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New remarks on the linear constraint self-dual boson and Wess-Zumino terms
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In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral
boson(SCB), in contradiction with some results appearing in the literature. We promote a canonical transfor-
mation that shows directly that the SCB is composed of two Floreanini-Jackiw particles with the same chirality
in which the spectrum is a vacuumlike one. As another conflicting result, we prove that a Wess-2W0#no
term used in the literature consists of a scalar field, once again denying the assertion that the WZ term adds a
new degree of freedom to the SCB theory in order to modify the physics of the system.
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[. INTRODUCTION formalism essentially combines two distinct Lagrangians
manifesting dual aspects of some symmetry, to yield a new

The research in chiral bosonization began many yearkagrangian which is divested of, or rather hides, that sym-
back with the seminal paper by Sieddl]. Floreanini and metry. The quantum interference effects, whether construc-
Jackiw later offered some different solutions to the problentive or destructive, among the dual aspects of symmetry, are
of a single self-dual field 2], proposing a nonanomalous thereby captured through this mechanigt8]. The formal-
model. The study of chiral bosons has blossomed thanks tism introduced by Stone was recently interpreted as a
advances in some string theorig and in the construction method of dynamical mass generatii8]. This technique
of interesting theoretical modeJd]. These also play an im- parallels a similar phenomenon in two-dimensional field
portant role in studies of the quantum Hall eff¢6f. The  theory known as the Schwinger mechaniglf] that results
introduction of a soliton field as a charge-creating field obeyfrom the interference between right and left massless self-
ing one additional equation of motion leads to a bosonizatioflual modes of a chiral Schwinger mode0] of opposite
rule [6]. Stone[7] showed that the method of a coadjoint chiralities[18]. _ _ o
orbit [8], when applied to a representation of a group asso- Furthermore, an important ingredient in the study of such

ciated with a single affine Kac-Moody algebra, generates aFindS of.system.s are the SO called Wess—.Zun(WZ) terms
action for the chiral Wess-Zumino-Witten modsl, a non- 21], which are introduced in the theory in order to recover

Abelian generalization of the Floreanini-Jack{#J) model. the gauge invarianc22]. In Ref.[23], a way was proposed
o . . . ) ., to derive the WZ counterterm. It was based on the general-
A self-dual field in two dimensions is a scalar field which

o . . . ized Hamiltonian formalism of Batalin and Fradk[24],
satisfies the self-dual constraifgelf-dual condition (7"" ;5 5 ggested a kind of quantization procedure for second-
+€*")d, =0 or¢p=¢’, where an overdot means time deri- class constraint systems to which the anomalous gauge
vation and a prime space derivation. In the formulation oftheory belong$22,25. The final action obtained, dependent
Floreanini and Jackiy2], the space derivative of the field on an arbitrary parameter, was constructed in order to be-
instead of the field itself satisfies the self-dual condition, i.e.come Srivastava model gauge invariant. The Lorentz invari-
(do—d1)d1¢=0, and the field violates the microcausality ance requirement fixed the parameter in two possible values
postulate[10]. which generate two possible WZ terms. The result, with one

Trying to overcome these difficulties, SrivastaVd] in-  of the WZ terms, after a kind of chiral decomposition, was
troduced an auxiliary vector field,, coupled with a linear that the Srivastava chiral bos¢8CB) spectrum is composed
constraint, and constructed a Lorentz-invariant Lagrangianf two opposite FJ chiral bosons, similarly to what happens
for a scalar self-dual field. Although Harafit2] and Girotti ~ with the minimal chiral Schwinger modg26]. The conclu-
et al.[13] pointed out consistency problems with the Srivas-sion, however, was that the WZ term thus obtainedduaed
tava model at the quantum level, the linear formulationa new physical degree of freedom, an antichiral boson, to the
strictly describes a chiral boson from the point of view of spectrum, and therefore would change the self-dual field into
equations of motion at the classical level. Some methoda massless scalar. In addition, in another similar paper, Miao
were used to quantize the thedrd4]. The extension td  and Chen[27] asserted that it is impossible to apply the
=6 was accomplished in Reff15], as well as its supersym- soldering formalisn{7,17] to solder two opposite chiral as-
metric casg 16]. pects of the model proposed by Srivastava, as successfully

