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Quantum tunneling fragmentation model
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A nonthermal quantum mechanical statistical fragmentation model based on tunneling of particles through
potential barriers is studied in compact two- and three-dimensional systems. It is shown that this fragmentation
dynamics gives origin to several static and dynamic scaling relations. The critical exponents are found and
compared with those obtained in classical statistical models of fragmentation of general interest, in particular
with thermal fragmentation involving classical processes over potential barriers. Besides its general theoretical
interest, the fragmentation dynamics discussed here is complementary to classical fragmentation dynamics of
interest in chemical kinetics and can be useful in the study of a number of other dynamic processes such as
nuclear fragmentation.

PACS number~s!: 05.40.2a, 64.60.Ht, 73.40.Gk, 25.70.Mn
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I. INTRODUCTION

Fragmentation is one of the most studied physical p
nomena, with applications ranging from crushing@1# and
grinding@2# of solids to droplet breakup@3#, and disassembly
of heavy nuclear@4# or large molecular@5# structures in high-
energy collisions, among many others@6#. Usually, experi-
ments in fragmentation are modeled by simple geome
algorithms@7# or by phenomenological approaches@8,9# in
order to describe the statistical features of the proces
Only classical concepts are used in these descriptions an
general, quantum processes have not been explicitly con
ered. As a further example of a classical fragmentation
namics we have the pioneering numerical simulations
ported in Refs. @10# and @11#, which consider reactive
processes in the kinetic and diffusion-limited regimes o
porous media. Along these classical lines, we have in
duced in a previous publication@12# a fragmentation mode
of interest in chemical kinetics and related phenomena, e
the attack on a piece of metal by corrosive rain, in which
reactivity or probabilitypi of a successful attack at a lattic
site i is given by the Boltzmann factor:

pi5exp~2Ei /kBT!, ~1!

with Ei5qiE, qi the coordination number of sitei, E the
characteristic energy of each of theqi chemical bonds,kB the
Boltzmann constant, andT the temperature. At each tim
step, a sitei on the lattice is chosen at random. The atom
molecule at that site changes its chemical status, and is e
nated off the lattice~i.e., it diffuses from the lattice! with
probability pi . Obviously, the continued action of this dy
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namics leads to the fragmentation of the system. In this c
sical fragmentation dynamics, the thermal fluctuations c
trol the likelihood that the chemical bonds will break and
a consequence they also control the evolution of the fr
mentation pattern.

In the present paper we are, on the contrary, intereste
the study of a fragmentation model controlled by quant
fluctuations at zero temperature. In this model the dynam
obeys different statistics, with quantum tunneling of partic
through potential barriers replacing the classical transit
probability of Eq.~1!. Tunneling is one of the most impor
tant consequences of the wave properties of matter and
its first successful application in nuclear fragmentation p
nomena such asa decay@13,14# and spontaneous fission, i
general. Besides its general theoretical interest, the fragm
tation dynamics discussed here is complementary to the c
sical fragmentation dynamics based on Eq.~1!, and perhaps
may be useful in the study of a number of other dynami
processes such as fragmentation of heavy nuclei in high
ergy collisions.

In Sec. II, we describe the quantum tunneling fragmen
tion model and give details of our Monte Carlo simulatio
with this dynamics. In Sec. III, we present the numeric
results and make a comparison with other fragmentation
namics. Our major conclusions are summarized in Sec.

II. QUANTUM-TUNNELING FRAGMENTATION MODEL

A. Description of the model

The quantum tunneling fragmentation~QTF! model stud-
ied here describes the decay and fragmentation of a la
system via tunneling of particles of massm and energyE
through potential barriers of a characteristic heightV0.E
and variable lengthLi . In this case, the usual quantum m
chanical probability for tunneling through the barrier is co
trolled by the factor@15#

pi5e2Li /L0, L05\/2A2m~V02E!. ~2!

r
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The QTF model obeys the following rules:
~i! A site i belonging to ad-dimensional square lattice o

size ~initial mass! Ld is chosen at random at each time ste
~ii ! If site i is unoccupied, it remains so. If it is occupie

it is unoccupied with the probability given by Eq.~2!. The
procedure is repeated until all sites are vacant. More p
cisely, the tunneling explained at the beginning of this pa
graph is performed along the directionx̂ that minimizes the
distanceLi5Li( x̂) from the sitei to the system’s boundar
as illustrated in Fig. 1, in order to maximize the tunneli
probability ~2!.

