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Low-energy sector quantization of a massless scalar field outside a Reissner-Nordstro
black hole and static sources
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We quantize the low-energy sector of a massless scalar field in Reissner-Nordptoetime. This allows
the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we
compute the response of a static scalar source interacting with Hawking radiation using the(&htihe
Hartle-Hawking vacuum. This response is compared with the one obtained when the source is uniformly
accelerated in the usual vacuum of Minkowski spacetime with the same proper acceleration. We show that both
responses are in general different in opposition to the result obtained when the Reissner-Mdstistkohole
is replaced by a Schwarzschild one. The conceptual relevance of this result is commented on.

PACS numbd(s): 04.70.Dy, 04.62+v

I. INTRODUCTION with the usual inertial vacuum. We present our final consid-
We study the canonical quantization of a massless scalarations in Sec. IV.
field outside a Reissner-Nordstnoblack hole. This is not
easy to fully accomplish mostly because the explicit form of ;. QUANTIZATION OF A MASSLESS SCALAR FIELD
the positive- and negative-energy modes is unknown in OUTSIDE A CHARGED BLACK HOLE
terms of the usual special functions. This has led many re- .
searchers to use numerical methods to analyze quantum field The line element of a Reissner-Nordstrdlack hole with
issues in this and in similar backgroun@ee, e.g.[1] and mMassM and electric chargQ <M can be written ag6]
references thereinHere we follow the procedure developed 5 o oo )
in Ref.[2] to analytically quantize the low-energy sector of ds’=f(r)dt*—f(r)"*dr’—r¥(d#*+sirfode?),
the scalar field in Reissner-Nordstnospacetime. This al- (2.)
lows the analytic investigation of processes involving soft
> . . where
particles such as, e.g., the synchrotron radiation emitted by
scalar sources orbiting charged black hdigs _ fF(r)y=(1—r, /t)(1—r_Ir) 2.2
We use our results to analyze the following conceptual

issue. It was recently founf4] that the responses df) a and r.=M=+ MZ—QZ Outside the outer event horizon
static scalar source in the Schwarzschild spacetime with thf_ae. forr>r. we have a global timelike isometry generate,d
Unruh vacuum and ofii) a uniformly accelerated scalar by 'the KiIIin+g:1’fieIda
source in Minkowski spacetime with the usual vacuum are Let US Now consi:j.er a free massless scalar fiefa) in
equivalent provided that both sources have the same propgr.c background described by the action
acceleration. It would be interesting to study, thus, whether
or not this equivalence is preserved when the Schwarzschild 1
black hole is supplied with some electric charge. Because Sz—J d4x\/—_gV“(I)VMCI), 2.3
(structureless static sources can only interact wittero- 2
energyparticles, we can use our low-energy quantization to
answer this question accurately. Eventually we show that th
presence of electric charge in the black hole breaks the abo
equivalence. This in conjunction with the fact that no equiva-
lence is found in the Schwarzschild spacetime when the sca- -
Uyim= \/;

hereg=defg,,}. In order to quantize the field, we look
r a complete set of positive-energy solutions of the Klein-
ordon equation[Ju,,=0, in the form

Yo

lar field is replaced by the Maxwell oj&] suggests that the

equivalence found 4] is not valid, in general, for other

spacetimes and quantum fields. Whether or not there is

something deeper behind it remains an open question for u&here ©=0, =0 andme[—1,I] are the frequency and

We will adopt natural unity=c=G=kg=1 and signature angular momentum quantum numbers. The fagtof 7 was

(+---). inserted for later convenience aNg,( 6, ¢) are the spherical
The paper is organized as follows. In Sec. Il we quantizéharmonics. As a consequengg,(r) must satisfy

the low-energy sector of the massless scalar field outside a g

Reissner-Nordstr black hole. In Sec. Ill we compute the

response of a static scalar source interacting with Hawking _f(r)ﬁ f(r)ﬁ +Veff(r)}‘/’w'(r)=w2d’w'(r)’

radiation using the Unrutand the Hartle-Hawkingvacuum, (2.5

and compare the result with the one obtained when the

source is uniformly accelerated in Minkowski spacetimewhere the effective scattering potentNdls(r) is given by

'r(r) Yim( 0, ¢)e”" ", 2.4
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oM Q?\[2Mm 2Q2 I(1+1) where we have defineg=r/2M, y_.=r./2M, and
Ver(=\1-—+5 | 32+ |
r r r r 2y—1
(2.6 7= . 2.1
Yi—Y- 212

