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Effects of vacuum structure on neutron stars
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We study the equation of state for neutron matter using the Walecka model including quantum corrections
for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to
calculate the radius, mass, and other properties of rotating neutron stars.

PACS number~s!: 26.60.1c, 21.65.1f, 21.30.2x, 97.60.Jd
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I. INTRODUCTION

Neutron stars formed after a supernova explosion are
smallest, densest stars known. At the time of their birth, th
are composed of supernova matter at high temperature. H
ever, they rapidly cool down by the neutrino diffusion pr
cess. Hence most of the observed neutron stars are e
tially cold objects. The equation of state is the essen
ingredient for studying such neutron stars. Since the cen
density of a neutron star is so large, one should determine
equation of state using a relativistic model.

In recent years there has been considerable progress i
study of nuclear matter both at zero temperature@1# as well
as at high temperature. In all these considerations relativ
mean-field theory using hadronic degrees of freedom
been applied for the study of the ground-state propertie
nuclear matter. For example in the Walecka model@1#, the
nucleons interact through the exchange of scalar (s) and
vector (v) mesons. In this model it has been possible
describe the saturation density and binding energy of nuc
matter by adjusting the scalar and vector couplings. Ho
ever, in this treatment the effect of the Dirac sea has b
neglected. Effects associated with the Dirac sea of nucle
have been proposed@2# as important to several nuclear phy
ics problems. The simplest interpretation of these effect
in terms of virtualNN̄ pairs. It has been argued@2# that the
composite nature of the nucleon probably supress the
tributation ofNN̄ pairs compared to what is expected in n
ive Dirac hole theory. It has also shown@2# that one-nucleon-
loop contributions in quantum hydrodynamics do appea
be suppressed. Glendenning@3# has performed a vacuum
renormalization of relativistic field theory to study the pro
erties of neutron stars. There are also attempts to include
contribution of the filled negative sea of nucleons in nucl
matter at the one- and two-loop levels@4,5#. However, it is
found that the binding energy up to two loops@5# is rather
large as compared to the one-loop results. This might
because the couplings involved here are too large~of the
order of 10! and the theory is not assymptotically free. Hen
nonperturbative techniques need to consider the many-b
problem. In a recent study@6#, vacuum polarization correc
tion is included in nuclear matter in a nonperturbative a
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proach. In this study, one uses a squeezed coherent typ
construction for the ground state which amounts to an
plicit vacuum realignment. It was earlier seen that t
method correctly yields the results of the Gross-Neveu@7#
model as obtained by summing an infinite series of one-lo
diagrams. It has also studied that it reproduces the gap e
tion in an effective QCD Hamiltonian@8# as obtained
through solution of the Schwinger-Dyson equation for t
effective quark propagator. We here apply the same te
niques to study the quantum vacuum. The input here
equal-time quantum algebra for the field operators with
variational ansatz for the vacuum structure. Without us
any perturbative expansion or Feynman diagrams, it has b
possible to include quantum corrections through a reali
ment of the ground state with baryon as well ass-meson
condensates. The only baryon condensates yield the s
result as obtained in the relativistic Hartree approximat
~RHA! and give a softer equation of state as compared to
no-sea approximation. The equation of state obtained in
approach is expected to be quite reliable. Hence it would
quite interesting to extend this model to neutron matter
including ther meson and to use the equation of state
obtained to study the properties of rotating neutron star.

We organize the paper as follows. In Sec. II, we give
brief description of the model. The results are discussed
Sec. III. The conclusions drawn from the present study
presented in Sec. IV.

II. THEORY

A. Vacuum with condensates

The details of the theory have already been discusse
Ref. @6#. Only a few important steps are given here.

We start with the Lagrangian density for the linear W
lecka model@1# given as

L5c̄S igm]m2M2gss2gvgmvm2
1

2
grgmt•RmDc

1
1

2
]ms]ms2

1

2
ms

2s21
1

2
mv

2 vmvm2
1

4
vmnvmn

1
1

2
mr

2RmRm2
1

4
RmnRmn , ~1!

with
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vmn5]mvn2]nvm , ~2a!

Rmn5]mRn2]nRm . ~2b!

