
PHYSICAL REVIEW D, VOLUME 62, 064001
Low-energy sector quantization of a massless scalar field outside a Reissner-Nordstro¨m
black hole and static sources

J. Castin˜eiras and G. E. A. Matsas
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 22 February 2000; published 31 July 2000!

We quantize the low-energy sector of a massless scalar field in Reissner-Nordstro¨m spacetime. This allows
the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we
compute the response of a static scalar source interacting with Hawking radiation using the Unruh~and the
Hartle-Hawking! vacuum. This response is compared with the one obtained when the source is uniformly
accelerated in the usual vacuum of Minkowski spacetime with the same proper acceleration. We show that both
responses are in general different in opposition to the result obtained when the Reissner-Nordstro¨m black hole
is replaced by a Schwarzschild one. The conceptual relevance of this result is commented on.

PACS number~s!: 04.70.Dy, 04.62.1v
a

o
i

r
fi

d
of

of
b

ua

th
r
ar
op
he
h
us

t
th
o
a

sc

r

r u

iz
e

e
in

th
e

id-

,
ed

k
in-

l

I. INTRODUCTION
We study the canonical quantization of a massless sc

field outside a Reissner-Nordstro¨m black hole. This is not
easy to fully accomplish mostly because the explicit form
the positive- and negative-energy modes is unknown
terms of the usual special functions. This has led many
searchers to use numerical methods to analyze quantum
issues in this and in similar backgrounds~see, e.g.,@1# and
references therein!. Here we follow the procedure develope
in Ref. @2# to analytically quantize the low-energy sector
the scalar field in Reissner-Nordstro¨m spacetime. This al-
lows the analytic investigation of processes involving s
particles such as, e.g., the synchrotron radiation emitted
scalar sources orbiting charged black holes@3#.

We use our results to analyze the following concept
issue. It was recently found@4# that the responses of~i! a
static scalar source in the Schwarzschild spacetime with
Unruh vacuum and of~ii ! a uniformly accelerated scala
source in Minkowski spacetime with the usual vacuum
equivalent provided that both sources have the same pr
acceleration. It would be interesting to study, thus, whet
or not this equivalence is preserved when the Schwarzsc
black hole is supplied with some electric charge. Beca
~structureless! static sources can only interact withzero-
energyparticles, we can use our low-energy quantization
answer this question accurately. Eventually we show that
presence of electric charge in the black hole breaks the ab
equivalence. This in conjunction with the fact that no equiv
lence is found in the Schwarzschild spacetime when the
lar field is replaced by the Maxwell one@5# suggests that the
equivalence found in@4# is not valid, in general, for othe
spacetimes and quantum fields. Whether or not there
something deeper behind it remains an open question fo
We will adopt natural units\5c5G5kB51 and signature
(1 2 2 2).

The paper is organized as follows. In Sec. II we quant
the low-energy sector of the massless scalar field outsid
Reissner-Nordstro¨m black hole. In Sec. III we compute th
response of a static scalar source interacting with Hawk
radiation using the Unruh~and the Hartle-Hawking! vacuum,
and compare the result with the one obtained when
source is uniformly accelerated in Minkowski spacetim
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with the usual inertial vacuum. We present our final cons
erations in Sec. IV.

II. QUANTIZATION OF A MASSLESS SCALAR FIELD
OUTSIDE A CHARGED BLACK HOLE

The line element of a Reissner-Nordstro¨m black hole with
massM and electric chargeQ<M can be written as@6#

ds25 f ~r !dt22 f ~r !21 dr22r 2~du21sin2u dw2!,
~2.1!

where

f ~r ![~12r 1 /r !~12r 2 /r ! ~2.2!

and r 6[M6AM22Q2. Outside the outer event horizon
i.e., for r .r 1 , we have a global timelike isometry generat
by the Killing field ] t .