On the other hand, the concept of solder{fgl7] has accomplished in the Siegel and Floreanini-Jackiw theories
proved extremely useful in different contexts. The soldering 28]. It was pointed out that the method was invalid in the

linear formulation because of the inequivalence of Srivasta-

va’'s, Siegel’'s, and FJ's models. Hence, to promote the fu-
*Email address: everton@feg.unesp.br sion, a chiral counterteri23] was constructed for the linear
TEmail address: dutra@feg.unesp.br formulation of the chiral bosons. This counterterm was the
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same Wess-Zumino term mentioned above. HereJ™ are theN-iteration Noether currents. For self-dual
In this work we demonstrate that both conclusions are noand anti-self-dual systems, we have in mind that this iterative

really true. We successfully apply the soldering formalism,gauging procedure ifintentionally constructed not to pro-

and show that the interference on shell of two SCB results irjuce invariant actions for any finite number of steps. How-

a massless scalar field. As another result, we perform essegver, if afterN repetitions, the noninvariant piece ends up

tially a canonical transformatiofCT) [29,3( (as a special being dependent only on the gauging parameters, but not on

case of a CT, we use dynamical decomposifidh], which  the original fields, there will exist the possibility of mutual

promotes a separation of a chiral theory into dynamical andancelation if both self- and anti-self-gauged systems are put

symmetry partg and the outcome shows, in an exact way,together. Suppose that, aftlrrepetitions, we arrive at the

that the spectrum is already composed of two FJ chirafollowing simultaneous conditions:

bosons with the same chirality, confirming the well-known

result that the SCB has two degrees of freedom thanks to the 8S. () N+£0 and 8Sg(¢-)=0, (4)

linear constraint structue32]. In addition, we show that the

WZ term introduced in Ref.23] is in fact a scalar field, i.e., With Sg being the so-called soldered action

it is composed of two FJ bosons with opposite chiralities. _ (N (N)

Thus, it is obvious that the WZ terms naturally introduce Sg(¢+)=Sy"(¢,)+S(¢_)+ (contact terms  (5)

these particles, since the spectrum of the SCB is a vacuum- . .
like one[33]. where the contact terms are generally quadratic functions of

the soldering fields. Then we can immediately identify the

In Sec. Il we briefly review the soldering formalism. In o
(soldering interference term as

Sec. lll we carry out the soldering of two SCB models. The
dynamical decomposition of the theory and a discussion of

the WZ term are accomplished in Sec. IV. Conclusions are Si¢ = (contact termp— >, BN N (6)
made in Sec. V. N

Incidentally, the auxiliary fiell3™) may be eliminated, for

instance, through its equations of motion, from the resulting
In this section we will basically follow Ref[34] and effective action, in favor of the physically relevant degrees of

briefly review the method of soldering two opposite chiral freedom. It is important to note that after the elimination of

versions of a given theory. For more details, the interestethe soldering fields, the resulting effective action will not

reader can see Refll8,35,34. depend on either self- or anti-self-dual fields , but only in
The basic idea of the soldering procedure is to raise @ome collective field, sag, defined in terms of the original

global Noether symmetry of the self-dual and anti-self-dualffields in a(Noethej invariant way:

constituents into a local constituent, but for an effective com-

posite system, consisting of the dual components and an in- Se( )= Sep(P). (7)

terference term. An iterative Noether procedure was adopted o ) o

[34] to lift the global symmetries. Therefore, we assume thatAnalyzing in terms of classical degrees of freedom, it is ob-

the symmetries in question are described by the local actiondous that we have now a larger theory. Once such an effec-

S.(¢7), invariant under a global multiparametric transfor- iVé action has been established, the physical consequences
mation of the soldering are readily obtained by simple inspection.

