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Effects of vacuum structure on neutron stars
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We study the equation of state for neutron matter using the Walecka model including quantum corrections
for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to
calculate the radius, mass, and other properties of rotating neutron stars.

PACS numbegps): 26.60+c, 21.65:+f, 21.30~x, 97.60.Jd

[. INTRODUCTION proach. In this study, one uses a squeezed coherent type of
construction for the ground state which amounts to an ex-
Neutron stars formed after a supernova explosion are thglicit vacuum realignment. It was earlier seen that the
smallest, densest stars known. At the time of their birth, theynethod correctly yields the results of the Gross-Ne{éu
are composed of supernova matter at high temperature. HowRodel as obtained by summing an infinite series of one-loop
ever, they rapidly cool down by the neutrino diffusion pro- diagrams. It has also studied that it reproduces the gap equa-
cess. Hence most of the observed neutron stars are essdien in an effective QCD Hamiltoniar{8] as obtained
tially cold objects. The equation of state is the essentiafifough solution of the Schwinger-Dyson equation for the
ingredient for studying such neutron stars. Since the centrdl/f€ctive quark propagator. We here apply the same tech-
density of a neutron star is so large, one should determine tryaues to study the quantum vacuum. The input he.re IS
equation of state using a relativistic model. equal-time quantum algebra for the field operators with a

In recent years there has been considerable progress in té%natg?l?rlbgg\slgtzxfognt:iianf ggmn;t;ﬁcé?;e}avr\rﬁghﬁuk:azstl)ggen
study of nuclear matter both at zero temperafdreas well yp P Y 9 '

. . . .. __possible to include quantum corrections through a realign-
as at high temperature. In all these considerations relativisti q g ¢

fiold th i"a hadronic d ¢ treed h ent of the ground state with baryon as well @neson
mean-iield theory using hadronic degrees of free oM NaZsndensates. The only baryon condensates yield the same
been applied for the study of the ground-state properties

) esult as obtained in the relativistic Hartree approximation
nuclear matter. For example in the Walecka mddgl the  (rpa) and give a softer equation of state as compared to the
nucleons interact through the exchange of scalgy &nd  o_sea approximation. The equation of state obtained in this
vector (@) mesons. In this model it has been possible t0gpnr0ach is expected to be quite reliable. Hence it would be
describe the saturation density and binding energy of nuclegjite interesting to extend this model to neutron matter by
matter by adjusting the scalar and vector couplings. HOWTncIuding thep meson and to use the equation of state so

ever, in this treatment the effect of the Dirac sea has beefpained to study the properties of rotating neutron star.
neglected. Effects associated with the Dirac sea of nucleons \yg organize the paper as follows. In Sec. I, we give a

have been propos¢a] as important to several nuclear phys- pyief description of the model. The results are discussed in
ics problems. The simplest interpretation of these effects igec |11, The conclusions drawn from the present study are
in terms of virtuaINN pairs. It has been argugd] that the  presented in Sec. IV.

composite nature of the nucleon probably supress the con-

tributation of NN pairs compared to what is expected in na- Il. THEORY
ive Dirac hole theory. It has also show2] that one-nucleon- )
loop contributions in quantum hydrodynamics do appear to A. Vacuum with condensates

be suppressed. Glendennifig] has performed a vacuum  The details of the theory have already been discussed in
renormalization of relativistic field theory to study the prop- Ref. [6]. Only a few important steps are given here.
erties of neutron stars. There are also attempts to include the \We start with the Lagrangian density for the linear Wa-

contribution of the filled negative sea of nucleons in nucleaecka mode[1] given as

matter at the one- and two-loop levgl5]. However, it is

found that the binding energy up to two loof is rather . 1

large as compared to the one-loop results. This might be L=y 'VMaM_M_gv‘T_ngM“’M_ngﬁ’MT' Ry
because the couplings involved here are too laigfethe

order of 10 and the theory is not assymptotically free. Hence 1 1 1

T oou T2, 2, T2 u _ = uv
nonperturbative techniques need to consider the many-body +0000,0 = Mot S M0, = Z 0wy,
problem. In a recent studys], vacuum polarization correc- . 1
tion is included in nuclear matter in a nonperturbative ap- 2

+§mpR“RM—ZR“”Rw, (1)
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(28
(2b)

W= &Mw,,— @,

R,,=3d,R,~3,R,,.