Note that Eq(2.5 admits two sets of independent solutions

which will be labeled byyr,(r) with a=1,11. As a result, From the Legendre equatig@.11), we obtain the two inde-
we can expand the scalar fiedei(x*) in terms of annihila-  pendent solutions

tion a,,, and creatiora’| = operators, as usual

% m= +| P (Y)=CLyQ[z(y)], (2.13
20)= 3 5 3 [ delugoag,+Hel,

B 2.7 Yu()=CiyPlz(y)], (2.14
whereu,,(x*) are orthonormalized according to the Klein- whereQ,(z) andP,(z) are the Legendre functions, aﬁljﬂ
Gordon inner produdt7]: and C'a') are normalization constants. In order to determine

them, we shall analyze in more detail the solutions of Eq.
o (2.5 near the horizorandat infinity, which can be normal-
Jz d= nﬂ(uwlm*vﬂuw’l’m’ Vo Ugim™ - Uyrprm) ized forarbitrary w.

= Saar O O 80— @), (2.8 B. Normal modes near the horizon and at infinity

f ) First let us note that by making the change of variables,
d> n“(uw,mVﬂum,l,m, Vo Ugim U irme)
* (y+)?Inly—y.|=(y-)?nly—y- |

—X=y+
0. (2.9 ey Yi-y-
(2.15
Heren* is the future-pointing unit vector normal to the vol-
ume element of the Cauchy surfake. As a consequence, Eq. (2.5 takes the form
a%,, anda’]  satisfy simple commutation relations
d2
[8%1m 5 1= B Bt Sy A w—0"). (2,10 - @+4M2Veﬁ[r(><)] Pt (X) =4M? 0%, (X).
(2.19

The Boulware vacuun0) is defined byay,,|0)=0 for ev-

ery «, o, I, andm [8]. ) _ _ _ )
It is convenient to write the two independent solutions of Eq.

(2.16) such thaty(x) and ¢, ,(x) are associated with
purely incoming modes from the past white-hole horizon
The general solution of E@2.5) in terms of special func- H ~ and from the past null infinity7 —, respectively. These
tions is not known. However, this can be found for smallmodes are orthogonal to each other with respect to the Klein-
frequencies as follows. First let us rewrite 8.5 with Gordon inner product2.8). This can be seen by choosing

=0 as S=H UJ  in Eqg. (2.8 and recalling thaty_,(x) and
¥, (x) vanish on7~ andH ~, respectively. Hence, by not-
ing from Eq.(2.6) that close to X<0,x|>1) and far away
I+ D (y)ly1=0, from (x>1) the horizon, the scattelri|ng potential becomes
(2.1 Ver(r)=0 andVeq(r)~I(1+1)/r2, respectively, we write

A. Small frequency modes

(1 22) [lpwl Y)/Y]

wl(eZiMwX+R efZiwa) (X<0, |X|>1)1
- 2.1
Yo (X)= 2i' A, T iMoxhM(2Mox)  (x>1), o
and
» B, T e 2Mox (x<0/x[>1), (218
X) ~ |
Vo w|[2(—I)HleXh(l)(ZMwX)*+2|H1T\’, wah(l)(ZMwX)] (x>1).
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Here h((2Mwx) are the spherical Hankel functions and Comparing Eqgs(2.23 and(2.21) we find the normalization
IRSIZIR 1?2 and |T5,|%|T % are the reflection and constant

transmission coefficients, respectively, satisfying the usual

probability conservation equatiori® ,j|>+|7 ,;|?>=1 and
|RoI12+|T51?=1. Note that h(M(x)~(—i)""*exp(x)/x
for |x|>1. The normalization constanfs,, andB,, are ob-
tained (up to an arbitrary phageby letting normal modes
(2.4) in the Klein-Gordon inner produd®.8) and using Eq.
(2.16 to transform the integral into a surface term:

1 d ., . d Xt
R ¢w|(X)d—X¢wr|(X)—lﬂwq(x)d—xlﬂwl(x) -
27M
=—ff(w—w'). 219
®

By using the asymptotic solutiori2.17),(2.18 in Eq.(2.19),
we obtainA =B, =(2w) .