Let us now consider a free massless scalar fieldF(xm) in
this background described by the action

S5
1

2E d4xA2g¹mF¹mF, ~2.3!

whereg[det$gmn%. In order to quantize the field, we loo
for a complete set of positive-energy solutions of the Kle
Gordon equation,huv lm50, in the form

uv lm5Av

p

cv l~r !

r
Ylm~u,w!e2 ivt, ~2.4!

where v>0, l>0 and mP@2 l ,l # are the frequency and
angular momentum quantum numbers. The factorAv/p was
inserted for later convenience andYlm(u,w) are the spherica
harmonics. As a consequencecv l(r ) must satisfy

F2 f ~r !
d

dr S f ~r !
d

dr D1Veff~r !Gcv l~r !5v2cv l~r !,

~2.5!

where the effective scattering potentialVeff(r ) is given by
©2000 The American Physical Society01-1
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Veff~r !5S 12
2M

r
1

Q2

r 2 D S 2M

r 3
2

2Q2

r 4
1

l ~ l 11!

r 2 D .

~2.6!

Note that Eq.~2.5! admits two sets of independent solutio
which will be labeled bycv l

a (r ) with a5I ,II . As a result,
we can expand the scalar fieldF(xm) in terms of annihila-
tion av lm

a and creationav lm
a† operators, as usual

F~xm!5 (
a5I ,II

(
l 50

`

(
m52 l

m51 l E
0

1`

dv@uv lm
a ~xm!av lm

a 1H.c.#,

~2.7!

whereuv lm
a (xm) are orthonormalized according to the Klei

Gordon inner product@7#:

i E
S t

dS nm~uv lm
a * ¹muv8 l 8m8

a8 2¹muv lm
a * •uv8 l 8m8

a8 !

5daa8d l l 8dmm8d~v2v8!, ~2.8!

i E
S t

dS nm~uv lm
a ¹muv8 l 8m8

a8 2¹muv lm
a

•uv8 l 8m8
a8 !

50. ~2.9!

Herenm is the future-pointing unit vector normal to the vo
ume element of the Cauchy surfaceS t . As a consequence
av lm

a andav lm
a† satisfy simple commutation relations

@av lm
a ,av8 l 8m8

a8†
#5daa8d l l 8dmm8d~v2v8!. ~2.10!

The Boulware vacuumu0& is defined byav lm
a u0&50 for ev-

ery a, v, l, andm @8#.

A. Small frequency modes

The general solution of Eq.~2.5! in terms of special func-
tions is not known. However, this can be found for sm
frequencies as follows. First let us rewrite Eq.~2.5! with v
50 as

d

dzF ~12z2!
d

dz
@cv l~y!/y#G1 l ~ l 11!@cv l~y!/y#50,

~2.11!
l

where we have definedy[r /2M , y6[r 6/2M , and

z[
2y21

y12y2
. ~2.12!

From the Legendre equation~2.11!, we obtain the two inde-
pendent solutions

cv l
I ~y![Cv

I yQl@z~y!#, ~2.13!

cv l
I I ~y![Cv

II yPl@z~y!#, ~2.14!

whereQl(z) and Pl(z) are the Legendre functions, andCv
I

and Cv
II are normalization constants. In order to determ

them, we shall analyze in more detail the solutions of E
~2.5! near the horizonandat infinity, which can be normal-
ized for arbitrary v.

B. Normal modes near the horizon and at infinity

First let us note that by making the change of variable

y→x5y1
~y1!2lnuy2y1u2~y2!2lnuy2y2u

y12y2
,

~2.15!

Eq. ~2.5! takes the form

F2
d2

dx2
14M2Veff@r ~x!#Gcv l~x!54M2v2cv l~x!.

~2.16!

It is convenient to write the two independent solutions of E
~2.16! such thatcv l

→(x) and cv l
←(x) are associated with

purely incoming modes from the past white-hole horiz
H 2 and from the past null infinityJ 2, respectively. These
modes are orthogonal to each other with respect to the Kl
Gordon inner product~2.8!. This can be seen by choosin
S t5H 2øJ 2 in Eq. ~2.8! and recalling thatcv l

→(x) and
cv l

←(x) vanish onJ 2 andH 2, respectively. Hence, by not
ing from Eq.~2.6! that close to (x,0,uxu@1) and far away
from (x@1) the horizon, the scattering potential becom
Veff(r )'0 andVeff(r )' l ( l 11)/r 2, respectively, we write
cv l
→~x!'H Av l~e2iM vx1R v l

→e22iM vx! ~x,0, uxu@1!,

2i l 11Av lT v l
→Mvxhl

(1)~2Mvx! ~x@1!,
~2.17!

and

cv l
←~x!'H Bv lT v l

←e22iM vx ~x,0,uxu@1!,

Bv l@2~2 i ! l 11Mvxhl
(1)~2Mvx!* 12i l 11R v l

←Mvxhl
(1)~2Mvx!# ~x@1!.