In the abovey, o, w,, andR,, are the fields for the bary-
ons,o, o, andp mesons with masséd, m,, m,,, andm,,
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say |vao, is defined through c,(k)lvag=0 and

¢l (k)|vag=0. To include the vacuum-polarization effects,
we shall now consider a trial state with baryon-antibaryon
condensates. We thus explicitly take the ansatz for the above
state as

respectively. We use the mean-field approximation for the ~
meson fields and retain the quantum nature of the fermion |vac’>=ex;{f dk f(k)c] (K)ayCs(—k)—H.c.||[vag
fields. This amounts to taking meson fields as constant clas-

sical fields with translational invariance for neutron matter.

The Hamiltonian density can then be written as

H=Hn+Ho+H,+H,, ?)
with

Hy=y"(—ia-V+BM)y+g,04, (48

1 2
ngzm(,az, (4b)

+ 1 2 2

Hw:gwwolp lﬂ_imw“’o: (4C)

1 2p2
HPZEmPRog. (4d)

=Ug|vag. (8)
Herea, ;= uﬁ(a« k)v,s andf(k) is a trial function associated
with baryon-antibaryon condensates. We note that with the
above transformation the operators correspondinfyaa’ )
are related to the operators correspondingvec) through
the Bogoliubov transformation. We then use the method of
thermofield dynamic$10] developed by Umezawa and co-
workers to construct the ground state for nuclear matter. We
generalize the state with baryon-antibaryon condensates as
given by Eq.(8) to finite temperature and density &
[F(B))=U(B)|vac)=U(B)Ug|vag. 9
The temperature-dependent unitary oper&l¢pB) is given
as[10]

The equal-time quantization condition for the baryons is

given as

[, (X0, 0L (VD] = 840, 0(X—Y), (5)

wherea; ande, refer to the spin indices. We may now write

down the field expansion for the baryon fiefd at timet
=0 as given hbyf9]

1 ~ .
W):(ZT)s/zf[Ur<k>clr(k)+vs(—k)c.s(—kne'k-Xdk,
(6)

U(B)=exd AT(B)~A(B)], (10
with
AT(B)= J dk[6_(k,B)d]; (k)d(—k)
+ 0. (k, B (kjdy (—K)]. (11)

The underlined operators are operators corresponding to the
doubling of the Hilbert space that arises in the thermofield
dynamics method. We shall determine the condensate func-
tion f(k) and the functionsf_(k,8) and 6.(k,8) of the
thermal vacuum through minimization of the thermodynamic

with ¢,, and ;. as the baryon annihilation and antibaryon Potential. The energy density is given as

creation operators with spinsand s, respectively. In the
above,U, andVg are given by

x(K)
03—2
x(k)

ok smT

Ur(k): U,

" k
—o-ksin 9
OS)((k)

2

Vs(—k)= @)

Uis-

In the aboveo is the Pauli spin matices arid=k/|k|. For
free massive fields cogk)=M/e(k) and siny(k)

=|k|/e(k), with e(k)= Vk?+ M?Z. The perturbative vacuum,

and the baryon density
g .
sz(Zw)gf dk(cog . +sirf6_). (13

In the aboveg is the spin isospin degeneracy factor and is
equal to 4 for nuclear matter, 2 for neutron matter.

Extremizing the thermodynamic potential with respect to
the condensate functioi{k) and the function®- yields

g()'0-0|k|

tan 2f(k) = ————
( ) 6(k)2+Mg(,0'o

(14)

and
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*

1 9 g (M
— , (15 AM* == M*31n
expBle* (K)Fu*]}+1 M

Sirfg, =
m2 (2)3

+M2(M—M*)

; 5 11
with E*(k):-(kz'f'M*z)l/Z and ,U/*:,Lb_g.w wo—%gp R03 __MZ(M_M*)2+_M(M_M*)3 ) (22)
as the effective energy density and effective chemical poten- 2 6
tial, where the effective baryon masshNs* =M +g,, . . )
We now proceed to study the equation of state for neutron We next consider the quantum corrections due to the sca-

matter at zero temperature. The energy density after subtrad@’ Mesons. They arise from a vacuum realignment with

ing out the pure vacuum contribution then becomes

eo=€(0_,f)—e(0_=0=0)=¢eyprtAe, (16
with
EMFT— J' dk(k2+ M*2)1/2+£m12,0'§+3miw(2)
(27)3 ) K| <ke 2 2
1 2p2
+§mpR03 (17)
and
Ae=— 9 dk (k2+ M*2)1/2_(k2+ M2)1/2
(2m)®
«0oM
__90%M | (18
(k2+M2)1/2