C. Normalization constants

Now we are able to determine the normalization constants l/flm(x)”

C! andC! by comparing Egs(2.13,(2.14 close and far

away from the black hole with our normalized functions

(2.17),(2.18 in the low-frequency regime (@ wx<<1). Let
us begin by noticing that for @ wx<1, we have, near the
horizon[see Eq.(2.17)],

(1+R )

wl . .
wa_l—l(l_Rwl) (X<O, |X|>1)

(2.20

Y (X)=Mx

In order that Eq.(2.20 have a good behavior in the low-

frequency regime we conclude that ;~ -1+ O(w). As a
consequence, forMwx<1 we obtain from Eq(2.20 that

(2.21

Now, we recall that in the low-frequency reginge, (x) is

P (X)~2iMx  (x<0, [x|>1).

mostly reflected by the scattering potential back to the hori

zon and thus cannot be associated vuith(x) which grows
asymptotically[see Eq.(2.14 and recall that?,(z)~Z' as
z>1 (r>r,)]. This is not so fonp'wl(x) which decreases
asymptotically and indeed fitg_;(x). This can be shown as
follows. Let us first note that, for=1 (r~r.),

|
1 |z+1 1
Q(2)~5InI-— —k;g

J_X+y++|n(y+—y_)](Y+—Y—) _ El E
2y2 ke
(2.22

where we have used Eq&.12 and (2.195. Thus, close to
the horizon, we obtain from E@2.13 that

+=Yo)

Qp'wl(x)~—c'w(y2y X (x<0, |x|>1). (2.23

Cl,=—4iMy . /(y.—y). (2.24
Therefore, we write, from Eq2.13),
—4iMy | z
2 (= — MYy QL] 225

Y+—Y-
and from Eq.(2.4), we obtain the corresponding normalized
low-frequency modegup to an arbitrary phage

| n 2y+w1/2 —iwt
nX) = = Q0 (gl
(2.26

Now we fit 1,//'w|(x) and ¢_;(x) asymptotically to determine

the low-frequency transmission coefficieff ;| [see Eq.
(2.17]. Forx>1, Eq.(2.25 becomes
—2IM(ID%y ., (y.—y)'x”!
21+ 1) (2M wx<1),
(2.27

where we have used that, in this region,

Iy, —y )Ty 171
2(21+1)!

Ql2y/(y,—y-)]=

Now, from Eq.(2.17), we have in the low-frequency regime
and forx>1 that

- it x!
ww|(X)~W (2M (1)X<1), (22&
where we have used that
hiD(2Mwx) =] (2MwXx)+in,(2Mwx)  (2.29

and the fact that the spherical Bessel and Newman functions
satisfy[see Eq(11.156 of Ref.[9]]

j.(2wa)~m(2wa)' (2.30
and
n|(2wa)~—%(2wa)_('”), (2.3

respectively, for M wx<1. Thus Eqs(2.27) and(2.28 co-
incide provided that

- 22|+2(_i)|+1y+(Y+_y_)l(l!)S(Mw)l+l

7 2+ 1)1 (2!

0l = '
(2.32

(Eventually this will be also used as a consistency check for
our calculations.
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Now, let us turn our attention tg(x) which should be q
fitted with ¢! (x). Note thaty! ,(x) grows close to the ho- j(xH)=——=06(r—r0)8(0— 60p) 8(¢—g), (3.1
rizon and so cannot be associated with low-frequency left- \/__h
moving modes which must be mostly reflected back to infin
ity by the scattering potentidbee Eq(2.13 and recall that
Qi(2)~—log|lz—1/¥? as z=~1]. In order to fit 4,(x) and
sz',l(x) asymptotically, we must use Eq92.29 and
(2.30,(2.3)) in Eq. (2.18 for x>1. Moreover, it turns out )
that this compatibility is achieved if and only iR}, Ltdz 1=q (3.2
~(—1)""1. As a result we obtain

‘whereq is a small coupling constant amd= — f ~1r* sirfg is
the determinant of the spatial metric induced over the equal
time hypersurfac&,;. Note that Eq(3.1) guarantees that

wherever the source lies. Let us now couple our sojfe€)

_ 221 (=) e (Mx)' L to a massless scalar fiefl(x*) as described by the interac-
(X))~ 2+ 1) (x>1) (233 {on action

for 2Mwx<1. Now, we note thaP,(z)~[(2l)!/2'(1!)?]Z slzf d*x\—gj®. (3.3
for z>1 [see EQs.(8.837.2 and (8.339.2 of Ref. [10]].

