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New remarks on the linear constraint self-dual boson and Wess-Zumino terms
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In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral
boson~SCB!, in contradiction with some results appearing in the literature. We promote a canonical transfor-
mation that shows directly that the SCB is composed of two Floreanini-Jackiw particles with the same chirality
in which the spectrum is a vacuumlike one. As another conflicting result, we prove that a Wess-Zumino~WZ!
term used in the literature consists of a scalar field, once again denying the assertion that the WZ term adds a
new degree of freedom to the SCB theory in order to modify the physics of the system.
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I. INTRODUCTION

The research in chiral bosonization began many ye
back with the seminal paper by Siegel@1#. Floreanini and
Jackiw later offered some different solutions to the probl
of a single self-dual field@2#, proposing a nonanomalou
model. The study of chiral bosons has blossomed thank
advances in some string theories@3# and in the construction
of interesting theoretical models@4#. These also play an im
portant role in studies of the quantum Hall effect@5#. The
introduction of a soliton field as a charge-creating field ob
ing one additional equation of motion leads to a bosoniza
rule @6#. Stone@7# showed that the method of a coadjoi
orbit @8#, when applied to a representation of a group as
ciated with a single affine Kac-Moody algebra, generates
action for the chiral Wess-Zumino-Witten model@9#, a non-
Abelian generalization of the Floreanini-Jackiw~FJ! model.

A self-dual field in two dimensions is a scalar field whic
satisfies the self-dual constraint~self-dual condition! (hmn

1emn)]nf50 or ḟ5f8, where an overdot means time de
vation and a prime space derivation. In the formulation
Floreanini and Jackiw@2#, the space derivative of the fiel
instead of the field itself satisfies the self-dual condition, i
(]02]1)]1f50, and the field violates the microcausali
postulate@10#.

Trying to overcome these difficulties, Srivastava@11# in-
troduced an auxiliary vector fieldlm coupled with a linear
constraint, and constructed a Lorentz-invariant Lagrang
for a scalar self-dual field. Although Harada@12# and Girotti
et al. @13# pointed out consistency problems with the Sriva
tava model at the quantum level, the linear formulati
strictly describes a chiral boson from the point of view
equations of motion at the classical level. Some meth
were used to quantize the theory@14#. The extension toD
56 was accomplished in Ref.@15#, as well as its supersym
metric case@16#.

On the other hand, the concept of soldering@7,17# has
proved extremely useful in different contexts. The solder
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formalism essentially combines two distinct Lagrangia
manifesting dual aspects of some symmetry, to yield a n
Lagrangian which is divested of, or rather hides, that sy
metry. The quantum interference effects, whether const
tive or destructive, among the dual aspects of symmetry,
thereby captured through this mechanism@18#. The formal-
ism introduced by Stone was recently interpreted as
method of dynamical mass generation@18#. This technique
parallels a similar phenomenon in two-dimensional fie
theory known as the Schwinger mechanism@19# that results
from the interference between right and left massless s
dual modes of a chiral Schwinger model@20# of opposite
chiralities @18#.

Furthermore, an important ingredient in the study of su
kinds of systems are the so called Wess-Zumino~WZ! terms
@21#, which are introduced in the theory in order to recov
the gauge invariance@22#. In Ref. @23#, a way was proposed
to derive the WZ counterterm. It was based on the gene
ized Hamiltonian formalism of Batalin and Fradkin@24#,
who suggested a kind of quantization procedure for seco
class constraint systems to which the anomalous ga
theory belongs@22,25#. The final action obtained, depende
on an arbitrary parameter, was constructed in order to
come Srivastava model gauge invariant. The Lorentz inv
ance requirement fixed the parameter in two possible va
which generate two possible WZ terms. The result, with o
of the WZ terms, after a kind of chiral decomposition, w
that the Srivastava chiral boson~SCB! spectrum is composed
of two opposite FJ chiral bosons, similarly to what happe
with the minimal chiral Schwinger model@26#. The conclu-
sion, however, was that the WZ term thus obtained hasadded
a new physical degree of freedom, an antichiral boson, to
spectrum, and therefore would change the self-dual field
a massless scalar. In addition, in another similar paper, M
and Chen@27# asserted that it is impossible to apply th
soldering formalism@7,17# to solder two opposite chiral as
pects of the model proposed by Srivastava, as success
accomplished in the Siegel and Floreanini-Jackiw theo
@28#. It was pointed out that the method was invalid in t
linear formulation because of the inequivalence of Srivas
va’s, Siegel’s, and FJ’s models. Hence, to promote the
sion, a chiral counterterm@23# was constructed for the linea
formulation of the chiral bosons. This counterterm was
©2001 The American Physical Society03-1
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same Wess-Zumino term mentioned above.
In this work we demonstrate that both conclusions are

