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Chaotic oscillation in an attractive Bose-Einstein condensate under an impulsive force
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For an attractive trapped Bose-Einstein condensate an imaginary three-body recombination loss term and an
imaginary linear source term are usually included in the Gross-Pitaevskii~GP! equation for a proper account of
dynamics. Under the action of an impulsive force, generated by suddenly changing the atomic interaction or
the trapping potential, the solution of this complex GP equation for attractive interaction is found to lead to a
very long-term chaotic oscillation.
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Since the successful detection@1,2# of Bose-Einstein con-
densates~BEC! in dilute bosonic atoms employing magnet
trap at ultralow temperature, there has been great theore
and experimental interest in condensates with attractive
teraction @2#. For attractive interaction the condensate
stable for a maximum critical numberNcr of atoms @2#.
When the number of atoms increases beyond this crit
number, due to interatomic attraction the condensate
lapses emitting atoms until the number of atoms is redu
below Ncr and a stable configuration is reached. With a s
ply of atoms from an external source the condensate
grow again and thus a series of collapses can take pl
which was observed experimentally in the BEC of7Li with
attractive interaction@2#. Theoretical analyses based on t
mean-field Gross-Pitaevskii~GP! equation@3,4# also confirm
the collapse@4–6#.

In a recent classic experiment by Donleyet al. on the
BEC of 85Rb, a sustained harmonic oscillation of an attra
tive condensate had been observed and measured whe
scattering length of atomic interaction was suddenly chan
@7#. It is possible to manipulate the scattering length by
external magnetic field via a Feshbach resonance@8,9#. The
sudden change in scattering length or the harmonic-oscill
trapping potential constitute a general class of impuls
force in the GP equation that can be realized experiment
We show that under the action of an impulsive force
solution of the GP equation for attractive interaction with
quintic loss term and a linear source term can exhibit s
tained chaotic oscillation. The imaginary quintic term in t
GP equation accounts for three-body recombination loss
the imaginary linear term accounts for growth due to an
ternal source of atoms.

There have been several studies of chaotic dynamic
the nonlinear Schro¨dinger @10#, Landau-Ginzburg@11#, and
the GP@12,13# equation. But all these studies were motivat
from a numerical or mathematical point of view without ph
nomenological consequence. The chaotic oscillation
study here may be observed in the laboratory by sligh
manipulating the strength of the linear source term resp
sible for supplying atoms to the condensate. In the abse
of any source term or for a weak source term the oscillat
is periodic after the application of the impulsive force. Wi
a small increase in the source term the motion turns out to
chaotic. Donleyet al. has performed a classic experime
where they have been able to observe and measure the
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quency of oscillation of a condensate after the application
an impulsive force generated by changing the scatte
length to a negative value@7#. Such an experiment might b
able to detect the transition from periodic to chaotic oscil
tion of a condensate under the action of an impulsive for

We consider for our present study on the numerical so
tion @14,15# of the GP equation@3# for a spherically symmet-
ric harmonic trap. In the GP equation we include a quin
three-body nonlinear recombination term that accounts
the decay of the strongly attractive condensate and a lin
source term.

The GP equation in this case in dimensionless units can
written as@5,6#

F2
]2

]x2
1

x2

4
12A2nUw~x,t !

x U2

2 i jUw~x,t !

x U4

1 ig2 i
]

]tG
3w~x,t !50, ~1!

wheren5Na/ l , g is the coefficient of the linear source term
andj is the coefficient of the quintic three-body recombin
tion term. Here the distancex, time t, and the spherically
symmetric wave functionf(x,t)[w(x,t)/x are expressed in
units of l /A2, v21, and (A2p l 3)21/2, where l 5A(\/mv)
andv is the frequency of the harmonic-oscillator trap,m is
the mass of a single atom,N is the number of atoms in the
condensate, anda the scattering length of atomic interactio
The normalization condition for the wave function is

E
0

`

dxuw~x,t !u251. ~2!

We solve Eq.~1! above by the Crank-Nicholson time prop
gation @14# after discretization withgÞ0 andjÞ0 starting
from the known harmonic-oscillator solution forn5j5g
50. Thex discretization was performed with space step 0
up to a maximumx of 40. The time step was taken to b
0.01. The nonlinearity constantn was increased by steps o
0.0001 until the desired value is reached. Once the final n
linearity is reached the solution is then stabilized by iterat
100 000 times, which corresponds to an interval of timet
51000. This removes any transient behavior in the solut
that is important for a study of chaos. Then the wave fu
tion is prepared for the simulation of chaos after the ap
cation of the impulsive force. The oscillation of the syste
©2002 The American Physical Society08-1
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after the application of the impulsive force is best studied
considering the time evolution of the root-mean-square~rms!

radiusX and its time derivativeẊ.
For attractive interaction, a stable condensate can

formed for the minimum value20.575 forn @4–6#. We con-
sider the following three numerical simulations for the stu
of chaos:~i! On a preformed attractive condensate withn5
20.4 we suddenly double the harmonic-oscillator term fro
x2/4 to x2/2 and study the resultant oscillation of the syste
for different g. On a preformed repulsive condensate w
n510.4, we suddenly change the sign of the scatter
length a to ~ii ! 2a and also to~iii ! 22a and study the
resultant oscillation of the system for differentg. In all simu-
lations we takej50.0004. In cases~i! and~ii ! the final value
of n(520.4.20.575) permits stable condensate and
case~iii ! final value ofn(520.8,20.575) does not permi
a stable solution of Eq.~1!. However, the experiment con
ducted at JILA@7# has shown that in case~iii ! the number of
particles cannot decay immediately below the stability lim
and there could be sustained oscillation of the system wi
value ofn less than20.575. We find that depending on th
value of the source termg there could be pronounced cha
in all three cases above.