~2.18!

064001-2
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Here hl
(1)(2Mvx) are the spherical Hankel functions an

uR v l
←u2,uR v l

→u2 and uT v l
←u2,uT v l

→u2 are the reflection and
transmission coefficients, respectively, satisfying the us
probability conservation equationsuR v l

→u21uT v l
→u251 and

uR v l
←u21uT v l

←u251. Note that hl
(1)(x)'(2 i ) l 11 exp(ix)/x

for uxu@1. The normalization constantsAv l andBv l are ob-
tained ~up to an arbitrary phase! by letting normal modes
~2.4! in the Klein-Gordon inner product~2.8! and using Eq.
~2.16! to transform the integral into a surface term:

1

v2v8
Fcv l~x!

d

dx
cv8 l

* ~x!2cv8 l
* ~x!

d

dx
cv l~x!GU

x→2`

x→1`

5
2pM

v
d~v2v8!. ~2.19!

By using the asymptotic solutions~2.17!,~2.18! in Eq. ~2.19!,
we obtainAv l5Bv l5(2v)21.

C. Normalization constants

Now we are able to determine the normalization consta
Cv

I and Cv
II by comparing Eqs.~2.13!,~2.14! close and far

away from the black hole with our normalized functio
~2.17!,~2.18! in the low-frequency regime (2Mvx!1). Let
us begin by noticing that for 2Mvx!1, we have, near the
horizon @see Eq.~2.17!#,

cv l
→~x!'MxF ~11R v l

→!

2Mvx
1 i ~12R v l

→!G ~x,0, uxu@1!.

~2.20!

In order that Eq.~2.20! have a good behavior in the low
frequency regime we conclude thatR v l

→'211O(v). As a
consequence, for 2Mvx!1 we obtain from Eq.~2.20! that

cv l
→~x!'2iMx ~x,0, uxu@1!. ~2.21!

Now, we recall that in the low-frequency regimecv l
→(x) is

mostly reflected by the scattering potential back to the h
zon and thus cannot be associated withcv l

I I (x) which grows
asymptotically@see Eq.~2.14! and recall thatPl(z);zl as
z@1 (r @r 1)#. This is not so forcv l

I (x) which decreases
asymptotically and indeed fitscv l

→(x). This can be shown a
follows. Let us first note that, forz'1 (r'r 1),

Ql~z!'
1

2
lnUz11

z21U2 (
k51

l
1

k

'
@2x1y11 ln~y12y2!#~y12y2!

2y1
2

2 (
k51

l
1

k
,

~2.22!

where we have used Eqs.~2.12! and ~2.15!. Thus, close to
the horizon, we obtain from Eq.~2.13! that

cv l
I ~x!'2Cv

I ~y12y2!

2y1
x ~x,0, uxu@1!. ~2.23!
06400
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Comparing Eqs.~2.23! and~2.21! we find the normalization
constant

Cv
I 524iMy1 /~y12y2!. ~2.24!

Therefore, we write, from Eq.~2.13!,

cv l
I ~x!5

24iMy1yQl@z~y!#

y12y2
, ~2.25!

and from Eq.~2.4!, we obtain the corresponding normalize
low-frequency modes~up to an arbitrary phase!:

uv lm
I ~xm!5

2y1v1/2

p1/2~y12y2!
Ql@z~x!#Ylm~u,w!e2 ivt.

~2.26!

Now we fit cv l
I (x) and cv l

→(x) asymptotically to determine
the low-frequency transmission coefficientuT v l

→u2 @see Eq.
~2.17!#. For x@1, Eq. ~2.25! becomes

cv l
I ~x!'