In the above,c, s, vm , andRm are the fields for the bary
ons,s, v, andr mesons with massesM, ms , mv , andmr ,
respectively. We use the mean-field approximation for
meson fields and retain the quantum nature of the ferm
fields. This amounts to taking meson fields as constant c
sical fields with translational invariance for neutron matte

The Hamiltonian density can then be written as

H5HN1Hs1Hv1Hr , ~3!

with

HN5c†~2 i a•“1bM !c1gssc̄c, ~4a!

Hs5
1

2
ms

2s2, ~4b!

Hv5gvv0c†c2
1

2
mv

2 v0
2 , ~4c!

Hr5
1

2
mr

2R03
2 . ~4d!

The equal-time quantization condition for the baryons
given as

@ca1
~x,t !,ca2

† ~y,t !#15da1a2
d~x2y!, ~5!

wherea1 anda2 refer to the spin indices. We may now writ
down the field expansion for the baryon fieldc at time t
50 as given by@9#

c~x!5
1

~2p!3/2E @Ur~k!cIr ~k!1Vs~2k!c̃Is~2k!#eik•xdk,

~6!

with cIr and c̃Is as the baryon annihilation and antibaryo
creation operators with spinsr and s, respectively. In the
above,Ur andVs are given by

Ur~k!5S cos
x~k!

2

s• k̂ sin
x~k!

2

D uIr ,

Vs~2k!5S 2s• k̂ sin
x~k!

2

cos
x~k!

2

D v Is . ~7!

In the aboves is the Pauli spin matices andk̂5k/uku. For
free massive fields cosx(k)5M /e(k) and sinx(k)
5uku/e(k), with e(k)5Ak21M2. The perturbative vacuum
05580
e
n
s-

s

say uvac&, is defined through cIr (k)uvac&50 and
c̃Ir

† (k)uvac&50. To include the vacuum-polarization effect
we shall now consider a trial state with baryon-antibary
condensates. We thus explicitly take the ansatz for the ab
state as

uvac8&5expF E dk f ~k!cIr
† ~k!arsc̃Is~2k!2H.c.G uvac&

[UFuvac&. ~8!

Herears5uIr
† (s• k̂)v Is and f (k) is a trial function associated

with baryon-antibaryon condensates. We note that with
above transformation the operators corresponding touvac8&
are related to the operators corresponding touvac& through
the Bogoliubov transformation. We then use the method
thermofield dynamics@10# developed by Umezawa and co
workers to construct the ground state for nuclear matter.
generalize the state with baryon-antibaryon condensate
given by Eq.~8! to finite temperature and density as@6#

uF~b!&5U~b!uvac8&[U~b!UFuvac&. ~9!

The temperature-dependent unitary operatorU(b) is given
as @10#

U~b!5exp@A†~b!2A~b!#, ~10!

with

A†~b!5E dk@u2~k,b!dIr
† ~k!dIr

† ~2k!

1u1~k,b!d̃Ir ~k!d̃Ir ~2k!#. ~11!

The underlined operators are operators corresponding to
doubling of the Hilbert space that arises in the thermofi
dynamics method. We shall determine the condensate fu
tion f (k) and the functionsu2(k,b) and u1(k,b) of the
thermal vacuum through minimization of the thermodynam
potential. The energy density is given as

e[^H&b ~12!

and the baryon density

rB5
g

~2p!3E dk~cos2u11sin2u2!. ~13!

In the above,g is the spin isospin degeneracy factor and
equal to 4 for nuclear matter, 2 for neutron matter.

Extremizing the thermodynamic potential with respect
the condensate functionf (k) and the functionsu7 yields

tan 2f ~k!5
gss0uku

e~k!21Mgss0

~14!

and
2-2
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sin2u75
1

exp$b@e* ~k!7m* #%11
, ~15!

with e* (k)5(k21M* 2)1/2 and m* 5m2gv v02 1
2 gr R03

as the effective energy density and effective chemical po
tial, where the effective baryon mass isM* 5M1gs s0 .

We now proceed to study the equation of state for neut
matter at zero temperature. The energy density after subt
ing out the pure vacuum contribution then becomes

e0[e~u2 , f !2e~u250,f 50!5eMFT1De, ~16!

with

eMFT5
g

~2p!3Euku,kF

dk~k21M* 2!1/21
1

2
ms

2s0
21

1

2
mv

2 v0
2

1
1

2
mr

2R03
2 ~17!

and

De52
g

~2p!3E dkF ~k21M* 2!1/22~k21M2!1/2

2
gss0M

~k21M2!1/2G . ~18!