Hence, using Eqd2.12 and(2.14), we find that The total source response, i.e., total particle emission and

I+1 absorption probabilities per proper time associated with the
w"|(x)~C”L (x>1). (2.34  sSource, is given by

(I*(y—y-)' o
Comparing this equation with E¢2.33 and recalling that REQZ.,” 20 mzz_l fo do Roim 3.4
x=~Yy at infinity, we find the normalization constant
where
22I+1(_i)l+1(|!)3Ml+l(y —y,)'w'
Ciy= : (235 sim=7 I AGn L1+ (@) ]+ A G120 (0))

21+ )21 (3.5

Therefore and 7 is the source’s total proper timé€This is well defined

a

. since our source is pointlikeHere A% *"=(awlm|S,|0)

| | 1+1 (N ®

! X):zz TEDTHADIMT Y,y ) ey Pl(y)] and A% ,,2*=(0|S/|awlm) are the emission and absorption
ol (21+1)t (21! amplitudes, respectively, of Boulware statesolm), at the

(2.3 tree level. Moreover,

and the corresponding normalized small frequency modes (e®—1)"1 for a=I,
are (up to an arbitrary phage ng(w)= 0 for a=Il, (3.6
| 22|(|!)3M|(y+—y,)lwl+l/2 and
L =+ D1 (2!
T )zt 3 (e“P—1)"1 for a=lI,
XPZ00]Yin(B.p)e . (2.30) M@= @or- 1)1 for =i, 7

It can be directly verified that by fitting Eq2.36) close to  for the Unruh and Hartle-Hawking vacua, respectively, with
the horizon with Eq.(2.18 for 2Mwx<1, we obtain7

=7, [see Eq.(2.32], as indeed required for consistency. 1 Y+—Y- 3.9
Clearly this guaranties thdR ,|=|R ,|. Note, however, grMy? '
thatR ;; andR ; will in general differ by a phasén con-
trast to7 ; and7 ). We recall that the Unruh vacuum is characterized by a ther-
Equation(2.7) in conjunction with Eqs(2.26) and (2.37) mal flux leaving ~ with Hawking temperaturgg~* at in-
concludes our low-frequency sector quantization. finity given by Eq.(3.8) while the Hartle-Hawking vacuum
has in addition a thermal flux coming frofi~ characterized
ll. RESPONSE OF A STATIC SCALAR SOURCE by the same temperature at infin{y1]. _
INTERACTING WITH HAWKING RADIATION Let us note that because structureless static sog&s

can only interact wittzero-energymodes, the total response
Let us now compute the response of a static source to thef this source in the Boulware vacuum vanishes. This is not
Hawking radiation in the Reissner-Nordstispacetime. We so, however, in the presence of a background thermal bath
will consider both Unruh and Hartle-Hawking vacua. Let ussince the absorption ar{dtimulated emission rates render it
describe our pointlike scalar source lying a§ (6q,¢0) by nonzero. In order to deal with zero-energy modes, we need a
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“regulator” to avoid the appearance of intermediate indefi- 92a
nite results.(For a more comprehensive discussion on the Rvw=—., (3.15
interaction of static sources with zero-energy modes, see Ref. 4m

[12].) For this purpose we let the coupling constamt o ) )
smoothly oscillate with frequency,, writing Eq. (3.1) in ~ Which is the response associated with our scalar source when

the form it is uniformly accelerated in the usual vacuum of
Minkowski spacetime with proper acceleratian We note
q that although Eq93.12 and(3.15 coincide wherQ=0, as
i Hy— 0 s _ _ found in Ref.[4], they do not forQ+#0. As a result, the
Jog(X¥) \/—_hg(r 086 60) o= o). (3.9 presence of electric charge inside the black hole breaks the
response equivalence.
Whereqwoz J2q coswgt) and taking the limitwy—0 at the We note that the equality between E¢R.12 and(3.15

end. The factor/2 has been introduced to guarantee that thdS recovered whemg~r.. . Hence, close to the horizon, a
time averagd|q,, (t)|2);=g? since at the tree level the ab- Static source in the Unruh vacuum responds as if it were
“o

sorption and emission rates are functionsgdf By using static in the Rindler wedgéi.e., uniformly accelerated in

: : ; Minkowski spacetime with the usual inertial vacuum pro-
Egs. (3.9 and (2.7) in Eq. (3.3 we obtain the absorption vided that both sources have the same proper acceleration.