really true. We successfully apply the soldering formalis
and show that the interference on shell of two SCB result
a massless scalar field. As another result, we perform es
tially a canonical transformation~CT! @29,30# ~as a special
case of a CT, we use dynamical decomposition@31#, which
promotes a separation of a chiral theory into dynamical
symmetry parts!, and the outcome shows, in an exact wa
that the spectrum is already composed of two FJ ch
bosons with the same chirality, confirming the well-know
result that the SCB has two degrees of freedom thanks to
linear constraint structure@32#. In addition, we show that the
WZ term introduced in Ref.@23# is in fact a scalar field, i.e.
it is composed of two FJ bosons with opposite chiraliti
Thus, it is obvious that the WZ terms naturally introdu
these particles, since the spectrum of the SCB is a vacu
like one @33#.

In Sec. II we briefly review the soldering formalism. I
Sec. III we carry out the soldering of two SCB models. T
dynamical decomposition of the theory and a discussion
the WZ term are accomplished in Sec. IV. Conclusions
made in Sec. V.

II. SOLDERING FORMALISM

In this section we will basically follow Ref.@34# and
briefly review the method of soldering two opposite chi
versions of a given theory. For more details, the interes
reader can see Refs.@18,35,36#.

The basic idea of the soldering procedure is to rais
global Noether symmetry of the self-dual and anti-self-d
constituents into a local constituent, but for an effective co
posite system, consisting of the dual components and an
terference term. An iterative Noether procedure was adop
@34# to lift the global symmetries. Therefore, we assume t
the symmetries in question are described by the local act
S6(f6

h ), invariant under a global multiparametric transfo
mation

df6
h 5ah. ~1!

h represents the tensorial character of the basic fields in
dual actions S6 and, for notational simplicity, will be
dropped from now on. As it is well known, we can write

dS65J6]6a, ~2!

whereJ6 are the Noether currents.
Now, under local transformations, these actions will n

remain invariant, and Noether counterterms will beco
necessary to reestablish the invariance, along with an ap
priate auxiliary fieldB(N), a so-called soldering field which
has no dynamics. Nevertheless we can say thatB(N) is an
auxiliary field which makes a wider range of gauge-fixi
conditions available@17#. In this way, theN action can be
written as

S6~f6!(0)→S6~f6!(N)5S6~f6!(N21)2B(N)J6
(N) .

~3!
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HereJ6
(N) are theN-iteration Noether currents. For self-du

and anti-self-dual systems, we have in mind that this itera
gauging procedure is~intentionally! constructed not to pro-
duce invariant actions for any finite number of steps. Ho
ever, if afterN repetitions, the noninvariant piece ends
being dependent only on the gauging parameters, but no
the original fields, there will exist the possibility of mutua
cancelation if both self- and anti-self-gauged systems are
together. Suppose that, afterN repetitions, we arrive at the
following simultaneous conditions:

dS6~f6!(N)5” 0 and dSB~f6!50, ~4!

with SB being the so-called soldered action

SB~f6!5S1
(N)~f1!1S2

(N)~f2!1~contact terms!, ~5!

where the contact terms are generally quadratic function
the soldering fields. Then we can immediately identify t
~soldering! interference term as

Sint5~contact terms!2(
N

B(N)J6
(N) . ~6!