The above expression for the energy density is diverg
After renormalization@11# by adding the counterterms, w
have the expression for the finite renormalized energy d
sity:

e ren5eMFT1De ren , ~19!

where

De ren52
g

16p2 FM* 4 lnS M*

M D1M3~M2M* !

2
7

2
M2~M2M* !21

13

3
M ~M2M* !3

2
25

12
M ~M2M* !4G . ~20!

The thermodynamic potential is a function ofs0 , v0 , and
R03. This when minimized with respect tos0 gives the self-
consistency condition for the effective baryon mass,

M* 5M2
gs

2

ms
2

g

~2p!3EkF
dk

M*

e~k!*
1DM* , ~21!

where
05580
n-

n
ct-

t.

n-

DM* 5
gs

2

ms
2

g

~2p!3 FM* 3 lnS M*

M D1M2~M2M* !

2
5

2
M2~M2M* !21

11

6
M ~M2M* !3G . ~22!

We next consider the quantum corrections due to the s
lar mesons. They arise from a vacuum realignment w
sigma condensates, meaning thereby that thes field is not a
classical one, but a quantum field. As will be seen later
quartic term in the sigma field would favor such condensa
Self-interactions of scalar fields with cubic and quartic ter
have been considered earlier@12# in the no-sea approxima
tion @13# as well as including the quantum corrections arisi
from the sigma fields@1,3#. They may be regarded as med
ating three- and four-body interactions between the baryo
The best fits to incompressibility in nuclear matter, sing
particle spectra, and properties of deformed nuclei
achieved with a negative value for the quartic coupling in
sigma field. However, with such a negative coupling the
ergy spectrum of the theory becomes unbounded from be
@14# for larges and hence it is impossible to study excite
spectra or to include vacuum polarization effects.

Including a quartic scalar self-interaction, Eq.~4b! is
modified to

Hs5
1

2
]ms]ms1

1

2
ms

2s21ls4, ~23!

with ms and l being the bare mass and coupling consta
respectively. Thes field satisfies the quantum algebra

@s~x!,ṡ~y!#5 id~x2y!. ~24!

We may expand the field operators in terms of creation
annihilation operators at timet50 as

s~x,0!5
1

~2p!3/2E dk

A2v~k!
@a~k!1a†~2k!#eik•x,

~25a!

ṡ~x,0!5
i

~2p!3/2E dkAv~k!

2
@2a~k!1a†~2k!#eik•x.

~25b!

In the above,v(k) is an arbitrary function which for free
fields is given by v(k)5Ak21ms

2 and the perturbative
vacuum is defined corresponding to this basis throu
auvac&50. As seen earlier a realignment of the ground st
from uvac& to uvac8& with baryon condensates amounts
including quantum effects. We shall adopt a similar proc
dure now to calculate the quantum corrections arising fr
the s field. We thus modify the ansatz for the trial groun
state as given by Eq.~8! to includes condensates as@15#

uV&5UsUFuvac&, ~26!

with
2-3
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Us5UII UI , ~27!

where Ui5exp(Bi
†2Bi), (i 5I ,II ). Explicitly the Bi are

given as

BI
†5E dkAv~k!

2
f s~k!a†~k! ~28a!

and

BII
† 5

1

2E dkg~k!a8†~k!a8†~2k!. ~28b!

In the above,a8(k)5UIa(k)UI
215a(k)2@Av(k)/2# f s(k)

corresponds to a shifted field operator associated with
coherent state@15# and satisfies the same quantum algebra
a(k). Thus in this construct for the ground state we have t
functions f s(k) andg(k) which will be determined through
minimization of energy density. Further, sinceuV& contains
an arbitrary number ofa8† quanta,a8uV& 5” 0. However, we
can define the basisb(k), b†(k) corresponding touV&
through the Bogoliubov transformation as

b~k!5UII a8~k!UII
215~coshg!a8~k!2~sinhg!a8†~2k!.

~29!

It is easy to check thatb(k)uV&50. Further, to preserve
translational invariancef s(k) has to be proportional tod(k)
and we takef s(k)5s0(2p)3/2d(k). Here s0 will corre-
spond to a classical field of the conventional approach@15#.
We next calculate the expectation value of the Hamilton
density. We use the renormalization prescription of Ref.@16#
and thus obtain the gap equation forMs

2 in terms of the
renormalized parameters as

Ms
25mR

2112lRs0
2112lRI f~Ms!, ~30!

where

I f~Ms!5
Ms

2

16p2
lnS Ms

2

m2 D . ~31!

