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Comment on ‘‘Time-reversal symmetry-breaking superconductivity’’
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It is pointed out that erroneous Bardeen-Cooper-Schrieffer model equations have been used by Haranath
Ghosh in his recent treatment of time-reversal symmetry-breaking superconductivity. Consequently, his nu-
merical results are misleading, and his conclusions are not to the point.
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Some recent studies provide increasing evidence tha
pairing symmetry of some of the cuprates at low tempe
tures allow an order parameter in a mixed symmetry state
higher temperatures, below the critical temperatureTc , the
symmetry of the order parameter is of thedx22y2 type. At a
lower temperature there could be an admixture of a mi
component, such asdxy , on the predominantdx22y2 symme-
try. This general time-reversal symmetry-breaking order
rameter has the formdx22y21exp(iu)dxy, where u is the
mixing angle.

Recently, Ghosh1 presented a theoretical study of supe
conductivity for this mixed-symmetry case based on
Bardeen-Cooper-Schrieffer~BCS! equation. In this commen
we point out that the coupled equations used by him for
two components of the order parameter are erroneous
present a rederivation of the appropriate equations. T
comment also applies to latter investigations where Gh
further used the erroneous equations in subsequent studi
~i! superconductors of mixed order parameter symmetry
Zeeman magnetic field,2 and~ii ! pairing symmetry and long
range pair potential in a weak-coupling theory
superconductivity.3

We use the two-dimensional tight-binding model as
Ref. 1. The effective interaction, after including the two a
propriate basis functions, is taken as

Vkq52V1h1kh1q2V2h2kh2q , ~1!

whereh1q5cosqx2cosqy corresponds todx22y2 symmetry
andh2q5sinqxsinqy corresponds todxy symmetry. The or-
thogonal functionsh1q and h2q are associated with a one
dimensional irreducible representation of the point group
square latticeC4v ~Ref. 4! and can be considered appropria
generalizations of the circular harmonics cos(2f) and
sin(2f) incorporating the proper lattice symmetry. The o
thogonality condition of these functions is

(
q

h1qh2q50. ~2!

This orthogonality relation is readily verified as under t
transformationqx→2qx ~or qy→2qy) h2q changes sign
and h1q remains unchanged. Although, the proof could
slightly different, a similar orthogonality relation exists b
tween the basis functions of states on a square lattice,
as, dx22y2, s (h51), sx21y2(hq5cosqx1cosqy), and
sxy(hq5cosqxcosqy), and the present discussion equally a
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plies to mixtures involving such orthogonal states. On
continuum thes-wave angular functionz1(f)51, and the
d-wave circular harmonicsz2(f)5cos(2f) and z3(f)
5sin(2f) satisfy the trivial orthogonality relation

E
0

2p

z i~f!z j~f!df50, iÞ j . ~3!

One passes from the lattice to the continuum description
replacing~a! the sum overq by an integral overf and ~b!
the functionshq by the circular harmonicsz(f).

Although Ghosh1 considered the BCS model at a a finite
temperature, we consider its zero-temperature version, w
is enough for our purpose:

Dk52(
q

Vkq

Dq

2Eq
, ~4!

with Eq5@(eq2m)21uDqu2#1/2, where eq is the single-
particle energy andm is the chemical potential. The orde
parameter has the following general anisotropic form:

Dq[D1h1q1CD2h2q , ~5!

where C[exp(iu)5(a1ib) is a complex number of uni
modulusuCu251 anda[cosu and b[sinu are real num-
bers. If we substitute Eqs.~1! and~5! into the BCS equation
~4!, for orthogonal functionsh1q andh2q , one can separate
the resultant equation into the following components:

D15V1(
q

h1q@D1h1q1~a1 ib !D2h2q#

2Eq
, ~6!

~a1 ib !D25V2(
q

h2q@D1h1q1~a1 ib !D2h2q#

2Eq
. ~7!

Equations~6! and ~7! have a solution for realD1 and D2,
when the complex parameterC is either purely real or purely
imaginary.

Equations~6! and~7! can be substantially simplified for
purely imaginaryC, e.g., for C5 i or a50 and b51 (u
5p/2). In this case for real componentsD1 andD2, the real
and imaginary parts of Eqs.~6! and~7! become, respectively

D15V1(
q

h1q
2 D1

2Eq
, ~8!
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D25V2(
q

h2q
2 D2

2Eq
. ~9!

Here we have used the identity

(
q

h1qh2q

2Eq
50, ~10!

which holds in this case asEq[@(eq2m)21D1
2h1q

2

1D2
2h2q

2 #1/2 is invariant under transformationqx→2qx or
underqy→2qy , whereas under either of these transform
tions h2q changes sign andh1q remains unchanged. Henc
using the integration ofq, one can establish identity~10!.
Equations~8! and ~9! have been used in the study of th
mixed-symmetry states of typesdx22y21 idxy and dx22y2

1 is.5

Equations~6! and ~7! also lead to a simple form for
purely realC, e.g., forC51 or for a51 andb50(u50).
However, in this case Eq[@(eq2m)21(D1h1q
1D2h2q)

2#1/2 contains cross terms of the typeh1qh2q , and
is not invariant under the transformationqx→2qx or under
qy→2qy . Consequently, Eq.~10! is not satisfied and
coupled angular terms will be present in the BCS equat
In this case for realD1 andD2, Eqs.~6! and~7! become the
following set of coupled equations, respectively,

D15V1(
q

h1q@D1h1q1D2h2q#

2Eq
, ~11!

D25V2(
q

h2q@D1h1q1D2h2q#

2Eq
. ~12!

In the case of a general mixture, e.g.,aÞ0 andbÞ0, Eq.
~10! is not valid. However, for realD1 andD2, one can break
up Eqs.~6! and ~7! into their real and imaginary parts, e.g
into four coupled equations for two unknowns,D1 and D2.
As Eq. ~10! does not hold in this general case, the fo
22650
-

n.

r

coupled equations are consistent only ifD250, or D150,
which corresponds to no coupling between the two com
nents. Hence the permissible values for the mixing anglu
are 0,p/2, p, and 3p/2.

In his study, Ghosh1 implicitly assumed Eq.~10! to be
valid in all the cases discussed above, including~i! the case
of a generalC with aÞ0 andbÞ0, and~ii ! the case with
a51 andb50. Consequently, he arrived at the wrong Eq
~8! and ~9! for a generalC, which he used in his numerica
treatment, specifically for mixing anglesu50, andp/4 @see
Eq. ~9! of Ref. 1, Eq.~6! of Ref. 2, and Eq.~5! of Ref. 3#. For
u50 he used inappropriate equations and foru5p/4 there
should not be any mixing.

It is interesting to recall that using the orthogonality rel
tion ~3! on the continuum, Musaelianet al.6 derived the BCS
equations for the mixed-symmetry statess1d ands1 id. In
agreement with the present comment and in contradic
with the investigation by Ghosh1–3 they ~a! confirmed the
existence of mixed-symmetry states for the mixing ang
u50 andp/2 only, and~b! reported the BCS equation fo
thes1d state, which is structurally quite similar to Eqs.~11!
and~12! above. As the study of Musaelianet al.6 referred to
the continuum, in that work the discrete sum overq was
replaced by the integral overf and the functionsh replaced
by the circular harmonicsz.

Recently, we used the correct Eqs.~11! and ~12! for a
description of thedx22y21dxy symmetry case,7 which corre-
sponds tou50 above. The qualitative feature of the tem
perature dependence of theD ’s in that study is quite distinct
from the erroneous results obtained by Ghosh1,2 by using the
inappropriate equations.
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