22iM ~ l ! !2y1~y12y2! lx2 l

~2l 11!!
~2Mvx!1!,

~2.27!

where we have used that, in this region,

Ql@2y/~y12y2!#'
~ l ! !2~y12y2! l 11y2 l 21

2~2l 11!!
.

Now, from Eq.~2.17!, we have in the low-frequency regim
and forx@1 that

cv l
→~x!'

i l~2l !!T v l
→x2 l

22l 11l ! Mlv l 11
~2Mvx!1!, ~2.28!

where we have used that

hl
(1)~2Mvx!5 j l~2Mvx!1 inl~2Mvx! ~2.29!

and the fact that the spherical Bessel and Newman funct
satisfy †see Eq.~11.156! of Ref. @9#‡

j l~2Mvx!'
2l l !

~2l 11!!
~2Mvx! l ~2.30!

and

nl~2Mvx!'2
~2l !!

2l l !
~2Mvx!2( l 11), ~2.31!

respectively, for 2Mvx!1. Thus Eqs.~2.27! and~2.28! co-
incide provided that

T v l
→5

22l 12~2 i ! l 11y1~y12y2! l~ l ! !3~Mv! l 11

~2l 11!! ~2l !!
.

~2.32!

~Eventually this will be also used as a consistency check
our calculations.!
1-3
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Now, let us turn our attention tocv l
←(x) which should be

fitted with cv l
I I (x). Note thatcv l

I (x) grows close to the ho
rizon and so cannot be associated with low-frequency l
moving modes which must be mostly reflected back to in
ity by the scattering potential@see Eq.~2.13! and recall that
Ql(z)'2 loguz21u1/2 as z'1#. In order to fit cv l

←(x) and
cv l

I I (x) asymptotically, we must use Eqs.~2.29! and
~2.30!,~2.31! in Eq. ~2.18! for x@1. Moreover, it turns out
that this compatibility is achieved if and only ifR v l

←

'(21)l 11. As a result we obtain

cv l
←~x!'

22l 11~2 i ! l 11l !v l~Mx! l 11

~2l 11!!
~x@1! ~2.33!

for 2Mvx!1. Now, we note thatPl(z)'@(2l )!/2l( l !) 2#zl

for z@1 †see Eqs.~8.837.2! and ~8.339.2! of Ref. @10#‡.
Hence, using Eqs.~2.12! and ~2.14!, we find that

cv l
I I ~x!'Cv

II ~2l !! yl 11

~ l ! !2~y12y2! l
~x@1!. ~2.34!

Comparing this equation with Eq.~2.33! and recalling that
x'y at infinity, we find the normalization constant

Cv
II 5

22l 11~2 i ! l 11~ l ! !3Ml 11~y12y2! lv l

~2l 11!! ~2l !!
. ~2.35!

Therefore

cv l
I I ~x!5

22l 11~2 i ! l 11~ l ! !3Ml 11~y12y2! lv l yPl@z~y!#

~2l 11!! ~2l !!
~2.36!

and the corresponding normalized small frequency mo
are ~up to an arbitrary phase!

uv lm
II ~xm!5

22l~ l ! !3Ml~y12y2! lv l 11/2

p1/2~2l 11!! ~2l !!

3Pl@z~x!#Ylm~u,w!e2 ivt. ~2.37!

It can be directly verified that by fitting Eq.~2.36! close to
the horizon with Eq.~2.18! for 2Mvx!1, we obtainT v l

←

5T v l
→ @see Eq.~2.32!#, as indeed required for consistenc

Clearly this guaranties thatuR v l
←u5uR v l

→u. Note, however,
that R v l

← andR v l
→ will in general differ by a phase~in con-

trast toT v l
← andT v l

→).
Equation~2.7! in conjunction with Eqs.~2.26! and~2.37!

concludes our low-frequency sector quantization.