amplitude Moreover, Eq(3.12 can be written in this region in terms of
a abs_ o (e 1/2 the proper temperaturgl3] B, =g \f(ry) on the
wim = AV2m o, 1 (T0)/To) f(ro) source’s location as
XYim( 6o, o) o(@— wq), (3.10 o
a e a ab : Ry~ . (3.16
and we recall thatd &, .*" =| A &,,°]. By letting Eq.(3.10 27Bo
into Eq. (3.5 we obtain
Equation(3.16 coincides with the response associated with
Raim=a"wol | (ro) /5141 o) our source when it is at rest in Minkowski spacetime with a
background thermal bath characterized by a temperature
X|Yim(60,90)[2[1+2n*(w0) ]18(w— o), B, . This result is not surprising because close to the hori-

3.11) ZOn the scattering potential vanishes and the zero-energy
' modes leaving{ ~ are completely reflected back towards the
where it was used that the source’s total proper time is horizon. _ )
=2m Y2y )lim,,_o8(w). [Heref¥4r,) is the gravitational Now let us turn our attention to the Hartle-Hawking
redshift factor] vacuum. An analogous calculation leads us to the following
Let us first consider the Unruh vacuum. By using Eqgs.f€SPONse:
(2.25, (3.6), and(3.1)) in Eq. (3.4) and makingwy,—0 at
the end, we compute the total response _gqfa(M—Q?%r,) . q2(M—Q?/r . )(M—Q?/ry)
, ) M 4m2(M = Q¥ry) Am?riria ’
_gaM=-Qir,) (312 (3.17
A7’ (M—Q?/r)

u

where we have used th&[z(ro)]=1 and Yge=1/\4.
[note that modes!!,(x) do not give any contribution hefe [Note that, in this case, only=0 contributes in Eq(3.4).]
where The first term on the right-hand side of E8.17) is identical
to the one obtained with the Unruh vacuum and is associated
f=Y2(rgy) df(rg) with the thermal flux leaving{ ~. The second term is asso-
T drg ciated with the thermal flux coming froRr ~. As a consis-
tency check we note that for—r,, we obtainR,,=Ry .
is the source’s proper acceleration and we have used This should be so because close to the horizon, zero-energy
particles coming from7~ cannot overpass the scattering
I 21+1 barrier. Consequently, in this limit, the second term on the
> Yim(60,00)P=—— (3.13  right-hand side of Eq(3.17 must vanish. Now, when the
=l 4m source is far away from the hole, the second term on the
right-hand side of Eq(3.17 dominates because zero-energy

and[4] particles leaving7~ are not able to reach the asymptotic
" region. Moreover, in this region, E¢3.17) can be rewritten
1 in the form
2 el @i+1)=5— (319
2
q
Next we compare E¢(3.12 with Rin= 27B" (318
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Hence, far away from the hole, the source behaves as if fiound in[4] is not valid, in general, for other spacetimes and
were in Minkowski spacetime immersed in a thermal bathquantum fields. Whether or not there is something deeper

with temperaturg3 1, as expected. behind it remains an open question for us. We have also
verified that close to and far away from the horizon our
IV. DISCUSSIONS source behaves as if it were at rest in a thermal bath in

) Minkowski spacetime with proper temperature associated
We have quantized the low-energy sector of a masslesgith the Unruh and Hartle-Hawking vacua, respectively. The
scalar field in Reissner-Nordstrospacetime. The results ob- low-energy quantization presented here can be used to ana-

tained were used to analyze the response of a static sourgge other processes occurring outside charged black holes.
interacting with Hawking radiation using the Unruh and

Hartle-Hawking vacua. We have shown that, in general,
static sources outsidehargedblack holes(with the Unruh
vacuum do not behave similarly to uniformly accelerated We are thankful to L.C.B. Crispino for reading the manu-
sources in Minkowski spacetiméwith the usual inertial script. J.C. and G.M. would like to acknowledge full and
vacuum as previously found fomeutral black holes[4]. partial support from the Fundaz de Amparo &esquisa do
This in conjunction with the fact that no equivalence is foundEstado de Sa Paulo(FAPESRP and Conselho Nacional de
in the Schwarzschild spacetime when the scalar field is reDesenvolvimento Cierfico e Tecnolgico (CNPg, respec-
placed by the Maxwell ong5] shows that the equivalence tively.
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