The above expression for the energy density is divergen
After renormalization[11] by adding the counterterms, we
have the expression for the finite renormalized energy den-

sity:
€ren= EMFTT A €rens (19)
where
_ 9 x4 M* 3 ERVES
A€ren= o2 M In(M +M3(M—M*)
7 13
—=M2(M—=M*)2+ —M(M—M*)3
2 3
25M M—M*)4 20
M ). (20

The thermodynamic potential is a function @f, g, and
Ro3. This when minimized with respect tg, gives the self-
consistency condition for the effective baryon mass,

2 K M*
mr=m— 29[
mZ (2m)3 e(k)*

+FAM*, (2D

where

sigma condensates, meaning thereby thattlield is not a
classical one, but a quantum field. As will be seen later, a
quartic term in the sigma field would favor such condensates.
Self-interactions of scalar fields with cubic and quartic terms
have been considered earli@r2] in the no-sea approxima-
tion [13] as well as including the guantum corrections arising
from the sigma field$1,3]. They may be regarded as medi-
ating three- and four-body interactions between the baryons.
The best fits to incompressibility in nuclear matter, single-
particle spectra, and properties of deformed nuclei are
achieved with a negative value for the quartic coupling in the
sigma field. However, with such a negative coupling the en-
ergy spectrum of the theory becomes unbounded from below
[14] for large o and hence it is impossible to study excited
spectra or to include vacuum polarization effects.

Including a quartic scalar self-interaction, E@ib) is
modified to

1 1
H,=%d,00 c+ —m(2,0'2+ Aot

20K 2 (23

with m, and\ being the bare mass and coupling constant,
{espectively. Ther field satisfies the quantum algebra

[a(x),0(y)]=i8(x—y).

We may expand the field operators in terms of creation and
annihilation operators at time=0 as

(29)

(x0)= — | K o +al(—kek>
X,U)= a a(— e ,
g (277_)3/2 /2w(k)
(253
. i [w(k _
o(x,0)=Wf dk %)[—a(k)JraT(—k)]e'k-X.
(25b)

In the above,w(k) is an arbitrary function which for free
fields is given by w(k)=k’>+ ma2 and the perturbative
vacuum is defined corresponding to this basis through
alvac=0. As seen earlier a realignment of the ground state
from |vac to |vac') with baryon condensates amounts to
including quantum effects. We shall adopt a similar proce-
dure now to calculate the quantum corrections arising from
the o field. We thus modify the ansatz for the trial ground
state as given by Ed8) to includeo condensates 45|

|Q>:UUUF|VaC>' (26)

with
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UO.:U||U|, (27) AEUZEU_fg(O'OZO)
where U;=exp®—B)), (i=1,11). Explicitly the B; are 1, N e I M2\ 1
Jien as BEACER Syl L v
' w(K) ! M3 Mol 1
Bi= | dky——f.(alk) (289 —3Npl2— —2% in| 2| — S|+ 3R}
64 w2 2
and (33
1 . .
Bt :_f dka(kra’t(ka’ T (=k). 28b whereM,, g andl ¢ are the expressions as given by E@)
2 glkja"i(kja"i(—k) (28 and (31) with oy=0.

The energy density and pressure with baryon and sigma
In the abovea’(k)=U,a(k)U; *=a(k)~[Jw(k)/2]f,(k)  condensates are
corresponds to a shifted field operator associated with the
coherent statfl5] and satisfies the same quantum algebra as €ren=€0""®+ A€ran (34)
a(k). Thus in this construct for the ground state we have two
functionsf ;(k) andg(k) which will be determined through and
minimization of energy density. Further, sing@) contains
an arbitrary number ci’ " quantaa’|Q) # 0. However, we g k2
can define the basid(k), b'(k) corresponding to/Q) P= 3f
through the Bogoliubov transformation as 3(2m)*JIKi<ke

1
dk————+ —m2wi—Ae
(k2+M*2)1/2 2 @0 o

1
b<k>=u|.a'<k)ur.1=(coshg)a'(k)—(sinhg)a'*(—k()z.g) ~Aerent 5 MRGs, (35)

