 6+ 02qx=0, (8)  to the other. The NW procedure ignores the idea of gauge

which will be very useful as we will see in the next section.

fixing from the moment that it reduces the redundant degree
of freedom without a specific choice of gauge. Furthermore,

. with this concept we can study the Gribov ambiguities.
IIIl. AN EXAMPLE: THE ANTISYMMETRIC CASE Without gauge fixing the Gribov copies do not come out.

As an example of our generalization let us discuss thd N€ solution of this problem can be hopefully obtained with
case of a sphere with an antisymmetric generator studied iNW conversion method because itaspriori a reduction

Ref. [1]. Choosing without gauge fixing. .
In this Brief Report we have made some observations
0+Q=0, (9)  regarding the transformation leading from the WZ theory to
. the singular metric model with a discussion at the
with Lagrangean level where the spherical coordinate plays the

Q= arctaré &
q

1

role of WZ variable. So, a general Lagrangian can be con-
1 (10) structed having this arbitrary function as an input. This
makes possible the application of the method to various

cases and at the same time prove that the WZ theories are

where the gradient vector of such surface is equivalent to theories with singular metric.
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