Thus while in the classical simulations of Ref.@12#, the
reactivity or probability of a successful attack depends o
on thelocal variableEi5qiE, in the QTF model,pi as given
by Eq. ~2! is a function of theglobal variableLi( x̂). This
variable depends on both the sitei and the boundary of the
system/fragment and evolves continuously, changing w
the connectivity of the system and its fragmentation. Af
each tunneling the system is reduced by one unit of mas

In principle, two types of different physical situations ca
be associated with rule~ii ! of the QTF model. First, we could
have a direct process in which the tunneling particle is
quantum particle at sitei. It tunnels fromi, leaving the sitei
unoccupied and reducing the mass of the system by one
Secondly, we have an indirect process in which we co
assume, in the spirit of Born-Oppenheimer approximat
@15#, that the tunneling particle is some kind of lighter pa
ticle that bounds heavier clusters~of unit mass! localized ati
to the entire system. If the lighter particle tunnels, the he
particle is no longer bound to the system and it is free to
away reducing the mass of the system by one unit. Fina
we note in passing that the physical processes underlying
QTF model are possible in any space dimensiond, contrarily
to the classical model of Ref.@12#, which is more physical in
one and two space dimensions.

B. Simulation

The simulation itself is conceptually simple: lattice sit
are visited randomly, and removed with probabilitypi given
by Eq. ~2!. As described above, the probability of success
attack pi , on the particle at sitei, depends on its distanc
from boundary at the moment of attack. As any such ev

FIG. 1. Ilustrates the distanceLi5Li( x̂) used in Eq.~2!: Li is
the shortest distance from sitei to the boundary of the system.
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subsequently places all the occupied neighboring sites on
boundary, the boundary itself dynamically changes. T
probability of tunneling therefore depends on a global, d
namically changing variable. The computational effo
needed for such an algorithm dramatically increases as c
pared to the local models, since for every lattice site o
needs to check~in principle! all the other sites in order to
determine the closest boundary point.

To optimize the use of the available hardware resourc
we have developed an algorithm using linked lists, to ke
track of the boundary sites. More precisely, information as
which sites currently belong to the boundary is kept se
rately, in the form of a list of elements that point to ea
other. The first boundary element points to the second,
second to the third, and so on until the last, which points
the first. Starting from any of the boundary sites one cyc
through the whole boundary without the need of visiting t
non-boundary sites. When a new site needs to be adde
the boundary, the chain is broken~at an arbitrary position!,
and reconnected to include the new site. For example, to
a siteC between sitesA andB, whereA was pointing toB,
one simply makesA point to C and C to B, leaving B un-
changed. Similarly, to removeC from the ACB list, one
makesA point to B, while the pointer ofC is set to zero.

Determining the fragment size distribution along t
simulation poses another challenge from the computatio
point of view, which is, however, common with the classic
fragmentation models. We have used the Hoshen-Kopelm
algorithm developed for numerical studies of percolati
phenomena@16,17#, which appears to be the most efficient
such algorithms developed up to date.

The simulation dynamics is rather sensitive to the qua
of the random number generator. The generators which
duced notably different results from each other failed to p
the Marsaglia’s Diehard battery of tests@18#. Our final
choice is the combined multiply-with-carry generator wi
period exceeding 260.

Another important point turns out to be the choice of t
characteristic length scaleL0 in Eq. ~2!. If it is taken to be
too small @i.e., if (V02E) is large#, the fragmentation pro-
cess is confined to the surface of the sample, with a sin
large cluster. On the other hand, ifL0 is very large@(V0
2E) small#, fragmentation takes place throughout t
sample volume, resembling the classical thermal mode
Ref. @12# at infinite temperature. The situation that most d
viates from the classical models is obtained whenL0 is taken
to be considerably smaller than the sample sizeL, but not too
small.