III. RESPONSE OF A STATIC SCALAR SOURCE
INTERACTING WITH HAWKING RADIATION

Let us now compute the response of a static source to
Hawking radiation in the Reissner-Nordstro¨m spacetime. We
will consider both Unruh and Hartle-Hawking vacua. Let
describe our pointlike scalar source lying at (r 0 ,u0 ,w0) by
06400
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j ~xm!5
q

A2h
d~r 2r 0!d~u2u0!d~w2w0!, ~3.1!

whereq is a small coupling constant andh52 f 21r 4 sin2u is
the determinant of the spatial metric induced over the eq
time hypersurfaceS t . Note that Eq.~3.1! guarantees that

E
S t

dS j 5q ~3.2!

wherever the source lies. Let us now couple our sourcej (xm)
to a massless scalar fieldF(xm) as described by the interac
tion action

SI5E d4xA2g jF. ~3.3!

The total source response, i.e., total particle emission
absorption probabilities per proper time associated with
source, is given by

R[ (
a5I ,II

(
l 50

`

(
m52 l

l E
0

1`

dv Rv lm
a , ~3.4!

where

Rv lm
a [t21$uA v lm

a emu2@11na~v!#1uA v lm
a absu2na~v!%

~3.5!

andt is the source’s total proper time.~This is well defined
since our source is pointlike.! Here A v lm

a em[^av lmuSI u0&
andA v lm

a abs[^0uSI uav lm& are the emission and absorptio
amplitudes, respectively, of Boulware statesuav lm&, at the
tree level. Moreover,

nU
a ~v![H ~evb21!21 for a5I ,

0 for a5II ,
~3.6!

and

nHH
a ~v![H ~evb21!21 for a5I ,

~evb21!21 for a5II ,
~3.7!

for the Unruh and Hartle-Hawking vacua, respectively, w

b215
y12y2

8pMy1
2

. ~3.8!

We recall that the Unruh vacuum is characterized by a th
mal flux leavingH 2 with Hawking temperatureb21 at in-
finity given by Eq.~3.8! while the Hartle-Hawking vacuum
has in addition a thermal flux coming fromJ 2 characterized
by the same temperature at infinity@11#.

Let us note that because structureless static sources~3.1!
can only interact withzero-energymodes, the total respons
of this source in the Boulware vacuum vanishes. This is
so, however, in the presence of a background thermal b
since the absorption and~stimulated! emission rates render i
nonzero. In order to deal with zero-energy modes, we nee
1-4



fi
th
R

th
-

s

qs

hen
of

the

a
ere

-
tion.
f

ith
a

ture
ori-
ergy
he

g
ing

ted
-

ergy
g

the

the
gy
ic

LOW-ENERGY SECTOR QUANTIZATION OF A . . . PHYSICAL REVIEW D62 064001
‘‘regulator’’ to avoid the appearance of intermediate inde
nite results.~For a more comprehensive discussion on
interaction of static sources with zero-energy modes, see
@12#.! For this purpose we let the coupling constantq
smoothly oscillate with frequencyv0, writing Eq. ~3.1! in
the form

j v0
~xm!5

qv0

A2h
d~r 2r 0!d~u2u0!d~w2w0!, ~3.9!

whereqv0
[A2q cos(v0t) and taking the limitv0→0 at the

end. The factorA2 has been introduced to guarantee that
time averagê uqv0

(t)u2& t5q2 since at the tree level the ab

sorption and emission rates are functions ofq2. By using
Eqs. ~3.9! and ~2.7! in Eq. ~3.3! we obtain the absorption
amplitude

A v lm
a abs5qA2pv0~cv0l

a ~r 0!/r 0! f 1/2~r 0!

3Ylm~u0 ,w0!d~v2v0!, ~3.10!

and we recall thatuA v lm
a emu5uA v lm

a absu. By letting Eq.~3.10!
into Eq. ~3.5! we obtain

Rv lm
a 5q2v0@ ucv0l

a ~r 0!u2/r 0
2# f 1/2~r 0!

3uYlm~u0 ,w0!u2@112na~v0!#d~v2v0!,

~3.11!

where it was used that the source’s total proper time it
52p f 1/2(r 0)limv→0d(v). @Here f 1/2(r 0) is the gravitational
redshift factor.#

Let us first consider the Unruh vacuum. By using E
~2.25!, ~3.6!, and ~3.11! in Eq. ~3.4! and makingv0→0 at
the end, we compute the total response

RU5
q2a~M2Q2/r 1!

4p2~M2Q2/r 0!
~3.12!