Il. SOLDERING FORMALISM

Spl=ar. (1) Ill. SOLDERING OF TWO SRIVASTAVA
SELF-DUAL BOSONS

7 represents the tensorial character of the basic fields in the ) ] ) ] )
dual actionsS. and, for notational simplicity, will be The Srivastava action for a left-moving chiral boson is

dropped from now on. As it is well known, we can write
LY=0.dd_¢+N ¢, ®)

8S.=J%0. a, 2
where we have used the light-front variablgs =(1/
whereJ* are the Noether currents. \/f)(aoi d1) and A .=\g*\;. Following the steps of the
Now, under local transformations, these actions will notsoldering formalism studied in Sec. Il, we can start by con-
remain invariant, and Noether counterterms will becomesidering the variation of the Lagrangians under the transfor-
necessary to reestablish the invariance, along with an approrations d¢=a and 6x ,=0. We will set down only the
priate auxiliary fieldB™), a so-called soldering field which main steps of the procedure.

has no dynamics. Nevertheless we can say Bi#lt is an In terms of the Noether currents we can construct
auxiliary field which makes a wider range of gauge-fixing

conditions availablg17]. In this way, theN action can be sLP=340,a, 9
written as

wherep=+,—, J;=0, andJ ;=23 ¢+\_ .
S. ()9S, (. )N=5,(p,)N-D-BMNIN) The next iteration, as seen in Sec. Il, can be performed
3 introducing auxiliary fields, the so-called soldering fields

065003-2



NEW REMARKS ON THE LINEAR CONSTRAINT SELF. .. PHYSICAL REVIEW D 64 065003

gg)zgg’)_gu\]u, (10) In Sec. IV we will investigate the spectrum of the Srivas-
tava model, constructing a canonical transformati80)],
and one can easily see that the gauge variatiof gﬁ is i.e., using the special case of the dynamical decomposition
[31]. The objective is to analyze the result obtained previ-
sc)=—-2B_68B,, (11)  ously by Miaoet al.[23] with an alternative construction of

the Wess-Zumino term of the Srivastava theory.
where we have defined the variation Bf. as 6B.=4. «,
and we see that the variation 6f;) does not depend o#h. |y pyNAMICAL DECOMPOSITION OF THE SRIVASTAVA
This is the signal to begin the process with the other chirality, MODEL
which is given by
In the Hamiltonian formulation, canonical transformations
£§°)=a+pa,p+)\,a+p; (12 can sometimes be used to decompose a composite Hamil-
tonian into two distinct pieces. A familiar examp9] is the
again, let us construct the basic transformatiéps- « and  decomposition of the Hamiltonian of a particle in two dimen-
SN _=0. Noether’s currents aré;=25+p+)\, and J, sions moving in a constant magnetic field and quadratic po-
=0 and the variation of the final iteration ig,/;;l): tential. It can be shown that this Hamiltonian can be sepa-
—2B_6B, . rated into two pieces corresponding to the Hamiltonians of
Now we can see that the variation ﬁﬁ#) depends nei- two one-dimensional oscillators rotating in clockwise and

ther oné nor p. Hence, as explained above we can construcgounterclockwise directions, respectively. Let us now make a

the final (soldered Lagrangian as canonical transformation analysis of the SCB. In this case,
the theory is already a chiral one, and we will promote a

Lrot=LL®Lg dynamical decomposition of it, i.e., the theory will be de-
composed into its dynamical and symmetry parts. If the

=LP+cM+B.B_ theory is not invariant, the result will show only the dynam-

ics of the system. To perform this we have to make a canoni-
cal transformatiof30] in Eq. (8), using the Faddeev-Jackiw
first-order procedure.
Y Atthis point, some interesting comments are in order. The
inconsistencies of the SCB model at the quantum level, dis-
cussed in some worK4.2,13, can be verified from another
point of view. This is done by comparing the Lagrangian
density of the SCB in Minkovisky space, i.e.,

=LP+0-B,J"-B_J +B,B_, (13

which remains invariant under the combined symmetr
transformations for ¢,p) and (\, ,\_), i.e., 6L;o7=0.
Following the steps of the algorithm depicted in Sec. Il,
we have to eliminate the soldering fields, solving their equa
tions of motion, which result iB.=J" whereJ==J%".
Substituting this back into Eq13) we have the final effec-
tive Lagrangian density L=10, 30 b\, (G~ )0y

ETOT:((Ld’_(97P)((9+¢_07+P)+)\+(f77¢_(9fp) :%(¢2_¢/2)+)\(¢_¢/)' (17)

