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Critical number of atoms for attractive Bose-Einstein condensates
with cylindrically symmetrical traps
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We calculated, within the Gross-Pitaevskii formalism, the critical number of atoms for Bose-Einstein con-
densates with two-body attractive interactions in cylindrical traps with different frequency ratios. In particular,
by using the trap geometries considered by Robetrtd. [Phys. Rev. Lett86, 4211(2001)], we show that the
theoretical maximum critical numbers are given approximatelyNpy: 0.55(4/|a|). Our results also show
that, by exchanging the frequencies andw,, the geometry with ,<w, favors the condensation of larger
number of particles. We also simulate the time evolution of the condensate when changing the ground state
from a=0 toa<0 using a 200 ms ramp. A conjecture on higher-order nonlinear effects is also added in our
analysis with an experimental proposal to determine its signal and strength.
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Bose-Einstein condensat3ECS with attractive interac- dependent on the ratios of the trap frequencies, with the
tions have been realized withLi since 1995 by Bradley equation being scaled by some averaged frequency. As in
et al. [1] culminating with experiments that have direct ob- most of the cases considered experimentally, the spatial sym-
servation of the growth and collapse of this condenf2te = metry is almost cylindrical, with the trap frequencies given
Measurements of the maximum critical number of atdgs by w,~ w, andw,, we assume ,= w,= w, and a geometri-
in the condensate, in a trap almost spherical, were in googa| averaged frequency given Ey:(wzwi)llé‘»_
agreement with the theoretical predicted numbers, within the \we define
experimental uncertainties.

Recently Bose-Einstein condensation has been achieved w,
with &Rb [3] by means of Feshbach resonance, which al- A= 2
lowed wide tunning of the scattering lengtifrom negative P

to positive. The ability to control the scattering length is useds,ch that the trap will have a “pancake-shapeiif1; and
to control and measure the stability condition with the corre-5 “cigar-shape” if A <1. The spherical symmetry is recov-

sponding critical number of atoms. ered withA=1. It is convenient to redefine the number

_ In_Ref. [41, it was fir§t shown nymerically that for attrac- given in Eq.(1), showing explicitly its dependence an In
tive interactions(negative scattering length) the system ihis case, the critical number of ators is given by
becomes unstable if a maximum critical number of atdigs

is achieved. This limit can be stated in a convenient expres- N B k()\)l ek 1/3k()‘)| .
sion by c(wp,wz)—w 0= Tal TN T ()
_Neal 1) wherelo=\/ma, 1,= Alme, andl,= A/ma,.
V(himw) Here, in Eq.(3), we observe explicitly the dependence of

N, in relation toX. By exchanging the frequencies, and
wherem is the mass of the particle confined in a trap with o, in the trap, we observe that—1,, I,—1, and\—1/\.
frequencyo andk is a dimensionless constant, directly as- The exchange ratio in this case is given by
sociated with the critical number of ato\s.. So, by using
the above assumption ofspherically symmetrical trapsev-
eral authorg5,6], including us[7], have calculated with a
variety of methods. With the precision given in RET), k
=0.5746. In Ref[8], the critical number was calculated for R(\) is the relevant factor that affects the number of par-
a nonsymmetrical geometry, but in a case that the frequendjcles in the condensate, when exchanging the frequencies in
ratio is not too far from the unity«,/w,=0.72), giving a a cylindrical configuration. In the case thiat\)~k(1/\),
result for the number of atoms almost equal to the sphericaive may conclude thab,> w, results in a larger number of
one. particles inside the trap in the critical limit.