@note that modesuv lm
II (x) do not give any contribution here#,

where

a5
f 21/2~r 0!

2

d f~r 0!

dr0

is the source’s proper acceleration and we have used

(
m52 l

l

uYlm~u0 ,w0!u25
2l 11

4p
~3.13!

and @4#

(
l 50

`

uQl~s!u2~2l 11!5
1

s221
. ~3.14!

Next we compare Eq.~3.12! with
06400
-
e
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RM5
q2a

4p2
, ~3.15!

which is the response associated with our scalar source w
it is uniformly accelerated in the usual vacuum
Minkowski spacetime with proper accelerationa. We note
that although Eqs.~3.12! and~3.15! coincide whenQ50, as
found in Ref. @4#, they do not forQÞ0. As a result, the
presence of electric charge inside the black hole breaks
response equivalence.

We note that the equality between Eqs.~3.12! and ~3.15!
is recovered whenr 0'r 1 . Hence, close to the horizon,
static source in the Unruh vacuum responds as if it w
static in the Rindler wedge~i.e., uniformly accelerated in
Minkowski spacetime! with the usual inertial vacuum pro
vided that both sources have the same proper accelera
Moreover, Eq.~3.12! can be written in this region in terms o
the proper temperature@13# b0

215b21/Af (r 0) on the
source’s location as

RU'
q2

2pb0
. ~3.16!

Equation~3.16! coincides with the response associated w
our source when it is at rest in Minkowski spacetime with
background thermal bath characterized by a tempera
b0

21. This result is not surprising because close to the h
zon the scattering potential vanishes and the zero-en
modes leavingH 2 are completely reflected back towards t
horizon.

Now let us turn our attention to the Hartle-Hawkin
vacuum. An analogous calculation leads us to the follow
response:

RHH5
q2a~M2Q2/r 1!

4p2~M2Q2/r 0!
1

q2~M2Q2/r 1!~M2Q2/r 0!

4p2r 1
2 r 0

2a
,

~3.17!

where we have used thatP0@z(r 0)#51 and Y0051/A4p.
@Note that, in this case, onlyl 50 contributes in Eq.~3.4!.#
The first term on the right-hand side of Eq.~3.17! is identical
to the one obtained with the Unruh vacuum and is associa
with the thermal flux leavingH 2. The second term is asso
ciated with the thermal flux coming fromJ 2. As a consis-
tency check we note that forr→r 1 , we obtainRHH5RU .
This should be so because close to the horizon, zero-en
particles coming fromJ 2 cannot overpass the scatterin
barrier. Consequently, in this limit, the second term on
right-hand side of Eq.~3.17! must vanish. Now, when the
source is far away from the hole, the second term on
right-hand side of Eq.~3.17! dominates because zero-ener
particles leavingJ 2 are not able to reach the asymptot
region. Moreover, in this region, Eq.~3.17! can be rewritten
in the form

RHH'
q2

2pb
. ~3.18!
1-5
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Hence, far away from the hole, the source behaves as
were in Minkowski spacetime immersed in a thermal b
with temperatureb21, as expected.

IV. DISCUSSIONS

We have quantized the low-energy sector of a mass
scalar field in Reissner-Nordstro¨m spacetime. The results ob
tained were used to analyze the response of a static so
interacting with Hawking radiation using the Unruh an
Hartle-Hawking vacua. We have shown that, in gene
static sources outsidechargedblack holes~with the Unruh
vacuum! do not behave similarly to uniformly accelerate
sources in Minkowski spacetime~with the usual inertial
vacuum! as previously found forneutral black holes@4#.
This in conjunction with the fact that no equivalence is fou
in the Schwarzschild spacetime when the scalar field is
placed by the Maxwell one@5# shows that the equivalenc
ev
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found in @4# is not valid, in general, for other spacetimes a
quantum fields. Whether or not there is something dee
behind it remains an open question for us. We have a
verified that close to and far away from the horizon o
source behaves as if it were at rest in a thermal bath
Minkowski spacetime with proper temperature associa
with the Unruh and Hartle-Hawking vacua, respectively. T
low-energy quantization presented here can be used to
lyze other processes occurring outside charged black ho
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