Incidentally, the auxiliary fieldB(N) may be eliminated, for
instance, through its equations of motion, from the result
effective action, in favor of the physically relevant degrees
freedom. It is important to note that after the elimination
the soldering fields, the resulting effective action will n
depend on either self- or anti-self-dual fieldsf6 , but only in
some collective field, sayF, defined in terms of the origina
fields in a~Noether! invariant way:

SB~f6!→Se f f~F!. ~7!

Analyzing in terms of classical degrees of freedom, it is o
vious that we have now a larger theory. Once such an ef
tive action has been established, the physical conseque
of the soldering are readily obtained by simple inspection

III. SOLDERING OF TWO SRIVASTAVA
SELF-DUAL BOSONS

The Srivastava action for a left-moving chiral boson is

L f
(0)5]1f]2f1l1]2f, ~8!

where we have used the light-front variables]65(1/
A2)(]06]1) and l65l06l1. Following the steps of the
soldering formalism studied in Sec. II, we can start by co
sidering the variation of the Lagrangians under the trans
mations df5a and dl150. We will set down only the
main steps of the procedure.

In terms of the Noether currents we can construct

dL f
(0)5Jf

m]ma, ~9!

wherem51,2, Jf
150, andJf

252]1f1l1 .
The next iteration, as seen in Sec. II, can be perform

introducing auxiliary fields, the so-called soldering fields
3-2
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L f
(1)5L f

(0)2BmJf
m , ~10!

and one can easily see that the gauge variation ofL f
(1) is

dL f
(1)522B2dB1 , ~11!

where we have defined the variation ofB6 as dB65]6a,
and we see that the variation ofL f

(1) does not depend onf.
This is the signal to begin the process with the other chira
which is given by

L r
(0)5]1r]2r1l2]1r; ~12!

again, let us construct the basic transformationsdr5a and
dl250. Noether’s currents areJr

152]1r1l2 and Jr
2

50 and the variation of the final iteration isdL r
(1)5

22B2dB1 .
Now we can see that the variation ofL f,r

(1) depends nei-
ther onf nor r. Hence, as explained above we can constr
the final ~soldered! Lagrangian as

LTOT5LL % LR

5L f
(1)1L r

(1)1B1B2

5L f
(0)1L r

(0)2B1J12B2J21B1B2 , ~13!

which remains invariant under the combined symme
transformations for (f,r) and (l1 ,l2), i.e., dLTOT50.

Following the steps of the algorithm depicted in Sec.
we have to eliminate the soldering fields, solving their eq
tions of motion, which result inB65J7 where J65Jf,r.
Substituting this back into Eq.~13! we have the final effec-
tive Lagrangian density

LTOT5~]2f2]2r!~]1f2]1r!1l1~]2f2]2r!

2l2~]1f2]1r!2 1
2 l1l2

5]2F]1F1l1]2F2l2]1F2 1
2 l1l2 . ~14!

where the new compound field is defined asF5f2r.
As we can see, we have a second-order term in

Lagrange multipliers. Solving the equations of motion for t
multipliers, we obtain that

l252]2F and l1522]1F. ~15!

Substituting Eqs.~15! into Eq. ~14! we have

LTOT52 1
2 ]mF]mF, ~16!

which represents the massless scalar field action.
Hence we have demonstrated in a precise way that

possible to use the soldering formalism to promote the fus
of two opposite SCB’s, in contradiction with the asserti
made in Ref.@27#. Finally, one can conclude that, startin
from these inconsistent Lagrangian densities, one recov
in the soldering procedure, a consistent model which is
fact, a free scalar field. However, this result was not
expected one. We will come back to this issue later.
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In Sec. IV we will investigate the spectrum of the Sriva
tava model, constructing a canonical transformation@30#,
i.e., using the special case of the dynamical decomposi
@31#. The objective is to analyze the result obtained pre
ously by Miaoet al. @23# with an alternative construction o
the Wess-Zumino term of the Srivastava theory.