It is easy to check thab(k)|Q)=0. Further, to preserve Where

translational invariancé, (k) has to be proportional té(k)

and we takef (k)= oo(2m)*¥?5(k). Here o will corre- finite___ 9 2 a2, L o o

spond to a classical field of the conventional approdd. 0 _(277')3 ‘k‘<dek(k +MFE T Emw“’0+A€”

We next calculate the expectation value of the Hamiltonian

density. We use the renormalization prescription of IRES) 1.,,

and thus obtain the gap equation fmi in terms of the +§mpR03, (36)

renormalized parameters as
with A€, given by Eq.(20).

2_ 2 2 ren

MG=mg+12\go5+ 120rl (M), (30) The energy density from the field as given by Eq(33)

is still in terms of the renormalization scalewhich is arbi-

where trary. We choose this to be equal to the renormalized sigma

M2 M2 massmg, in doing the numerical calculations. This is because
1(M,)= —ZIn| —2 (31) changingug would mean changing the quartic coupling,
7 1em? \ w? and\r here enters as a parameter to be chosen to give the

incompressibility for nuclear matter in the correct range. The
Then using the above equations we obtain the energy densiparametersy,,, g,,, andg, are fitted so as to describe the
for the o in terms of o as ground-state properties of nuclear matter correctly. For a

given baryon densitgg, the energy density and the pressure

, Mi\? Mp VAT for neutron matter are calculated at zero temperature. We
€,=3\g| 05t 75— > In BEY ) then use this equation of state to calculate the neutron star
12\ 64 )% 2 .
properties.
—3\gl?—2)\07}. (32

L . ) B. Neutron star
The above expression is given in terms of the renormalized . : .
o massmg and the renormalized coupling; except for the The stars are assumed _to be statlonanly rotating and
last term which is still in terms of the bare coupling constant"€Nce have axially, equatorially symmetric structures. The

N\ and did not get renormalized because of the structure Oqietalls of the model are given by Kamatstal. [18], Cook

the gap equationl7]. However, from the renormalization et alb[lg],_and_Ster%ioglazls anddFriedm@BO]. The metric
procedure it is easy to see that wheg is kept fixed, the can be written in spherical coordinates ¢, 6, ¢):

bgre coupling)\—>§), . Therefor_e the last term in Eq32) ds?= —e?"dt2+ e2*(dr2+r2d 6?)
will be neglected in the numerical calculations.
After subtracting the vacuum contribution, we get +e?Pr?sirf9(d¢ — wdt)?, (37)
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wherea, B, v, andw are the potentials which depend only * o 1
onr and@. The geometrized units andG have been set to r sinfw=— 2, e(ZP’V)’Zf dr’j du'r’3sing’
unity. The stellar matter is assumed to be a perfect fluid so n=1 0 0

that the energy momentum tensBt® is given by 1
2 2 1
><on—l(r'r )Zn(zn_l) P2n—l(/-l’)
T2=(e+P)UUP+Pg?, (38 .
XPZn—l(M,)Sw(r,uu‘/)- (47)

wheree, P, U2, andg?” are the energy density, pressure, . . m ]

four-velocity, and metric tensor, respectively. It is further Here Py is the Legendre polynomial, arfd’ is the associ-

assumed that the four-velocity? is simply a linear combi- ated Legendre function. The expression fg(r,r’) and

nation of the time and angular Killing vectors. The Einsteinf2(r,r’) are given in[18]. The expressions for the potential

equations forv, B, andw are written as «a is also given in Ref[18]. Thus the calculation involves
solving the four field equations fqr, v, w, anda.