In the present study on fragmentation we consider
variable diversity of fragmentsD(t), which gives the num-
ber of different types of fragments. The diversity of fra
mentsD(t) is defined by

D~ t !5(
s

u@n~s,t !#, ~3!

where n(s,t) is the distribution function of fragments o
masss at time t, and u(x) is the step-function satisfying
u(x)51, for x.0, andu(x)50, for x<0. The evolution of
diversity with time in several situations is shown in Fig.
Data are shown for a simulation performed on a 5123512
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PRE 61 6113QUANTUM TUNNELING FRAGMENTATION MODEL
system in two dimensions, forL051 (1), L052 (h), L0
54 (D), and L058 (s). It is seen that the curves forL0
51 andL052 exhibit a plateau-type broad maxima rath
than a clear pronounced maximum in diversity. This is due
the fact that whenL0 is small in comparison withL the
fragmentation process is confined to a narrow region aro
the surface, while the bulk is practically unaffected by t
fragmentation dynamics. This region is formed on the v
beginning of the simulation~corresponding to the initial rise
of diversity!, after which it drifts at constant rate towards th
interior ~corresponding to the plateau!. Finally, when the op-
posite sides of the affected region meet at the center of
system, the diversity rapidly decays. Increasing the cha
teristic lengthL0 increases the width of the affected regio
yielding a sharp diversity peak. On the other hand, ifL0 is
taken to be too large~in comparison withL), the whole
system is immediately exposed to fragmentation dynam
and distance of a certain point from the boundary cease
be a relevant parameter. After extensive initial tests on s
tems of various sizes in both two and three dimensions,
have opted forL05L/64, which in all cases yields a reaso
ably sharp diversity maximum, and is on the other hand s
ficiently removed from the classical model.

Simulations were performed on a 64-bit UltraSparc H
3000 SUN station, investing several hundred hours of C
time. For each of the studies, 16 to 32 simulations w
performed independently to reduce statistical fluctuatio
Finally, an averaging was taken over these independ
simulations. The largest sample sizes that we were abl
study are 102431024 in two dimensions, and 64364364 in
the three-dimensional case.

III. RESULTS AND DISCUSSION

Most experiments in fragmentation examine mainly t
mass~size! distribution of fragments,n(s), which gives the
number of fragments of mass~size! s after the application of

FIG. 2. Diversity of fragmentsD(t) as a function of time, for
characteristic length choicesL051 (1), L052 (h), L054 (D),
and L058 (s). These results refer to QTF model simulations
square lattices with 5122 sites, and the statistical functions are a
erages over eight samples.
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an impulsive force, after an explosion or collision, or aft
some other particular process of breakup@8,19–21#. From
the practical point of view, the cumulative distribution o
fragmentsN(s), which is the number of fragments with mas
greater thans, is first obtained and then the differential ma
distribution n(s) is found. If N(s);s2k, we have n(s)
;s2t, with t5k11. However, these scaling relations a
not much informative because, in spite of the nonuniversa
of t, it can be shown under very general conditions@8,9# that
many classes of completely different fragmentation dyna
ics lead to only a small variation oft ~typically 1.7<t
<2). To avoid this insensitivity to dynamics, other statistic
quantities should be investigated in fragmentation exp
ments, but this is not a simple matter. Recently, we made
effort in this direction by studying the statistics of the dive
sity of fragments in a simple fragmentation experiment@22#.

In the present paper, we report the results of a deta
statistical study of the QTF model in two and three dime
sions. The differential distribution of fragments,n(s), as
well as the diversity of fragments,D(t), the total mass,
M (t), and the total number of fragments,N(t), and other
statistical functions, such as the mass concentrated at
boundaries of the system,B(t), as a function of the time are
also investigated.

A. QTF model in dÄ2

In order for the reader to develop some insight about
QTF model, we show in Fig. 3 a typical distribution of frag-
ments obtained in a single experiment, at the time of ma
mum diversity of sizes of fragments, for a simulation with
system of initial mass 642.

In Fig. 4 we show the total mass,M (t) (D), the mass on
the boundary or total perimeter,B(t) (¹), which is defined
as the number of occupied sites with less than four near
neighbors, the total number of fragments,N(t) (s), and the
diversity of fragments,D(t) (h), defined by Eq.~3!. We can
see from these plots

B~ t !;tb, b50.9560.05, 0.01<t/tDmax
<0.28 ~4!