Then using the above equations we obtain the energy de
for the s in terms ofs0 as

es53lRS s0
21

mR
2

12lR
D 2

1
Ms

4

64p2 F lnS Ms
2

m2 D 2
1

2G
23lRI f

222ls0
4 . ~32!

The above expression is given in terms of the renormali
s massmR and the renormalized couplinglR except for the
last term which is still in terms of the bare coupling consta
l and did not get renormalized because of the structure
the gap equation@17#. However, from the renormalizatio
procedure it is easy to see that whenlR is kept fixed, the
bare couplingl→02 . Therefore the last term in Eq.~32!
will be neglected in the numerical calculations.

After subtracting the vacuum contribution, we get
05580
e
s

o

n

ity

d

t
of

Des5es2es~s050!

5
1

2
mR

2s0
213lRs0

41
Ms

4

64p2 F lnS Ms
2

m2 D 2
1

2G
23lRI f

22
Ms,0

4

64p2 F lnS Ms,0
2

m2 D 2
1

2G13lRI f 0
2 ,

~33!

whereMs,0 andI f 0 are the expressions as given by Eqs.~30!
and ~31! with s050.

The energy density and pressure with baryon and sig
condensates are

e ren5e0
f inite1De ren ~34!

and

P5
g

3~2p!3Euku,kF

dk
k2

~k21M* 2!1/2
1

1

2
mv

2 v0
22Des

2De ren1
1

2
mr

2R03
2 , ~35!

where

e0
f inite5

g

~2p!3Euku,kF

dk~k21M* 2!1/21
1

2
mv

2 v0
21Des

1
1

2
mr

2R03
2 , ~36!

with De ren given by Eq.~20!.
The energy density from thes field as given by Eq.~33!

is still in terms of the renormalization scalem which is arbi-
trary. We choose this to be equal to the renormalized sig
massmR in doing the numerical calculations. This is becau
changingmB would mean changing the quartic couplinglR ,
and lR here enters as a parameter to be chosen to give
incompressibility for nuclear matter in the correct range. T
parametersgs , gv , and gr are fitted so as to describe th
ground-state properties of nuclear matter correctly. Fo
given baryon densityrB , the energy density and the pressu
for neutron matter are calculated at zero temperature.
then use this equation of state to calculate the neutron
properties.

B. Neutron star

The stars are assumed to be stationarily rotating
hence have axially, equatorially symmetric structures. T
details of the model are given by Kamatsuet al. @18#, Cook
et al. @19#, and Stergioulas and Friedman@20#. The metric
can be written in spherical coordinates (t, r, u, f):

ds252e2ndt21e2a~dr21r 2du2!

1e2br 2 sin2u~df2vdt!2, ~37!
2-4
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wherea, b, n, andv are the potentials which depend on
on r andu. The geometrized unitsc andG have been set to
unity. The stellar matter is assumed to be a perfect fluid
that the energy momentum tensorTab is given by

Tab5~e1P!UaUb1Pgab, ~38!

where e, P, Ua, and gab are the energy density, pressur
four-velocity, and metric tensor, respectively. It is furth
assumed that the four-velocityUa is simply a linear combi-
nation of the time and angular Killing vectors. The Einste
equations forn, b, andv are written as

D@reg/2#5Sr~r ,m!, ~39!

S D1
1

r

]

]r
2

1

r 2
m

]

]m D geg/25Sg~r ,m!, ~40!

S D1
2

r

]

]r
2

2

r 2
m

]

]m D ve(g22r)/25Sv~r ,m!, ~41!

where

D5
]2

]r 2
1

2

r

]

]r
1

1

r 2

]2

]u2
1

1

r 2
cotu

]

]u
1

1

r 2 sin2u

]2

]f2
,

~42!

g5b1n, ~43!

r5n2b. ~44!

The detailed expressions for the source termsSr , Sg , and
Sv are given in@18#. The above differential equations can b
transformed into an integral representation so as to enab
to handle boundary conditions in a much easier manner.
ing a three-dimensional Green’s function and introducing
lindrical coordinatesv̄5r sinu and z5r cosu, the integral
equations are given as

r52 (
n50

`

e2g/2E
0

`

dr8E
0

1

dm8r 82f 2n
2 ~r ,r 8!