One may also infer from the variational treatment used in The above considerations and the numerical calculations
Ref.[9] that the constarit depends on the symmetry of the of k(\) that we are communicating are relevant to be taken
trap. Variational estimates were also considered in R€fl.  into account in experiments with BEC in cylindrical traps
So, in cases of nonspherical symmetry, the nunkbeill be  with negativea, such as the experiments that have been per-

Ne(wp0) g KOV
ROV= N ora) N kN @
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formed in JILA with 8Rb. Robert=t al. (JILA) have used a 2 ' ' ' ' ' '
“cigar-shape” symmetry in their experimen8,11]. They
have determined, recently, thiat=0.459+ 0.012 (statistical
+0.054 (systematig, for a nonspherical trap, where the fre-
guencies were 17.2417.47<6.80 Hz. Using the above no-
tation, we may takew,=\wywy,=2m7x17.35 Hz. So, the
corresponding value ok used in Ref.[11] was w,/w, "
=6.80/17.35-0.39109.

Since the JILA trap is nonspherical, it is worthwhile to
determine numerically the values kf for different\. Our
main goal in the present report is to systematically calculate ol / ]
k(\) in cylindrical symmetry, either in pancake 1) or /
cigar shapeX<1), in order to verify the favorable geometry /
of the trap to condensate a larger number of atoms, whenthe =05 == >—02""07 05 o6 o~

two-body scattering length is negative. As we are going to Nal//,
show, the slight discrepancy found by the JILA group, when
Comparing their eXperimental value bfwith the theoretical FIG. 1. The chemical potential is given in units Ofﬁ;, as a

results, may partially be explained by the present report.  function of N|a|/l,. Results with spherical symmetr\\ €1), in
For an atomic system with negative scattering length andiashed line and withx, are compared with results using

trapped by an external harmonic oscillafpopnsymmetric, in - =6.80/17.35solid line). Dashed line was obtained using shooting-

general, the Bose-Einstein condensate may be described bRunge-Kutta method, while the and the solid line were obtained

the Gross-Pitaevskii equation by propagation in imaginary time.
a . 2 m 10/ a9\ &
W (M, 0)=| — 2= V24— (D + 02yt wl?) where VzE__( _) s ©
ot 2m 2 0 3p Pap a2
4h?|a| - - . . -
- T|‘If(r,t)|2 W(r,t). (5) Given the Eqs(7) and(8), we obtain the normalization of

® to a defined reduced number of atoms

The conditions for the validity of this formalism to describe o o N|a|

atomic systems with negative scattering lengths are given in f dgf dpp|®|?=42 l—EZn, (10)
Ref. [12]. Deviations due to quantum fluctuations and tun- *w 0 0

neling, that occur near the collapsing region, were studied in . . - .
Refs.%6,13]. As it appears from sFl)Jch g;tud%es, the decay prob Vhere, in the critical limitn= ne=2./2k. Equation(9) de-
ability due to quantum tunnelinghat will effectively reduce pends only on the ratia = (w,/w,):

N.) is negligible, unlesiN~N..

2 2
The wave function, given by BD= —V2+)\‘(2’3)%+)\(4’3)%—|®|2 ®, (11

W(r,t)=exp(—iut/h)¥(r,0), 6 — - :
(1) =exp(—1ut/h)¥(r.0) © where 8= u/(fhw). So, the normalization constant given

whereu is the chemical potential, is normalized to the num-bPY Ed-(10), as well ask, will depend only on\. ,
ber of atoms: In our calculat[on pf Eq(Q), we emp'loyed the relaxatlpr_l
method propagating in the imaginary time and renormalizing
R ® to 2n at every stefd8,14]. We searched for stable solu-
f d3r|W(r,t)[*=N. (7)  tions by varying the numben till a critical limit n.. No
ground-state solutions are possible forn.. In Fig. 1, we
Using cylindrical symmetry ¢,= w,=w,) and consider- have.the corresponding results for the_ chemical potential as a
ing dimensionless unit§ = wt, p?=(2muw/#)(x2+y?), 2 function of N|a|/l,=n/(2/2). To obtain the results shown
= e = in Fig. 1, we first tested our code by running the symmetrical
=(2mw/#)z?], followed by a scaling of the wave function, caseA=1 (w,=w,) and comparing the results with very
precise ones that we have previously calculated with the
4mhlal . shooting-Runge-Kutta algorithii7]. The plot with X marks
P=D(p,fi7)= Mo W (r,b), ®) corresponds to the imaginary time propagation method while
w . .
the dashed-line plot refers to the shooting-Runge-Kutta
method(in both, spherical symmetry was uge®ne should
note that the unstable solutioiisack bending branghare
not accessible by the time-dependent method. The plot with
D, solid line shows our results for a cylindrical symmetry, with
the JILA parameters given ifll], i.e., w,=27X6.80 Hz

