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Comment on “Time-reversal symmetry-breaking superconductivity”
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It is pointed out that erroneous Bardeen-Cooper-Schrieffer model equations have been used by Haranath
Ghosh in his recent treatment of time-reversal symmetry-breaking superconductivity. Consequently, his nu-
merical results are misleading, and his conclusions are not to the point.
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Some recent studies provide increasing evidence that thalies to mixtures involving such orthogonal states. On the
pairing symmetry of some of the cuprates at low temperacontinuum thes-wave angular functiori;(¢)=1, and the
tures allow an order parameter in a mixed symmetry state. Al-wave circular harmonics{,(¢)=cos(2p) and 3()
higher temperatures, below the critical temperaflige the  =sin(2¢) satisfy the trivial orthogonality relation
symmetry of the order parameter is of g 2 type. At a ,
lower temperature there could be an admixture of a minor K P
component, such a,,, on the predominard,2_,> symme- 0 Gi(9){j(¢)dd=0, i#].
try. This general time-reversal symmetry-breaking order pa-
rameter has the forna,z_,2+exp(6)d,,, where ¢ is the One passes from the lattice to the continuum description by
mixing angle. replacing(a) the sum overq by an integral overp and (b)

Recently, Ghoshpresented a theoretical study of super-the functionsz, by the circular harmonicg(¢).
conductivity for this mixed-symmetry case based on the Although Ghosh considered the BCS model a a finite
Bardeen-Cooper-SchriefféBCS) equation. In this comment temperature, we consider its zero-temperature version, which
we point out that the coupled equations used by him for thés enough for our purpose:
two components of the order parameter are erroneous and
present a rederivation of the appropriate equations. This A=-S v ﬁ 4
comment also applies to latter investigations where Ghosh k 7 2E,’
further used the erroneous equations in subsequent studies of
(i) superconductors of mixed order parameter symmetry in &ith Eq=[(eq—1)?+|A4*1"% where ¢, is the single-
Zeeman magnetic fiefland (ii) pairing symmetry and long- particle energy ang is the chemical potential. The order
range pair potential in a weak-coupling theory of parameter has the following general anisotropic form:
superconductivity.

We use the two-dimensional tight-binding model as in Aq=A81719+ CA272q, ®)

Ref. 1. The effective interaction, after including the two ap-, hare C=exp(6)=(a+ib) is a complex number of unit

propriate basis functions, is taken as modulus|C|?=1 anda=cosé and b=sin 6 are real num-

bers. If we substitute Eq$l) and(5) into the BCS equation
(4), for orthogonal functionsy;4 and 7,4, one can separate
where 7,,=cosqg,—cosq, corresponds tal2 2 symmetry  the resultant equation into the following components:

and 7,4=sinq,sing, corresponds tal,, symmetry. The or-

()

2] 1/2

Vig= = V111 71— V2 72k M2q s (1)

thogonal functionsy,q and »,, are associated with a one- _ 2 Mgl A1719F (A+10) Az 754]

dimensional irreducible representation of the point group of A=V, 5 2E, ’ ©

square latticeC,, (Ref. 4 and can be considered appropriate

generalizations of the circular harmonics cap)l(2and A +(a+ib)A

sin(2¢) incorporating the proper lattice symmetry. The or- (a+ib)A2=V22 72al 817714 2(E ) anq]. (7)
q q

thogonality condition of these functions is

Equations(6) and (7) have a solution for reah; and A,
E 71q72¢=0. (20  when the complex paramet€ris either purely real or purely
q imaginary.
Equationg6) and(7) can be substantially simplified for a

This orthogonality relation is readily verified as under the i > X
purely imaginaryC, e.g., forC=i or a=0 andb=1 (0

transformationg,— —qy (or gy— —qy) 7,4 Changes sign _
and 7,4 remains unchanged. Although, the proof could be™ m/2). In this case for real componenis andA,, the real
slightly different, a similar orthogonality relation exists be- @"d imaginary parts of Eqe5) and(7) become, respectively,
tween the basis functions of states on a square lattice, such 2
as, de_y2, s (7=1), Se.y2(7q=COSG+cosqy), and A=V, 771qu'
Sxy( 4= €0S0,C0sq,), and the present discussion equally ap- 7 2Eq

®
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7]% A,
A=V, — =, (9)
2 2 3 2Eq

Here we have used the identity

N1q72q _
% 2E, 0, (10)

which holds in this case asE,=[(e,—u)?+Ain%,
+A375,]% is invariant under transformatiog,— —dy or
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coupled equations are consistent onlyAif=0, or A;=0,
which corresponds to no coupling between the two compo-
nents. Hence the permissible values for the mixing amgle
are 0,7/2, 7, and 3m/2.

In his study, Ghoshimplicitly assumed Eq(10) to be
valid in all the cases discussed above, includinghe case
of a generalC with a#0 andb#0, and(ii) the case with
a=1 andb=0. Consequently, he arrived at the wrong Egs.
(8) and (9) for a generalC, which he used in his numerical
treatment, specifically for mixing anglés=0, and /4 [see

underg,— —q,, whereas under either of these transforma-Ed- (9) of Ref. 1, Eq.(6) of Ref. 2, and Eq(S) of Ref. 3]. For
tions 7,4 changes sign and,, remains unchanged. Hence ¢=0 he used inappropriate equations and der /4 there

using the integration of], one can establish identit§i0).

Equations(8) and (9) have been used in the study of the

mixed-symmetry states of typed,. 2+id,, and d,2_2
+is®

should not be any mixing.

It is interesting to recall that using the orthogonality rela-
tion (3) on the continuum, Musaelizet al® derived the BCS
equations for the mixed-symmetry statesd ands+id. In

Equations(6) and (7) also lead to a simple form for a agreement with the present comment and in contradiction

purely realC, e.g., forC=1 or fora=1 andb=0(6=0).
However, in this case E =[(eq—u)’+(A171q

+A,755) 2] contains cross terms of the typg 7z, and
is not invariant under the transformatiog— —q, or under

0y— —Qy.

following set of coupled equations, respectively,

N1gl A171qF A2724]
A=V, 2 o, (1
q q
N2gl A17719F A2724]
A2:V22 d 2; d . (12)
q q

In the case of a general mixture, eg#0 andb+0, Eq.

with the investigation by Ghosh® they (a) confirmed the
existence of mixed-symmetry states for the mixing angles
#=0 and w/2 only, and(b) reported the BCS equation for

thes+d state, which is structurally quite similar to Eq&1)
Consequently, Eq(10) is not satisfied and and(12) above. As the study of Musaeliat al® referred to

coupled angular terms will be present in the BCS equationth® continuum, in that work the discrete sum oepmwas

In this case for real; andA,, Egs.(6) and(7) become the

replaced by the integral ovef and the functions; replaced
by the circular harmonics.
Recently, we used the correct Eq41) and (12) for a

description of thed,2 ,2+d,, symmetry casé which corre-
sponds to#=0 above. The qualitative feature of the tem-

perature dependence of thés in that study is quite distinct

from the erroneous results obtained by GHdy using the

inappropriate equations.
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