_)\—(5+¢_3+P)_%)\+)\—
h = ith th f th i i f th
DI, DN, D\, D—INn_ . (14) \évsc;z\;e)\ N, , with that of the bosonized version of the

where the new compound field is definedd®s ¢—p. 1 ae? 1
As we can see, we have a second-order term in the L= E(aﬂ¢)z+e(g“”—e””)aﬂ¢>Ay+ T A2 T2

Lagrange multipliers. Solving the equations of motion for the 2 H 4R
multipliers, we obtain that (18
AN-=20-® and N,=-29,D. (15  and to note that the former is in fact a particular case of the
latter, where one should take care of the identificatians
Substituting Eqs(15) into Eq. (14) we have =0 andA,—\,, an external field with vanishing field
N strength. Now one can relate the inconsistency of the SCB to
Lror=—20,P"®, (16 that of the CSM with the regularization ambiguity parameter

hich s th | lar field acti a=0, as shown by Girottet al. [37]. Now let us resume the
w :-(:enr(:eeprezer?ase ge"r:%sns ter:ezcana; 'erec.m;'oné that it .discussion of the SCB, performing its dynamical decompo-
W v S ! precise way " Rition and then discussing how and why the WZ terms intro-

possible to use the soldering formalism to promote the fUSiO'?juced in Ref[23] recover the SCB's quantum consistency.
of two opposite SCB’s, in contradiction with the assertion ) ) i :
The canonical momentum is defined lay= ¢+ \. Sub-

made in Ref[27]. Finally, one can conclude that, starting '’ : X . 4
from these inconsistent Lagrangian densities, one recover§?'tur:'ng this back into Eq(17) to obtain the first-order form,
e have

in the soldering procedure, a consistent model which is, iV
fact, a free scalar field. However, this result was not the _
expected one. We will come back to this issue later. L=md—2m?+aN—3N2—1¢'?—\¢’, (19
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Now, as mentioned above, we have to make the canonicalhered is the BF field, and, once integrated in thdield, a

transformations chiral boson is recovered. In addition, if one takes the second
WZ term introduced in Ref.23],
¢=n+oc and w=75'—-0d’, (20 . )
L@=—00"—0"2—\(6+60")— I\?, (23)

which is defined as a dynamical decomposition. Note that ] ) ] ) )
is already a chiral field. Thus, in this way, this canonical@nd again performs the integratianone obtains nothing but
transformation will allow us to know the Srivastava chiral the Lagrangian density of the free scalar boson. This result

boson exactly. Hence, substituting E80) into Eq. (19), we signalizes that the WZ term obtained by Miabal. [23] is
have, as a result, already composed of two opposite FJ particles. Obviously

this introduces the degree of freedom, already there in the
WZ term, but it does not change the physics of the SCB
model, since, as we saw above, this model is composed of
vacuum,.

Analyzing the interference aspects, we can again apply
the soldering formalism; now, however, we do it using two
actions like Eq.(21), i.e.,

Lop=7'n—71'?—0c c—0c'?—2\c' —i\2

Again, solving the equations of motion for thefield, we
havex=—2¢"', and, substituting again,

Lop=7'n—7n'?=(d'0—0'?). (21) _ _
Li=ny' —n'?— (o0’ —a'?), (24)
We can clearly see that this action represents two FJ chiral
bosons, each one with the same chirality. This is caused by Lo=—E8 — %~ (—wo'—w'?), (25)
the fact that the Lagrange multiplier has acquired dynamics
because of the linear constraint form. In fact, we are demonwherey, o, ¢, andw are all FJ particles. We can see in Egs.
strating that Eq.(17) has two degrees of freedom, repre- (24) and(25) that the fields ¢,£) and (o, ) form opposite
sented in Eq(21) by » ando. This is different from Siegel’s chirality particle pairs.
approach, whera is a pure gauge degree of freedom. This Performing the soldering procedure, one can easily see
result corroborates the one found by BazZéa], analyzing that the result is
the linear constraint chiral boson quantum mechanics. We . .
can say that both particles in EQ1) act like a Gupta- L=35(0,¥)=3(d,A) (26)
Bleuler pair, so that each chiral excitation destroys the other

and the Hilbert space is composed of vacuum. This resulf/N€re¥ =7—¢andA =0 —w. This, and not Eq(16), is the
confirms the one found in Ref33]. expected result, since we know that the SCB has a vacuum-