FIG. 3. Typical distribution of fragments in a single realizatio
of the 2d QTF model at the time of maximum diversity of sizes f
a system of initial mass 642.



o
th

t

i

nd

nt
om-
sity
s in

u-
-
lex

.e.,

ns
e-

-
q.

en-
-
ses
de-
g-

most

ics

l
en
of

ive

ob-

c
he
d

f
size

e
ore

es.

,

ce
1
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where tDmax
is the time whereD(t) is maximum, i.e., the

time at which there exists the largest number of length
mass scales. The total number of fragments, on the o
hand, satisfies

N~ t !;tn, n53.760.2, 0.07<t/tDmax
<1, ~5!

i.e., the dynamic scalings inB(t) and N(t) coexist in the
interval 0.07<t/tDmax

<0.28 in which the average fragmen

size ^s(t)&5M (t)/N(t) behaves as

^s~ t !&;t2z, z53.9, ~6!

as indicated in Fig. 5. It can be noticed that the scaling
^s(t)& extends over almost five decades in^s&. The reader

FIG. 4. The total mass,M (t)(D); the mass on the boundary
B(t)(¹); the total number of fragments,N(t)(s); and the diversity
of fragments,D(t)(h), as a function of the time, for the QTF
model ind52. These results refer to simulations on square latti
with 10242 sites, and the statistical functions are averages on
samples.

FIG. 5. The time dependence of the average fragment size,^s&,
for the simulations of Fig. 4.̂s& scales ast2z,0.08<t/tDmax

<1 ~see
Sec. III A for details!. The straight line has the slope2z523.9
60.2.
r
er
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can notice that from Eqs.~5! and ~6! we get dM(t)/dt
5d@N(t)^s(t)&#/dt;(n2z)tn212z. However, as can be
seen from Fig. 4, the scalings in time forN(t) and^s(t)& are
valid in an interval whered ln M(t)/d ln t5@t/M(t)#dM(t)/dt is
quite small and, as a consequence,n'z, in a first approxi-
mation. On the other hand, the total perimeterB(t);tb @Eq.
~4!# can also be expressed asB(t);N(t)^s(t)&a;tn2az,
where^s(t)&a is the perimeter for the average fragment, a
a,1. Equations~4!–~6! leading tob5n2az are compat-
ible with a perimeter exponenta50.760.1, a result that is
somewhat larger than the Euclidean valuea5(d21)/d
51/2, for d52.

As the variable diversity of fragments plays an importa
role in fragmentation processes, it seems opportune to c
ment here on its physical meaning. The concept of diver
has been used in an increasing number of scientific work
connection with biological@23# and volutionary@24# prob-
lems, as well as in relation to self-organization, cellular a
tomata @25#, and fractals@26#, among others. In fluid me
chanics, and in many other physical phenomena, comp
behavior is associated with a spatial inhomogeneity, i
with a diversity in size scales@27#. In the last few years, an
effort has been made to classify complex configuratio
which often arise from simple algorithms, as well as to d
fine measures of complexity@28#. Recently, we have pro
posed that the diversity of size of fragments defined in E
~3! is a good variable to measure the complexity in fragm
tation experiments@29#. Despite its intrinsic and technologi
cal relevance, the diversity of size in fragmentation proces
is a relatively unknown subject since it cannot be easily
rived from the equations underlying the dynamics. In fra
mentation, the diversity@defined by Eq.~3!# first increases,
then attains its maximum when the system assumes the
complex configuration, and later it decreases again@29#.
Computer simulations for several fragmentation dynam
have shown that in the space of lower~higher! dimension a
large diversity is easily~hardly! generated, however, it is
also quickly~slowly! destroyed@29#. From the experimenta
point of view, only recently the diversity of size has be
examined for the first time in a fragmentation experiment
brittle solids under the application of a repeated impuls
force @22#, and several~scaling! relations involving this vari-
able were observed, in agreement with previous results
tained with numerical simulations.

