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Chaotic oscillation in an attractive Bose-Einstein condensate under an impulsive force
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For an attractive trapped Bose-Einstein condensate an imaginary three-body recombination loss term and an
imaginary linear source term are usually included in the Gross-Pitag@Rjiequation for a proper account of
dynamics. Under the action of an impulsive force, generated by suddenly changing the atomic interaction or
the trapping potential, the solution of this complex GP equation for attractive interaction is found to lead to a
very long-term chaotic oscillation.
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Since the successful detectifih2] of Bose-Einstein con- quency of oscillation of a condensate after the application of
densate$BEC) in dilute bosonic atoms employing magnetic an impulsive force generated by changing the scattering
trap at ultralow temperature, there has been great theoretickngth to a negative valig]. Such an experiment might be
and experimental interest in condensates with attractive inable to detect the transition from periodic to chaotic oscilla-
teraction [2]. For attractive interaction the condensate istion of a condensate under the action of an impulsive force.
stable for a maximum critical numbed,, of atoms[2]. We consider for our present study on the numerical solu-
When the number of atoms increases beyond this criticaion [14,19 of the GP equatiof3] for a spherically symmet-
number, due to interatomic attraction the condensate coKc harmonic trap. In the GP equation we include a quintic
lapses emitting atoms until the number of atoms is reducethree-body nonlinear recombination term that accounts for
below N, and a stable configuration is reached. With a supthe decay of the strongly attractive condensate and a linear
ply of atoms from an external source the condensate cagource term.
grow again and thus a series of collapses can take place, The GP equation in this case in dimensionless units can be
which was observed experimentally in the BECaf with ~ Written as[5,6]
attractive interactiorj2]. Theoretical analyses based on the
mean-field Gross-PitaevskiGP) equation 3,4] also confirm \ .
the collapsg4—6). | -

In a recent classic experiment by Donleyal. on the
BEC of 8°Rb, a sustained harmonic oscillation of an attrac- X @(x,1)=0, (1)
tive condensate had been observed and measured when the ) o )
scattering length of atomic interaction was suddenly changeheren=Na/l, v is the coefficient of the linear source term,
[7]. It is possible to manipulate the scattering length by argnd ¢ is the coefficient of the quintic three-body recombina-
external magnetic field via a Feshbach resondBc@. The  tion term. Here the distance time t, and the spherically
sudden change in scattering length or the harmonic-oscillatgfymmetric wave functiom(x,t)= ¢(x,t)/x are expressed in
trapping potential constitute a general class of impulsivednits of 1/2, o™, and (213~ Y2 wherel = \(fi/mw)
force in the GP equation that can be realized experimentallyand w is the frequency of the harmonic-oscillator trapjs
We show that under the action of an impulsive force thethe mass of a single atoriN is the number of atoms in the
solution of the GP equation for attractive interaction with acondensate, analthe scattering length of atomic interaction.
quintic loss term and a linear source term can exhibit susThe normalization condition for the wave function is
tained chaotic oscillation. The imaginary quintic term in the
GP equation accounts for three-body recombination loss and - 2_
the imaai - dx|e(x,t)|*=1. 2

e imaginary linear term accounts for growth due to an ex- 0
ternal source of atoms.

There have been several studies of chaotic dynamics iMVe solve Eq(1) above by the Crank-Nicholson time propa-
the nonlinear Schiinger[10], Landau-Ginzburg11], and  gation[14] after discretization withy#0 and{+#0 starting
the GP[12,13 equation. But all these studies were motivatedfrom the known harmonic-oscillator solution for=§£&=y
from a numerical or mathematical point of view without phe- =0. Thex discretization was performed with space step 0.1
nomenological consequence. The chaotic oscillation weip to a maximumx of 40. The time step was taken to be
study here may be observed in the laboratory by slightly0.01. The nonlinearity constantwas increased by steps of
manipulating the strength of the linear source term respon9.0001 until the desired value is reached. Once the final non-
sible for supplying atoms to the condensate. In the absendearity is reached the solution is then stabilized by iterating
of any source term or for a weak source term the oscillatiorL00 000 times, which corresponds to an interval of time
is periodic after the application of the impulsive force. With =1000. This removes any transient behavior in the solution
a small increase in the source term the motion turns out to bthat is important for a study of chaos. Then the wave func-
chaotic. Donleyet al. has performed a classic experiment tion is prepared for the simulation of chaos after the appli-
where they have been able to observe and measure the freation of the impulsive force. The oscillation of the system
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after the application of the impulsive force is best studiedby Q.8 F ' ' ' ' L
considering the time evolution of the root-mean-square) 0.4 i (a) ]
radiusX and its time derivativeX. 1 |