3P2n~m!P2n~m8!Sr~r 8,m8!, ~45!

r sinug52
2

p
e2g/2(

n51

` E
0

`

dr8E
0

1

dm8r 82f 2n21
1 ~r ,r 8!

3
1

2n21
sin~2n21!u sin~2n21!u8Sg~r 8,m8!,

~46!
05580
o

,

us
s-
-

r sinuv52 (
n51

`

e(2r2g)/2E
0

`

dr8E
0

1

dm8r 83 sinu8

3 f 2n21
2 ~r ,r 8!

1

2n~2n21!
P2n21

1 ~m!

3P2n21
1 ~m8!Sv~r 8,m8!. ~47!

Here Pn is the Legendre polynomial, andPn
m is the associ-

ated Legendre function. The expression forf n
1(r ,r 8) and

f n
2(r ,r 8) are given in@18#. The expressions for the potentia

a is also given in Ref.@18#. Thus the calculation involves
solving the four field equations forr, g, v, anda.

III. RESULTS AND DISCUSSION

As has been discussed in Ref.@6#, the numerical calcula-
tion at zero temperature is carried out in the following ste
The masses of the nucleons,v mesons, andr mesons are
taken to be 939, 783, and 770 MeV, respectively. Then
calculate the binding energy per nucleon for a given ren
malizeds massmR and renormalized couplinglR and fit the
corresponding scalar and vector couplingsgs andgv to get
the correct saturation properties for symmetric nuclear m
ter. gr is fixed so as to reproduce the asymmetry energy
32.5 MeV for a givenmR and lR . We have tabulated the
masses and the coupling constants ofs, v, andr mesons in
Table I. We have also given the compressibility and the
fective mass for differentlR in Table I. The compressibility
and the effective mass lie in the range of 300–400 MeV a
0.75–0.8, respectively. It is seen that the couplinggs andgv

decrease with increasinglR . However,gr increases with
lR .

For mR5520 MeV, the equation of state for neutron ma
ter is calculated for differentlR and plotted in Fig. 1. We
have also plotted the equation of state for the Walecka mo
where the contribution of the Dirac sea has been neglecte
is seen that the equation of state becomes stiff if the D
sea is neglected. The equation of state for the relativi
Hartree approximation is also shown. With the increase
lR , the equation of state becomes softer. As a result,
compressibility goes on decreasing withlR as shown in
Table I.

We next study neutron star properties using the ab
equation of state. The maximum mass of the neutron s
known as limiting mass, is interesting because this can
measured on binary systems. The most massive meas
ment is for 4U0900-40 withM51.8520.30

10.35M ( and the most
accurate is for PSR1913116 with M51.45160.007M (

@21#. In Fig. 2, we plot the mass of the neutron star as
function of the radius of the neutron star for differentlR
with mR 5 520 MeV. The no-sea approximation predicts
much larger radius and maximum mass for the neutron s
However, with the increase oflR , both the maximum stable
mass and radius of the neutron star decrease.

The equation of state and the structure of the neutron s
are suggested in Ref.@22# using the variational chain sum
mation methods and the new Argonnev18 two-nucleon in-
2-5
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TABLE I. Mass of the nucleonM, v mesonmv , r mesonmr , ands mesonms in MeV. s-nucleongs ,
v-nucleongv , andr-nucleongr coupling constants used in the calculation. CompressibilityK in MeV and
the effective nuclon massM* /M are given for differentlR . It is seen that the compressibility decreases a
effective mass increases with the increase oflR . Note that the calculations have been done with renorm
ized sigma massmR5520 and 480 MeV.