Although D(t) given by ~3! does not present dynami
scaling, there are interesting relationships involving t
maximumDmax of this quantity. First of all, it can be notice
from Fig. 4 that the maxima ofB(t) andD(t) occur near the
same timetDmax

. This particular time, in which the number o
length or mass scales is maximum depends on the lattice
L as

tDmax
;L1.5, ~7!

as shown in Fig. 6 for 32<L<1024. Thus, as the size of th
system increases, the system spends proportionally m
time to attain the state of largest diversity of length scal
Furthermore,Dmax obeys the following scalings:

Dmax;Bmax
d , ~8!

s
6
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Dmax;Nmax
d , ~9!

with d50.560.05, as indicated in Figs. 7 and 8, respe
tively. Nmax must be an extensive variable in the thermod
namic limit, thus Nmax;L2 and, as a consequence,Dmax

;Bmax
1/2 ;L.
The distribution functionn(s) of fragments of masss at

time of maximum diversity for a system of initial mas
10242 is shown in Fig. 9. The data in this figure correspo
to an average over 16 equivalent experiments. As we can
in Fig. 9, the simulation data lead to a power law along t
decades ins, with

n~s!;s2t, t51.760.1. ~10!

FIG. 6. The time needed to reach the maximum diversity
sizes,tDmax

, as a function of the sizeL of the lattice. The straight
line represents the best fittDmax

;L1.560.1(32<L<1024) to the data.

FIG. 7. The maximum diversity of sizes,Dmax, scales with the
maximum mass on the boundary,Bmax, asDmax;Bmax

1/2 , for 32<L
<1024. The straight line has a slope of 1/2 with a 95% confide
limit.
-
-

ee

For the sake of completeness it is interesting to rem
that the value of the exponentt obtained in the QTF mode
@Eq. ~10!# is in the same universality class of a number
dynamical problems that seem completely unrelated, e.g.
fragmentation of brittle platelike objects@22,30#, the distri-
bution of undissolved metal islands in pitting corrosion@31#,
and the fragmentation of invasion percolation like structu
in 2d fluids @32#, among others.

To illustrate the differences among the critical exponenw
for different values of mass, in Fig. 10 we exhibit the tim
dependence ofn(s,t) for s51, 2, and 4. From this figure, we
obtain the scaling

f

e

FIG. 8. The dependence of the maximum diversity,Dmax, with
the maximum of the total number of fragments,Nmax, for 32<L
<1024. The straight line represents the best fit to the data and
a slope of 1/2 with a 95% confidence limit. See Sec. III A f
details.

FIG. 9. The differential distribution of fragments of sizes, n(s),
at the time of maximum diversity, for the QTF model ind52 on a
system of initial mass 10242. The straight line gives the best fit t
the data:n;s2t,t51.760.1. See Sec. III A for details.
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ns~ t !;tws, with ws5wsg, w53.7, g50.30. ~11!

Equation~11! shows that a single exponentw cannot account
for the dynamic evolution of the entire distribution of fra
ments in the scaling region. A sequence of exponentsws ,
one for each sizes ~an infinite family of exponents in the
thermodynamic limitL→`!, is needed as, e.g., in multifrac
tal @33# and multiscaling@34# phenomena in statistical phys
ics.

It is interesting to observe that scaling~11! is essentially
the same result obtained with the classical fragmentation
namics of Ref.@12#, where the probability of successful a
tacks is controlled by the Boltzmann factor as in Eq.~1!.
Also, the exponentst in Eq. ~10! and n in Eq. ~5! are the
same exponents reported in Ref.@12#. The exponentz53.9
of Eq. ~6! is somewhat larger than the classical exponenz
53.5 of Ref. @12#. Thus, among the four important expo
nents describing the scaling laws in fragmentation dynam
(n, z, t, andw), only the dynamic exponentz presents a
small deviation from the classical values.

The fragmentation dynamics studied in the present art
and in Ref.@12# have in common the fact that the defects,
the attack that lead to the fragmentation of the original m
trix areuncorrelatedpoint defects, i.e., they have topologic
dimensiondT50. Other fragmentation dynamics@35,36#, us-
ing extended~diffusive! defects as random walks~i.e., se-
quences of highlycorrelatedpoint defects withdT51) give
quite different values for the exponentsn, z, and w, when
compared with the casedT50. Physically, the two classes o
fragmentation dynamics are quite different. In the first ca
(dT50), it is the coalescence of a number of uncorrela
point-defects, e.g., the uncorrelated voids or single bro
chemical bond, that generate new closed interfaces enclo
fragments. In the second case (dT51) it is the coalescence
of one-dimensional objects, i.e., highly correlated strings
contiguous points, that generate the new closed interfa
leading to fragmentation.