For attractive interaction, a stable condensate can b 0.0 B

formed for the minimum value- 0.575 forn [4—6]. We con- 04 i ]
sider the following three numerical simulations for the study L =200

of chaos:(i) On a preformed attractive condensate with 08 | | , | : -
—0.4 we suddenly double the harmonic-oscillator term from N 7
x2/4 to x?/2 and study the resultant oscillation of the system 3L ]
for different y. On a preformed repulsive condensate with_

n=+0.4, we suddenly change the sign of the scattering>< C 7]
length a to (i) —a and also to(iii) —2a and study the ey ]
resultant oscillation of the system for differentin all simu- i

lations we take&£=0.0004. In case§) and(ii) the final value -6 u
of n(=—0.4>-0.575) permits stable condensate and in i

case(iii ) final value ofn(=—0.8<—0.575) does not permit 3¢

a stable solution of Eq(1l). However, the experiment con- ol b
ducted at JILA 7] has shown that in cagéi ) the number of

particles cannot decay immediately below the stability limit -3 — 1=20000 -
and there could be sustained oscillation of the system with Lo

value ofn less than—0.575. We find that depending on the -6 ' ' ' ' '
value of the source termy there could be pronounced chaos 0 2 4 6 8

in all three cases above. X

Once the wave function is prepared for the study of chaos
as described above we inflict the change corresponding to FIG. 1. X vs X in case(i) when the harmonic-oscillator potential
case(i), first, with y=0. Only periodic oscillation of rms is suddenly doubled in Eq1) for £=0.0004,n=—0.4 and(a) y
radius X and its derivativeX is observed. With a slight in- =0.0001, t=200, (b) y=0.0002, t=200, and(c) y=0.0002, t
crease iny to 0.0002, chaotic oscillation is obtained. The =20000.
change from periodic to chaotic motion is best illustrated by .

o . . Fig. 1. In Fig. 2Za) we show the periodic motion fory
plotting X vs X. For a periodic motion a closed loop appears _ ' 4001 for timet up to 200. Fully chaotic motion is ob-

in the phase-space plot of vs X, whereas for a chaotic ained for y=0.0002. The chaotic motion for the initial in-
motion a strange attractor appears in the phase-space plgtyya| of time 200 is shown in Fig.(B) and that for an
This is shown in Figs. X&) and 1b) for y=0.0001(peri-  interval of 20000 units of time is shown in Fig(Q. The
odic) and 0.0002(chaotig, respectively, for an interval of qpst chaotic attractor has started to develop in Fiy) 2
simulation timet=200 after inflicting the impulsive force. gnq its long-term evolution is shown in Fig(c2
With the increase ofy, the periodic motion of Fig. (&) Finally, we consider the cagéi) above. In this case the
changes to chaotic motion in Fig(t). The present time is  poplinear termn has been suddenly changed from 0.4 to
expressed in units @~ *. In a typical experimental situation _ o g (repulsive to attractive However, in this case the final
the harmonic-oscillator trapping frequeney-50 s'*, and (= 0 8<—0.575) does not allow a stable condensate to
hencew™ !=(27») *~0.005 s. Thus the simulation time pe formed. Such a strongly attractive condensate has been
of t=200 correspondt1 s that is inside the experimental created and observed in the laboratory in the experiment con-
observation period of a typical set{ig]. We continued the  qycted at JILA[7]. In this case the condensate is unstable
simulation till t=20000 and the robust chaotic attractor and due to interatomic attraction it starts to shrink in size or
seems to stay forever, although it moves slowly to a smallego|japse after the sudden change in the nonlinear term. Con-
value ofX with time. This is exhibited in Fig. (&), where we  sequently, as the central density of the condensate increases,
plot X vs X for 0<t<20 000 that corresponds to an interval it starts to emit particle through small explosions and tries to
of 100 s. attain a more stable configuration with a smaller number of
Next we perform a similar simulation as in Fig. 1 above particles[7]. The condensate exhibits oscillation during this
for the case(ii) where the sign of the scattering length is process of collapse and explosion but it may need a large
suddenly changed from positive to negative exploiting aamount of time before attaining the critical size with,
Feshbach resonance as shown in the experiment conductedagidms. No periodic oscillation was observed in this case even
JILA [7]. In simulation this corresponds to changingrom  for =0. In Fig. 3a) we plotX vs X for the first 200 units of
0.4 to — 0.4 (repulsive to attractive The finaln(=—0.4>  {ime for y=0, which shows a chaotic attractor, which con-
—0.575) aIIc_)ws for a stable attractive_ co_ndens_ate to bRinues to exist for any positive nonzera In Fig. 3b) we
formed. Again fory=0 and 0.0001 periodic motions are pjot the same fory=0.0002, which shows the strange attrac-
obtained that change to chaotic motionsass increased. I tor for the first 200 units of time. In Fig.(8) we exhibit the
Fig. 2 we plotX vs X for y=0.0001 andy=0.0002 as in long-term behavior of this attractor for 20 000 units of time.
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FIG. 2. X vs X in case(ii) when the sign of the scattering length
a was suddenly made negative from positive in Ef) for &
=0.0004, n=0.4 and(a) y=0.0001, t=200, (b) y=0.0002, t
=200, and(c) y=0.0002,t=20 000.