we have
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TABLE I. Numerical solutions for the critical constakf as a

function ofA = w,/w, . kK=K is for spherical symmetry. An asterisk

indicates the symmetry considered by the JILA group; alternatively;

a dagger the corresponding “pancake-shape” symmetry.

A k k/ks N

0.01 0.314 0.547 ‘-
0.02 0.352 0.613
0.05 0.411 0.716
0.1 0.460 0.801
0.2 0.509 0.886 )
0.3 0.535 0.931 <>
(6.80/17.35} 0.550 0.957
0.5 0.560 0.975 ‘
2/3 0.570 0.992 05 . B . .
1.0 0.5746 1.000 0 10 20 30 40 50
15 0.570 0.992 t
2.0 0.561 0.976 FIG. 2. Time evolution of the dimensionless mean-square radius
(17.35/6.80) 0.549 0.956 (p) of the condensate when changing the ground state &rer to
V8 0.544 0.946 a<0. We have considered a 200 ms=(wt=16) linear ramp in
3.0 0.541 0.941 (a); and an instantaneously shift (h). In (a), the dashed, solid, and
4.0 0.518 0.902 dot-dashed lines correspond to the ramping uti|/I;=0.9%,,
50 0.498 0.867 0.94,, 0.9%,, respectively. Inb), the dashed line corresponds to
10.0 0.441 0.767 the ramping untiN|a|/l ;= 0.%; and the solid line corresponds to
20.0 0.376 0.655 the ramping untilN|a|/l;=0.9%k,. kg is the collapse constark
50.0 0.294 0.511 =NlJa|/ly in spherical symmetry. Trap parameters werg=2m

X 17.35 Hz andw,=27X6.80 Hz.

w,=2mx17.35 Hz. In this casé=0.550 is approximately One may verify the optimal geometry to increase the critical
4% lower than the spherical case. number of atom$\. trapped in a condensate. Analyzing the
For the propagation, we have used the Peacemaripancake-shape symmetry,” related with the “cigar-shape
Rachford alternating-direction implicit methodl5]. The  Symmetry” considered by the JILA group in Réfl1], we
time evolution for cylindrical symmetry was performed with note that\,=17.35/6.86-2.5517, and\,=1/x,=0.3919.
a code used ifil6]. Our discretization was up to 26@®00in  As shown in Table I, both cases will give us practically the
p and ¢ space directions, and up to 50 in the variable Same constant numbér0.55. So, the relevant factor that
(:&), with steps of 0.001. We also considergg,, and will decide the convenient symmetry to condensate a larger

{maxranging from 2 to 10 depending on the symmetry. In the'Umper of atoms is given by E@), in this case; and this
extreme nonsymmetric cases pr 1A>1), the results are [2vOrs the “pancake-shape” geometry

more sensible to the grid spacing and to these maximum

values. In these cases, a lack of precision may occur in the R(A,=17.35/6.80~1.17. (12
third decimal digit of the results shown in Table I.