M mv mr ms lR gs gv gr K M* /M

No-Sea 9.05 11.671 5.7704 545 0.56
RHA 7.4975 8.9305 6.6643 450 0.72
1.8 7.1669 8.1897 7.1303 399.4791 0.753

939.0 783.0 770.0 520.0 3.0 6.9276 7.6474 7.2304 364.4575 0.77
4.0 6.7200 7.1671 7.3085 340.9642 0.796
4.5 6.6128 6.9147 7.3460 330.6333 0.806

939.0 783.0 770.0 480.0 1.8 6.5169 7.9471 7.1768 382.0059 0.76
3.0 6.2515 7.2837 7.2905 344.4022 0.791
4.0 6.0380 6.7300 7.3720 320.1296 0.810
4.5 5.9332 6.4502 7.4092 309.7436 0.823
e
s
la
r-

th
ea
th

th

ve

e-

star
ry-
um.
ed
ap-
ith

s ob-
m-
re-
en

qu
teraction. The neutron star gravitational mass limit obtain
with this interaction is 1.6M ( . However, boost correction
to the two-nucleon interaction, which give the leading re
tivistic effect of order (v/c)2, as well as three-nucleon inte
action increase the mass limit.

In Fig. 3, we plot the angular velocity versus mass of
neutron star. The maximum mass decreases with the incr
of lR . In Fig. 4, the angular momentum versus mass of
neutron star is plotted. The Walecka model~no-sea! predicts
much higher angular momentum for the neutron star. But
angular momentum decreases with the increase oflR .

In Figs. 5 and 6 we have plotted radius and angular

FIG. 1. The equation of state of neutron matter formR

5520 MeV for differentlR . The Walecka model~no-sea! approxi-
mation gives a stiffer equation of state compared to the other e
tions of state.
05580
d

-

e
se

e

e

-

locity versus mass formR 5 480 MeV. We found that for
this value ofmR , the radius, mass, and angular velocity d
crease compared to the result formR 5 520 MeV.

IV. CONCLUSIONS

We have studied the properties of the rotating neutron
using the Walecka model with quantum corrections for ba
ons and sigma mesons through a realignment of the vacu
In this study, the vacuum polarization correction is includ
in nuclear matter in a nonperturbative approach. In this
proach, the contribution from the ground-state structure w
baryon-antibaryon condensates yields the same results a
tained through a relativistic Hartree approximation of su
ming tadpole diagrams for the baryon propagator. This
sults in a softer equation of state. This vacuum is th
generalized by including the quantum effects froms-meson

a- FIG. 2. The radius versus mass of the neutron star formR

5520 MeV for differentlR .
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fields through scalar-meson condensates, which amoun
summing over a class of multiloop diagrams. This leads t
further softening of the equation of states. The value of
compressibility and the effective mass are within the ran
of 300–400 MeV and 0.75–0.8, respectively. It is interest
to note that the present variational ansatz with squee
vacuum structure leads to daisy-superdaisy resummed
consistent two-loop effective potentials as obtained in R
@17#. The reason for such a result lies in the fact that thes4

interaction leads to a functional for the vacuum energy wh
is effectively quadratic and we could solve for the ans
functions explicitly. It is known that most of the success
parameter sets which explain the ground-state propertie
nuclear matter and finite nuclei quite well are with a negat
quartic coupling. But the energy spectrum in such a cas

FIG. 3. The angular velocity versus mass of the neutron star
mR5520 MeV for differentlR .

FIG. 4. The angular momentum versus mass of the neutron
for mR5520 MeV for differentlR .
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is

unbounded from below for larges, thus making it impos-
sible to include vacuum-polarization effects. We have
cluded quantum effects with a quartic self-interacti
throughs condensates, taking the coupling to be positi
We then extended the model by including ther mesons and
applied it to study the properties of neutron stars. Howev
the renormalization ofv andr mesons has been neglecte

We reemphasized the role of the equation of state in n
tron star structure. In our calculation for neutron matter
zero temperature, we found that the Walecka model~no sea!
gives a stiffer equation of state and the compressibility
quite large. However, the equation of state becomes m
softer with the increase of renormalized couplinglR for a
given renormalized massmR . We calculated neutron sta

r

tar

FIG. 5. The radius versus mass of the neutron star formR

5480 MeV for differentlR . Note that the radius and mass d
crease as obtained formR5520 MeV.

FIG. 6. The angular velocity versus mass of the neutron star
mR5480 MeV for differentlR .
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properties like mass, radius, and angular velocity which m
become tests of the theory as more data on neutron
become available. We found that formR5480 MeV, the ra-
dius, mass, and angular velocity decrease compared to
result formR5520 MeV.

Note that the approximation here lies in the specific
satz for the ground-state structure. However, a system
inclusion of more general condensates than the pairing
as used here might be an improvement over the present
.
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