A[pe?]=S,(r ), (39)
IIl. RESULTS AND DISCUSSION

As has been discussed in RE8), the numerical calcula-
ye"?=S (1, 1), (400 tion at zero temperature is carried out in the following steps:
The masses of the nucleons, mesons, angh mesons are
taken to be 939, 783, and 770 MeV, respectively. Then we
calculate the binding energy per nucleon for a given renor-
wel?=2I2=g (r 1), (41) malizedo massmg and renormalized couplingg and fit the
corresponding scalar and vector couplingsandg,, to get
the correct saturation properties for symmetric nuclear mat-
where ter. g, is fixed so as to reproduce the asymmetry energy of
32.5 MeV for a givenmg andAr. We have tabulated the
5 5 masses and the coupling constantgpiw, andp mesons in
i+ 1 3_+ 1 t0£+ 1 Table 1. We have also given the compressibility and the ef-
ar 2992 2 %0 r2sintd gg?’ fective mass for differenk in Table I. The compressibility
(420  and the effective mass lie in the range of 300—400 MeV and
0.75-0.8, respectively. It is seen that the couptipsgandg,,
decrease with increasingg. However,g, increases with
y=B+v, (43) AR.
Formg=520 MeV, the equation of state for neutron mat-
(44) ter is calculated for differenkz and plotted in Fig. 1. We
have also plotted the equation of state for the Walecka model
_ ) where the contribution of the Dirac sea has been neglected. It
The detailed expressions for the source teffps S,, and  js seen that the equation of state becomes stiff if the Dirac
S, are given in18]. The above differential equations can be sea is neglected. The equation of state for the relativistic
transformed into an integral representation so as to enable yfartree approximation is also shown. With the increase of
to handle boundary conditions in a much easier manner. USNR’ the equation of state becomes softer. As a result, the
ing athree—dimensiogal Green'’s function and introducing CYcompressibility goes on decreasing wikly as shown in
lindrical coordinatesw=r sin@ and z=r cos#, the integral Table I.
equations are given as We next study neutron star properties using the above
equation of state. The maximum mass of the neutron star,
o . L known as limiting mass, is interesting because this can be
=— —vl2 r/f "rr262 (p g measured on binary systems. The most massive measure-
P nZO © fo d 0 Aur () ment is for 4U0900-40 wittM =1.85"33M, and the most
accurate is for PSR191#316 with M=1.451+0.00M
[21]. In Fig. 2, we plot the mass of the neutron star as a
function of the radius of the neutron star for differeng
2 * rw 1 with mg = 520 MeV. The no-sea approximation predicts a
rsingy=——e 72>, f dr’f du'r'2f3 _.(r,r") much larger radius and maximum mass for the neutron star.
77 n=1Jo 0 However, with the increase afy, both the maximum stable
mass and radius of the neutron star decrease.
sin(2n—1)0sin(2n—1)0'S,(r",u’"), The equation of state and the structure of the neutron stars
are suggested in Reffi22] using the variational chain sum-
(46) mation methods and the new Argonngs two-nucleon in-

19 1 4
ror rz"’“au

(20 2
ror 2o

3?2
r

X Pan(m)Pan(p")S,(r',p’), (45

X

2n—1
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TABLE I. Mass of the nucleoM, w mesonm,,, p mesonm,,, ande mesonm, in MeV. o-nucleong,,,
w-nucleong,,, andp-nucleong, coupling constants used in the calculation. Compressiliity MeV and
the effective nuclon madd*/M are given for differenhg. It is seen that the compressibility decreases and
effective mass increases with the increase. @f Note that the calculations have been done with renormal-
ized sigma masmz=520 and 480 MeV.

M m,, m, m, AR O, Jo g, K M*/M
No-Sea 9.05 11.671 5.7704 545 0.56
RHA 7.4975 8.9305 6.6643 450 0.72

1.8 7.1669 8.1897  7.1303  399.4791  0.7531
939.0 783.0 770.0 520.0 3.0 6.9276 7.6474 < 7.2304  364.4575  0.7769

4.0 6.7200 7.1671  7.3085 340.9642  0.7965

4.5 6.6128 6.9147  7.3460 330.6333  0.8063

939.0 783.0 770.0 480.0 1.8 6.5169 7.9471 7.1768  382.0059  0.7639
3.0 6.2515 7.2837  7.2905  344.4022  0.7919
4.0 6.0380 6.7300 7.3720 320.1296  0.8100
4.5 5.9332 6.4502 7.4092  309.7436  0.8234

teraction. The neutron star gravitational mass limit obtainedocity versus mass fomg = 480 MeV. We found that for
with this interaction is 1.8l . However, boost corrections this value ofmg, the radius, mass, and angular velocity de-
to the two-nucleon interaction, which give the leading rela-crease compared to the result fog = 520 MeV.
tivistic effect of order ¢/c)?, as well as three-nucleon inter-
action increase the mass limit. IV. CONCLUSIONS