Hence, in the soldering process of the SCB, each FJ chirdf® SPectrum. The soldering procedure in E26) discloses
e same behavior as shown in ER1).

boson interacts with its opposite chiral partner, so that thé § . > .
PP b t Result(26) is quite different from the one shown in Eq.

final result represents a scalar field. We can also observe th _ . Il Kk hat th deri f

the linear constraint formulation of the chiral boson does no ;6)' Smce_ It is well known that the soldering of two oppo-
contain a Hull notor{38], a nonmover field that cancels out Sit¢ FJ chiral bosons is a massless scalar field, we should
the anomaly of the Siegel modén alternative fermionic expect that the fusion of two SCB’s would be two opposite

noton was introduced in Ref39]), which is expected since scalar fields with the final vacuumlike spectrum. This differ-
the SCB is not gauge invariant. ' ence can be explaind®1]: we note that now, in each action

Result(21) contradicts the result obtained in RE23] in of Egs.(24) and(25), we have two fields, i.e., the action can

the following way. There, first, a final action was built, com- P& Separated into two different sectors, representing FJ par-

posed of the Srivastava action plus a WZ term with an arbi_ticles with the same chirality. Thus, in the interference pro-

trary parameter. The Lorentz invariance fixed the paramete(?ess(s_0 Idering, each sectpr of each action interferes with its
in two possible values, which caused two different wz OPposite partner. To obtain EQL6), note that we have only

terms. Hence one of the actions obtained, after a kind of"€ sector in each action. In the interference process we have
chiral decomposition, is shown to have two FJ particles o1,ﬁ35t information_about the other s_ector, such as destructive
opposite chiralities, analogously to what occurs with the'Mterference. This does not occur in Eg6).

usual CSM[40]. In addition, the final Lagrangian obtained

contains auxiliary fields, the so-called BF fiel¢tetails in V. CONCLUSIONS

[24]) used to construct the WZ terfd1]. The authors con-
clude that the WZ term is constructed to add an additionaln
degree of freedom to the theory in the form of an antichiral
boson. On the other hand, we can see what is really happe
ing through a careful analysis of the two WZ terms intro-
duced in Ref[23]. It is not difficult to see the first WZ term
defined in[23], i.e.,

It is well known that the SCB has consistency problems.
this work we have used the soldering formalism to show
that the on-shell interference of two Srivastava chiral bosons
Pesulted in a scalar field. The other aspect of this result is that
the soldering method recovers the consistency of the SCB
model, i.e., the fusion of opposite chiralities of the model
results in a consistent theory. This contradicts the conclusion
W 1.2 " . 1o published in the Iite'rature, which asserts that it is impossible
Lyz=—3(0"+30"")—N(0+6")— 3\, (22 to apply the soldering procedure to the SCB due to the in-
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equivalence of this model in relation to Siegel's and Floreadis obvious that this WZ term should introduce new degrees
nini and Jackiw’s models. of freedom, because it is comprised of the fields that ap-
This motivated us to explore the model, promoting a capeared. With each SCB composed of two fields, after fusion
nonical transformation in the specific form of a dynamicalthrough the soldering formalism we obtained two scalar
decomposition, which permitted us to decompose the actiofields with a negative signal between them. This result shows
into its dynamical parts. This procedure showed us that théhat the spectrum of the soldered action is vacuumlike.
SCB is in fact formed by two Floreanini-Jackiw chiral
bosons of the same chiralities. Again, the contradiction with
the current literature is evident, since one well-known publi-
cation affirmed that the WZ term introduced a new degree of The authors would like to thank C. Wotzasek and S. J.
freedom to the theory, resulting in two Floreanini-Jackiw Gates, Jr. for valuable discussions. E.M.C.A. was financially
chiral bosons of opposite chiralities: a chiral boson and arsupported by Fundao de Amparo &esquisa do Estado de
antichiral boson. This is not really true, since we saw that inSao Paulo(FAPESB. This work was partially supported by
fact the WZ term used consists of two degrees of freedomConselho Nacional de Pesquisa e Desenvolvim&éatdPq).
i.e., two FJ opposite chiral particles. Thus, one can say that FAPESP and CNPq are Brazilian research agencies.
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