FIG. 3. X vs X in case(iii) when the scattering length was
suddenly changed te 2a in Eq. (1) for £=0.0004,n=0.4 and(a)
y=0, t=200, (b) y=0.0002, t=200, and (c) y=0.0002, t
=20000.
In the long term the attractor is more spread in this case o
compared to Figs.(t) and Zc). In case(iii) in the long term ~ calculation in the three cases above. In all three cases the
the chaotic attractor moves to largewhereas in case§)  largest exponent is found to lead to a convergent positive
and (i) it moves to smalleX. value at large finite time that shows the existence of chaos in
The presence of chaos is characterized by finding théll the cases. We also found that the oscillation in Fig) 3

Lyapunov exponentfl6]. Since the quantitieX and X are cor_lr_isponr(]jmgk;to cas(en)f_thh y=0 ]!S ?}ISO chao'ﬁc. i
not direct solutions of the nonlinear GP equati@hand are h.;j_re as been i%n wn;a_tlorr]] OL ¢ daos(;r) tbe nonfinear
essentially the expectation values, we use time-series anal penraiinger equatioi10] and in the Landau-Ginzburg equa-

sis to calculate the Lyapunov exponefts]. In all the cases, ion [11] with similar nonlinear terms as in the GP equation,

th locit bl dat lected with the fi although the details of the two equations are different. Also,
we use the velocity-variable] data collected wi €UME there has been theoretical prediction of chaos in a coupled set

interval 8t=0.1. The reason to ChOOé@iS that it oscillates of GP equationilZ]_ The numerical Study of chaos in a
with time only around the steady average zero value,

whereas the time average Xfis not stationary and changes

with time. From one set of data fo¢(t) we construct other
independent s&) by allowing a time lagr. The number of
such independent sets constitute the embedding dimension

of the data sets foX(t) to be analyzed. The optimal time lag

is found from the estimate of mutual information that shows

the independent nature of the reconstructed data[4&is

After some experimentation we find thet= 3 leads to rea-

sonable values for all the Lyapunov exponents. All the cal-

culations of the Lyapunov exponents are performed wwith

=3 using the algorithm by Sano and Sawadé]. 0.02 / ]
The calculation leads to three exponents in each of the ' ' : '

cases(i), (ii), and(iii) with y=0.0002 shown in Figs. (t), 0 1000 2000 3000 4000 5000

2(c), and 3c), respectively. In casé), the time lagr in the time (t)

calculation of Lyapunov exponents was found to be 0.6 and

in caseqii) and(iii ) it was found to be 0.9. In Fig. 4 we plot FIG. 4. Lyapunov exponents for the chaotic attractors of Figs.

the largest Lyapunov exponent versus the time used for th&c), 2(c), and 3c) labeled(i), (ii), and(iii), respectively.

e
o
o

A i)
& a S PN L(

brbe-bhp & op-d-behobe-be-ba. )
JopCtn-
—o--e-0- O
o

Lyapunov exponent
o
o
=
&

§

]

b

4
[
=3
e ¢
6

043608-3



PAULSAMY MURUGANANDAM AND SADHAN K. ADHIKARI PHYSICAL REVIEW A 65 043608

collapsing Bose-condensed gas in Réf3] is worth men-  simulation when the condensate is repulsive after the appli-
tioning. In that work chaos was confirmed in the normal timecation of the impulsive force. No chaotic oscillation was de-
evolution of the GP equatiofl) without any external impul- tected in that case. From this it seems that the final-state
sive force. The chaotic attractor in that study was found tdnteratomic attraction plays an important role in the genera-
stay only for a short interval of time~500), where in the tion of this chaotic dynamics.
present study with impulsive forces the chaotic oscillations In summary, from a numerical simulation based on the
are found to appear immediately after the application of thesolution of the Gross-Pitaevskii equatidh) for attractive
impulsive force and stay for more than 20 000 units of time interaction with an absorptive quintic three-body recombina-
This makes the analysis of the chaos via Lyapunov exponertion term (£) and a linear source term, we find that sus-
more reliable. tained chaotic oscillation can result in a BEC under the ac-
The appearance of chaos in nonlinear dynamics is of intion of an impulsive force generated by suddenly changing
terest from a theoretical point of view. Here we have dem-the interatomic scattering length or the harmonic-oscillator
onstrated the chaotic oscillation in an attractive BEC undetrapping potential.
an impulsive force using the mean-field GP equation. The
use of the GP equation in this paper is justified as this equa- The work was supported in part by the Conselho Nacional
tion produces a faithful representation of the BEC for bothde Desenvolvimento Cieffizo e Tecnolgico and Fundgm
repulsive and attractive interactiof 6]. We also performed de Amparo aPesquisa do Estado dé®Raulo of Brazil.
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