In Fig. 3, we plot the angular velocity versus mass of the
neutron star. The maximum mass decreases with the increase We have studied the properties of the rotating neutron star
of Ar. In Fig. 4, the angular momentum versus mass of thé!Sing the Walecka model with quantur_n corrections for bary-
neutron star is plotted. The Walecka mo¢ieb-sea predicts ~ OnS and sigma mesons through a realignment of the vacuum.
much higher angular momentum for the neutron star. But thén this study, the vacuum polarization correction is included

angular momentum decreases with the increasesof in nuclear matter in a nonperturbative approach. In this ap-
. : proach, the contribution from the ground-state structure with
In Figs. 5 and 6 we have plotted radius and angular vey . ;
baryon-antibaryon condensates yields the same results as ob-
tained through a relativistic Hartree approximation of sum-

5 ming tadpole diagrams for the baryon propagator. This re-

sults in a softer equation of state. This vacuum is then
generalized by including the quantum effects frommeson
4 14
—_ — Xg=18
=T T A/ A I Aa=3.0 LT “
s |\ A |- Ap=4.0 o \
Z 3 Bl s \
] -~- RHA . 5
g --- NOSEA ;
gl i
2. 2 /
S -0 '
e’
y E
&
1 11
0
0 5 10 15 20 10
14 3
€ (10" gm/cm”)
9
. 0.0 0.5 1.0 1.5 20 25 3.0
FIG. 1. The equation of state of neutron matter fog
=520 MeV for different\g . The Walecka modeho-sea approxi- M(MQ)
mation gives a stiffer equation of state compared to the other equa- FIG. 2. The radius versus mass of the neutron starnfigr
tions of state. =520 MeV for different\g.
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14 13.0
— =18
sk Ae=3.0
12 S [ = Mg=4.0
12.0
L0
o~ 11.5
Iw —
Y= 08 E 11.0
— N’
= [
G 10.5
0.6
10.0
0.4
9.5 !
/
;
0.2 9.0
00 05 10 15 20 25 30 35 40 0.0 0.5 1.0 L5 20 2.5
MM,) MM,)

FIG. 3. The angular velocity versus mass of the neutron star for FIG. 5. The radius versus mass of the neutron starnfigr
mg=520 MeV for different\g. =480 MeV for differentAgz. Note that the radius and mass de-
crease as obtained fong=520 MeV.

fields through scalar-meson condensates, which amounts to

summing over a class of multiloop diagrams. This leads to ainbounded from below for large, thus making it impos-
further softening of the equation of states. The value of th&ible to include vacuum-polarization effects. We have in-
compressibility and the effective mass are within the rangeluded quantum effects with a quartic self-interaction
of 300-400 MeV and 0.75-0.8, respectively. It is interestingthrough ¢ condensates, taking the coupling to be positive.
to note that the present variational ansatz with squeeze@e then extended the model by including fhenesons and
vacuum structure leads to daisy-superdaisy resummed selpplied it to study the properties of neutron stars. However,
consistent two-loop effective potentials as obtained in Rethe renormalization ofs and p mesons has been neglected.
[17]. The reason for such a result lies in the fact thatdfie We reemphasized the role of the equation of state in neu-
interaction leads to a functional for the vacuum energy whichron star structure. In our calculation for neutron matter at
is effectively quadratic and we could solve for the ansatzzero temperature, we found that the Walecka maodelsea
functions explicitly. It is known that most of the successful gives a stiffer equation of state and the compressibility is
parameter sets which explain the ground-state properties @fuite large. However, the equation of state becomes much
nuclear matter and finite nuclei quite well are with a negativesofter with the increase of renormalized coupling for a
quartic coupling. But the energy spectrum in such a case igiven renormalized massiz. We calculated neutron star

§ 1.2

/ 1.0
6 | -—— NO-SEA /

0.8

0(10*s™

CI/GM,’

0.6

0.4

0.2
00 05 10 15 20 25 30 35 0.0 0.5 1.0 15 2.0 2.5 3.0

MMg) MMg)

FIG. 4. The angular momentum versus mass of the neutron star FIG. 6. The angular velocity versus mass of the neutron star for
for mg=520 MeV for different\g. mg=480 MeV for different\g.

055802-7



P. K. PANDA, R. SAHU, AND S. MISHRA PHYSICAL REVIEW (52 055802
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