In Table I, we present the numerical results for the criticalThe number of atoms in the condensate may be increased by
constantk as a function of the paramet®r=w,/w,, which ~ a factor of ~17%, just by exchanging the geometry of the
may be useful to analyze experiments with different cylindri-trap. The above factor may be verified experimentally, as
cal shapes. Clearly, the optimal value fooccurs for spheri- well as other frequency ratios, with the help of Table | and
cally symmetric trapsX=1), as one could also infer from the present relations given féf\) andR(\).
the variational calculations given if8]. In particular, we We should add that the other part of the observed discrep-
determined the values df for the ratios considered in the ancy in the experimental value kfcould be explained by an
JILA experimen{3,11]: The theoretical constark~0.55, is  early collapse of the condensate due to a dynamical chirp in
about 4% lower than the corresponding number with spherithe wave function when moving the system fram 0 to a
cal symmetry ks=0.5746). This may partially explain the <O. It means that when changing the scattering length from
small disagreement observed in REf1] when comparing @ positive to a negative value, the energy minimum veth
their result with theoretical ones. >0 is greater than the corresponding energy minimum with

By exchanging the frequencies, andw, in a cylindrical ~ a<0, such that the system will collapse at a lower critical
symmetry, it is also shown that the “pancake-shape” sym-number[17].

metry (w,> w,) is preferablgin order to obtain a largeX) We simulated the realistic situation with the parameters
when k(\)~k(1/\). Considering the exchange ratio pre- given in Ref.[11]. We depart from the ground state with
sented in Eq(4) and the results shown in Table | f&()\), =0 and then ramp it t@<<0 in 200 ms. In Fig. &), we
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show the time evolution of the mean-square radiugor  the effective nonlinear potential. The relevant effect of a real
different final negative scattering lengths. For a final value othree-body effective interaction, given by a quintic term
N|a|/l, lower or equal to 0.94, the system presents collec- g,|®|*® in the right-hand sidér.h.s) of Eq. (11), was al-
tive excitations; for a larger value, the system collapses. Saeady pointed out ifi18]. If g5 is positive, there is a possi-
we conclude that the dynamical effects may only account fopility of two phases in the condensdtEs]. However, in the
about 2% of the discrepancy observed between the expefizse wheray; has the same negative sign as the two-body
mental and theoretical values &f This result implies that iteraction, one may also obtain a relevant contribution that
the total correction due to the nonspherical symmetrical trapay explain a smaller value for the constnas it is occur-
and due to dynamical effects may only account for a dimin+ing in the present case. In order to obtain the missing part of

ishing of about 6% in the spherical predicted valukoFor  §eviation (~10—15%), we estimated numerically that it is
comparison, we also present in Fighgthe corresponding enough to havejs~ —0.03.

instantaneous shift from=0 toa<0. _ A way to obtain some definitive conclusion about the
A larger deviation ofk is expected in this case, as this apove conjecture of a relevant role of higher-order nonlinear-
numerical simulatiorjshown in Fig. 20)] corresponds to & ity is open experimentally by examining particularly the
larger chirp in the wave function than in the case thas casea~0, when the cubic term in the r.h.s. of EQ) is
‘ramping” slowly in time. We found that atN[al/lo  replaced by a quintic term. A limit in the number of particles
=0.%;, the system has complex higher mode nonlinear 0sat this particular value of is a good indication of negative
g:|llat]ons; for a larger value dfl|al/l, it c_oIIapses. So, even. higher-order nonlinearity; and, giveM., the corresponding
in this case, we may account to a maximum of 10% shift ingyrength of the nonlinear interactidwhich should mainly

the value ofk (including dynamical and nonspherical ef- -ome from three-body effedtsan be estimated.
fects, when comparing with the spherical result.

As temperature dependence is being ruled out in the ex- We would like to thank Randall Hulet and Arjendu Pat-
perimental analysis, another interesting possibility, whichtanayak for useful discussions. This work was partially sup-
could explain a larger deviation in the value of the constanported by Fundg@o de Amparo @esquisa do Estado dedSa
k, may be attributed to higher-order nonlinear effects, whichPaulo and Conselho Nacional de Desenvolvimento Gieat:
in this case, are contributing to increase the attractive part of Tecnolgico.
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