FIG. 10. The time dependence of the distribution of fragme
n(s,t) for fragments of sizes51 (s), 2(D), and 4(h), obtained
from simulation on a lattice of 10242 sites, avaraged over 1
samples. The continuous line represents the integral functionN(t).
Each sizes is associated with a different dynamic exponentws as
explained in Sec. III A~Eq. 11!.
y-

s

le
r
-

e
d
n

ing

f
es

The exponentt exhibits a small variation in the case
dT50 anddT51. In both cases,t lies in the narrow interval
1.6<t<2.1. A detailed examination of the simulation da
of the present article and also of Refs.@12,35,36# seems to
indicate that ford52,n53.7, for dT50, and n51.1, for
dT51, irrespective the dynamics. Furthermore,z fluctuates
in the interval 3.523.9 for dT50, but is confined nearz
51.3, for dT51, irrespective of the dynamics. In fragme
tation dynamics with diffusive attacks (dT51), one has the
exponentg of Eq. ~11! equal to zero, i.e., for these dynamic
ws5w5n is independent ofs.

Finally, we briefly address the question of the large tim
behavior of the quantities under study. In Fig. 11 we sh
M (t)(D), B(t)(¹), N(t)(s), and D(t)(h), on the semi-
logarithmic scale. It is seen thatM (t), B(t), andN(t) decay
exponentially at large times. In the inset,D(t) is shown on
the log-log scale for times for which practically the who
mass of the system is distributed on the boundary, indica
a power-law behavior of diversity at large times.

B. QTF model in dÄ3

Now, let us turn to the results of the QTF model in th
physical 3d space. In Fig. 12 we showM (t)(D), B(t)(¹),
N(t)(s), and D(t). In contrast to the 2d simulations, the
scaling in time ofB(t) disappears beforeB(t) attains its
maximum value,Bmax. However,N(t) continues to obey the
scaling

N~ t !;tn, n54.060.2, 0.1<t/tDmax
<1. ~12!

The absence of scaling inB(t) for d53 may be due to the
existence of an upper critical dimension for the QTF mod
with B(t) exhibiting no scaling in time beyond the critica
dimension with all critical exponents remaining constant
d>3. In Fig. 13 we illustrate with a 2d section the effect of
the 3d QTF model dynamics on a system with initial ma
643. The average fragment size^(t)& scales with time as

s FIG. 11. The same data as in Fig. 4, shown on a semilogarith
scale.M (t)(D), B(t)(¹), andN(t)(s), clearly exhibit exponential
decay at large times, whileD(t)(h), shows power law behavior, a
shown in the inset.
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PRE 61 6117QUANTUM TUNNELING FRAGMENTATION MODEL
^s~ t !&;t2z, z54.560.2, 0.13<t/tDmax
<1, ~13!

as shown in Fig. 14. Both scalings occur within similar i
tervals of the variablet/tDmax

as in the 2d case.

The distributionn(s) of fragments at the time of maxi
mum diversity for a cubic system of initial mass 643 aver-
aged on 32 similar experiments is given in Fig. 15. T
distributionn(s) obeys a scaling as in two dimensions@Eq.
~10!#, with

n~s!;s2t, t52.160.1. ~14!

The 3d exponentt52.1 is in excellent agreement~within
the statistical fluctuations! with the corresponding exponen
for 3d percolation@37# (t52.189). The exponentt52.1 is
somewhat larger than the exponents usually reported in
fragmentation literature@8,9,20,22,31,32,35#, an exception

FIG. 12. The same as in Fig. 4 but for the QTF model ind
53 on a system of initial mass 643. The averages are on 3
samples. See Sec. III B for details.

FIG. 13. Typical distribution of fragments in a single realizati
of the 3d QTF model. The figure refers to a 2d section made at
half-height on a system with initial mass 643 at the time of maxi-
mum diversity of sizes.
he

being just the values of the exponentt obtained from frag-
mentation experiments involving collisions of high energe
particles with heavy nuclei@19,38,39#. In these nuclear frag-
mentation experiments, the standard practice is to fit
fragment mass yield with a power law of the type given
Eq. ~14! with 2.3<t<2.6. Obviously, compared to th
masses of the systems used in our simulations, nuclear f
mentation uses systems of very small masses~e.g., 209 par-
ticles in a typical C121Au high energy collision!. Conse-
quently, the value of the exponentt and even its existence in
nuclear experiments must be taken with caution.