IV. DYNAMICAL DECOMPOSITION OF THE SRIVASTAVA
MODEL

In the Hamiltonian formulation, canonical transformatio
can sometimes be used to decompose a composite Ha
tonian into two distinct pieces. A familiar example@29# is the
decomposition of the Hamiltonian of a particle in two dime
sions moving in a constant magnetic field and quadratic
tential. It can be shown that this Hamiltonian can be se
rated into two pieces corresponding to the Hamiltonians
two one-dimensional oscillators rotating in clockwise a
counterclockwise directions, respectively. Let us now mak
canonical transformation analysis of the SCB. In this ca
the theory is already a chiral one, and we will promote
dynamical decomposition of it, i.e., the theory will be d
composed into its dynamical and symmetry parts. If t
theory is not invariant, the result will show only the dynam
ics of the system. To perform this we have to make a cano
cal transformation@30# in Eq. ~8!, using the Faddeev-Jackiw
first-order procedure.

At this point, some interesting comments are in order. T
inconsistencies of the SCB model at the quantum level,
cussed in some works@12,13#, can be verified from anothe
point of view. This is done by comparing the Lagrangi
density of the SCB in Minkovisky space, i.e.,

L5 1
2 ]mf]mf1lm~gmn2emn!]nf

5 1
2 ~ḟ22f82!1l~ḟ2f8!, ~17!

where l5l1 , with that of the bosonized version of th
CSM,

L5
1

2
~]mf!21e~gmn2emn!]mfAn1

ae2

2
Am

2 2
1

4
Fmn

2 ,

~18!

and to note that the former is in fact a particular case of
latter, where one should take care of the identificationsa
50 and Am→lm , an external field with vanishing field
strength. Now one can relate the inconsistency of the SCB
that of the CSM with the regularization ambiguity parame
a50, as shown by Girottiet al. @37#. Now let us resume the
discussion of the SCB, performing its dynamical decomp
sition and then discussing how and why the WZ terms int
duced in Ref.@23# recover the SCB’s quantum consistenc

The canonical momentum is defined byp5ḟ1l. Sub-
stituting this back into Eq.~17! to obtain the first-order form,
we have

L5pḟ2 1
2 p21pl2 1

2 l22 1
2 f822lf8, ~19!
3-3
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Now, as mentioned above, we have to make the canon
transformations

f5h1s and p5h82s8, ~20!

which is defined as a dynamical decomposition. Note thaf
is already a chiral field. Thus, in this way, this canonic
transformation will allow us to know the Srivastava chir
boson exactly. Hence, substituting Eq.~20! into Eq.~19!, we
have, as a result,

LDD5h8ḣ2h822s8ṡ2s8222ls82 1
2 l2.

Again, solving the equations of motion for thel field, we
havel522s8, and, substituting again,

LDD5h8ḣ2h822~s8ṡ2s82!. ~21!

We can clearly see that this action represents two FJ ch
bosons, each one with the same chirality. This is caused
the fact that the Lagrange multiplier has acquired dynam
because of the linear constraint form. In fact, we are dem
strating that Eq.~17! has two degrees of freedom, repr
sented in Eq.~21! by h ands. This is different from Siegel’s
approach, wherel is a pure gauge degree of freedom. Th
result corroborates the one found by Bazeia@32#, analyzing
the linear constraint chiral boson quantum mechanics.
can say that both particles in Eq.~21! act like a Gupta-
Bleuler pair, so that each chiral excitation destroys the ot
and the Hilbert space is composed of vacuum. This re
confirms the one found in Ref.@33#.

Hence, in the soldering process of the SCB, each FJ ch
boson interacts with its opposite chiral partner, so that
final result represents a scalar field. We can also observe
the linear constraint formulation of the chiral boson does
contain a Hull noton@38#, a nonmover field that cancels ou
the anomaly of the Siegel model~an alternative fermionic
noton was introduced in Ref.@39#!, which is expected since
the SCB is not gauge invariant.