Finally, in Fig. 16 we give the time dependence of t
number of fragments of massess51, 2, and 4,ns(t):

ns~ t !;tws, with ws5wsg, w54.0, g50.30, ~15!

FIG. 14. The same as in Fig. 5 but for the 3d QTF model. The
initial mass of the system was 643 and the average is on 32 equiva
lent experiments. The straight line represents the best fit^s&
;t2z,z54.560.2. See Sec. III B for details.

FIG. 15. The same as in Fig. 9 for the 3d QTF model. The
straight line represents the best fit to the data:n;s2t,t52.160.1.
See Sec. III B for details.
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that is, essentially the same distribution for the QTF mode
d52 @Eq. ~11!#, and the classical fragmentation model d
cussed in Ref.@12#. The exponentsz and t in d53 @Eqs.
~13! and ~14!# are somewhat larger than ind52 @Eqs. ~6!
and ~10!#. Furthermore, as observed ind52, the four expo-
nentsn, z, t, andw of the QTF model ind53, are essen-
tially the same exponents obtained in the classical fragm
tation dynamics of Ref.@12#. For the convenience of th
reader, the values of the exponentsn, z, t, w, andg shown
in Eqs.~5!, ~6!, ~10!, and~11! are exhibited ford52 and 3 in
Table I. These exponents are compared with the corresp
ing values found in other fragmentation models cited in t
section, as well as with the experimental data of Ref.@22#.

The QTF model studied in this article makes use of n
thermal processes in compact systems, introducing explic
quantum tunneling in the fragmentation dynamics. The e
tence of metastable states separated by a potential ba
from other states is a common feature in physics and i
particularly important in nuclear fragmentation. This fa
suggests that the QTF model can be of general interes
nuclear physics to explain the experimental data of m
yields of nuclear fragmentation without resort to equilibriu
liquid-gas phase transitions, percolation structures, and o
concepts usually considered.

FIG. 16. Time dependence of the distribution functionn(s,t),
for s51(s),2(D), and 4(h), obtained from simulations on a lat
tice of 643 sites ~averages on 32 samples!. The continuous line
represents the total number of fragmentsN(t). See, for comparison
Fig. 10 and Sec. III B for details.
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IV. SUMMARY AND CONCLUSIONS

We have presented the results of a nonthermal quan
fragmentation dynamics in two- and three-dimensional co
pact systems making explicit use of tunneling of partic
through potential barriers at zero temperature~QTF model!.
This model is complementary to a classical dynamics pre
ously studied@12# in which particles perform classical tran
sitions over the barrier at finite temperature. These mod
present several static and dynamic scaling relations, w
similar critical exponents in both classical and quantum
main. The time evolution of the total perimeter~area! of the
fragments exhibit qualitatively different behaviors in two a
three dimensions in the QTF model. The critical exponent
in the differential distribution of fragments of masss, n(s)
;s2t, in d53, has the valuet52.1, which is not signifi-
cantly different from the exponent obtained in many expe
ments involving fragmentation of heavy nuclei after hig
energy collisions@19,38,39#. The overall characteristics o
the QTF model suggests that it can be relevant in explain
experimental data of nuclear fragmentation as well as
many other fragmentation processes controlled by quan
mechanics, and in many out-of-equilibrium dynamics.
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TABLE I. Values of the critical exponentsn, z, t, w, and g,
defined in the scaling relations Eqs.~5!, ~6!, ~10!, and~11!, for the
QTF model in dimensionsd52 and d53, as well as for other
fragmentation models and experimental data cited in Secs. III A
B. The topological dimensiondT was introduced in the end of Sec
III A.

d dT n z t w g

QTF 2 0 3.7 3.9 1.7 3.7 0.30
model 3 0 4.0 4.5 2.1 4.0 0.30

Ref. @12# 2 0 3.6 3.5 1.6 3.6 0.28
3 0 4.5 4.4 1.9 4.5 0.28

Ref. @22# 2 1 1.0 1.0 1.8 – –

Ref. @35# 2 1 0.9 1.3 1.7 0.9 0
3 1 1.8 2.5 2.0 1.8 0

Ref. @36# 2 1 1.2 1.2 – 1.2 0
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