Result~21! contradicts the result obtained in Ref.@23# in
the following way. There, first, a final action was built, com
posed of the Srivastava action plus a WZ term with an a
trary parameter. The Lorentz invariance fixed the param
in two possible values, which caused two different W
terms. Hence one of the actions obtained, after a kind
chiral decomposition, is shown to have two FJ particles
opposite chiralities, analogously to what occurs with t
usual CSM@40#. In addition, the final Lagrangian obtaine
contains auxiliary fields, the so-called BF fields~details in
@24#! used to construct the WZ term@41#. The authors con-
clude that the WZ term is constructed to add an additio
degree of freedom to the theory in the form of an antich
boson. On the other hand, we can see what is really hap
ing through a careful analysis of the two WZ terms intr
duced in Ref.@23#. It is not difficult to see the first WZ term
defined in@23#, i.e.,

L WZ
(1) 52 1

2 ~ u̇213u82!2l~u̇1u8!2 1
2 l2, ~22!
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whereu is the BF field, and, once integrated in thel field, a
chiral boson is recovered. In addition, if one takes the sec
WZ term introduced in Ref.@23#,

L WZ
(2) 52 u̇u82u822l~u̇1u8!2 1

2 l2, ~23!

and again performs the integrationl, one obtains nothing bu
the Lagrangian density of the free scalar boson. This re
signalizes that the WZ term obtained by Miaoet al. @23# is
already composed of two opposite FJ particles. Obviou
this introduces the degree of freedom, already there in
WZ term, but it does not change the physics of the S
model, since, as we saw above, this model is compose
vacuum.

Analyzing the interference aspects, we can again ap
the soldering formalism; now, however, we do it using tw
actions like Eq.~21!, i.e.,

L15ḣh82h822~ ṡs82s82!, ~24!

L252 j̇j82j822~2v̇v82v82!, ~25!

whereh, s, j, andv are all FJ particles. We can see in Eq
~24! and~25! that the fields (h,j) and (s,v) form opposite
chirality particle pairs.

Performing the soldering procedure, one can easily
that the result is

L5 1
2 ~]mC!2 1

2 ~]mL! ~26!

whereC5h2j andL5s2v. This, and not Eq.~16!, is the
expected result, since we know that the SCB has a vacu
like spectrum. The soldering procedure in Eq.~26! discloses
the same behavior as shown in Eq.~21!.

Result~26! is quite different from the one shown in Eq
~16!. Since it is well known that the soldering of two oppo
site FJ chiral bosons is a massless scalar field, we sh
expect that the fusion of two SCB’s would be two oppos
scalar fields with the final vacuumlike spectrum. This diffe
ence can be explained@31#: we note that now, in each actio
of Eqs.~24! and~25!, we have two fields, i.e., the action ca
be separated into two different sectors, representing FJ
ticles with the same chirality. Thus, in the interference p
cess~soldering!, each sector of each action interferes with
opposite partner. To obtain Eq.~16!, note that we have only
one sector in each action. In the interference process we h
lost information about the other sector, such as destruc
interference. This does not occur in Eq.~26!.

V. CONCLUSIONS

It is well known that the SCB has consistency problem
In this work we have used the soldering formalism to sh
that the on-shell interference of two Srivastava chiral bos
resulted in a scalar field. The other aspect of this result is
the soldering method recovers the consistency of the S
model, i.e., the fusion of opposite chiralities of the mod
results in a consistent theory. This contradicts the conclus
published in the literature, which asserts that it is impossi
to apply the soldering procedure to the SCB due to the
3-4
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equivalence of this model in relation to Siegel’s and Flor
nini and Jackiw’s models.

This motivated us to explore the model, promoting a
nonical transformation in the specific form of a dynamic
decomposition, which permitted us to decompose the ac
into its dynamical parts. This procedure showed us that
SCB is in fact formed by two Floreanini-Jackiw chir
bosons of the same chiralities. Again, the contradiction w
the current literature is evident, since one well-known pub
cation affirmed that the WZ term introduced a new degree
freedom to the theory, resulting in two Floreanini-Jack
chiral bosons of opposite chiralities: a chiral boson and
antichiral boson. This is not really true, since we saw tha
fact the WZ term used consists of two degrees of freed
i.e., two FJ opposite chiral particles. Thus, one can say th
ev

s

a

.

J
i,

a,

,

ys
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is obvious that this WZ term should introduce new degre
of freedom, because it is comprised of the fields that
peared. With each SCB composed of two fields, after fus
through the soldering formalism we obtained two sca
fields with a negative signal between them. This result sho
that the spectrum of the soldered action is vacuumlike.
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