Once the wave function is prepared for the study of ch
as described above we inflict the change correspondin
case~i!, first, with g50. Only periodic oscillation of rms
radiusX and its derivativeẊ is observed. With a slight in-
crease ing to 0.0002, chaotic oscillation is obtained. Th
change from periodic to chaotic motion is best illustrated
plotting Ẋ vs X. For a periodic motion a closed loop appea
in the phase-space plot ofẊ vs X, whereas for a chaotic
motion a strange attractor appears in the phase-space
This is shown in Figs. 1~a! and 1~b! for g50.0001~peri-
odic! and 0.0002~chaotic!, respectively, for an interval o
simulation timet5200 after inflicting the impulsive force
With the increase ofg, the periodic motion of Fig. 1~a!
changes to chaotic motion in Fig. 1~b!. The present time is
expressed in units ofv21. In a typical experimental situation
the harmonic-oscillator trapping frequencyn;50 s21, and
hencev215(2pn)21;0.005 s. Thus the simulation tim
of t5200 corresponds to 1 s that is inside the experiment
observation period of a typical setup@7#. We continued the
simulation till t520 000 and the robust chaotic attract
seems to stay forever, although it moves slowly to a sma
value ofX with time. This is exhibited in Fig. 1~c!, where we
plot Ẋ vs X for 0,t,20 000 that corresponds to an interv
of 100 s.

Next we perform a similar simulation as in Fig. 1 abo
for the case~ii ! where the sign of the scattering length
suddenly changed from positive to negative exploiting
Feshbach resonance as shown in the experiment conduc
JILA @7#. In simulation this corresponds to changingn from
0.4 to 20.4 ~repulsive to attractive!. The finaln(520.4.
20.575) allows for a stable attractive condensate to
formed. Again forg50 and 0.0001 periodic motions ar
obtained that change to chaotic motion asg is increased. In
Fig. 2 we plotẊ vs X for g50.0001 andg50.0002 as in
04360
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Fig. 1. In Fig. 2~a! we show the periodic motion forg
50.0001 for timet up to 200. Fully chaotic motion is ob
tained forg50.0002. The chaotic motion for the initial in
terval of time 200 is shown in Fig. 2~b! and that for an
interval of 20 000 units of time is shown in Fig. 2~c!. The
robust chaotic attractor has started to develop in Fig. 2~b!
and its long-term evolution is shown in Fig. 2~c!.

Finally, we consider the case~iii ! above. In this case the
nonlinear termn has been suddenly changed from 0.4
20.8 ~repulsive to attractive!. However, in this case the fina
n(520.8,20.575) does not allow a stable condensate
be formed. Such a strongly attractive condensate has b
created and observed in the laboratory in the experiment c
ducted at JILA@7#. In this case the condensate is unsta
and due to interatomic attraction it starts to shrink in size
collapse after the sudden change in the nonlinear term. C
sequently, as the central density of the condensate incre
it starts to emit particle through small explosions and tries
attain a more stable configuration with a smaller number
particles@7#. The condensate exhibits oscillation during th
process of collapse and explosion but it may need a la
amount of time before attaining the critical size withNcr
atoms. No periodic oscillation was observed in this case e
for g50. In Fig. 3~a! we plotẊ vs X for the first 200 units of
time for g50, which shows a chaotic attractor, which co
tinues to exist for any positive nonzerog. In Fig. 3~b! we
plot the same forg50.0002, which shows the strange attra
tor for the first 200 units of time. In Fig. 3~c! we exhibit the
long-term behavior of this attractor for 20 000 units of tim

FIG. 1. Ẋ vs X in case~i! when the harmonic-oscillator potentia
is suddenly doubled in Eq.~1! for j50.0004,n520.4 and~a! g
50.0001, t5200, ~b! g50.0002, t5200, and~c! g50.0002, t
520 000.
8-2
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In the long term the attractor is more spread in this c
compared to Figs. 1~c! and 2~c!. In case~iii ! in the long term
the chaotic attractor moves to largeX whereas in cases~i!
and ~ii ! it moves to smallerX.

The presence of chaos is characterized by finding
Lyapunov exponents@16#. Since the quantitiesX and Ẋ are
not direct solutions of the nonlinear GP equation~1! and are
essentially the expectation values, we use time-series an
sis to calculate the Lyapunov exponents@16#. In all the cases,
we use the velocity-variable (Ẋ) data collected with the time
interval dt50.1. The reason to chooseẊ is that it oscillates
with time only around the steady average zero val
whereas the time average ofX is not stationary and change
with time. From one set of data forẊ(t) we construct other
independent set~s! by allowing a time lagt. The number of
such independent sets constitute the embedding dimensim

of the data sets forẊ(t) to be analyzed. The optimal time la
is found from the estimate of mutual information that sho
the independent nature of the reconstructed data sets@17#.
After some experimentation we find thatm53 leads to rea-
sonable values for all the Lyapunov exponents. All the c
culations of the Lyapunov exponents are performed withm
53 using the algorithm by Sano and Sawada@18#.

The calculation leads to three exponents in each of
cases~i!, ~ii !, and ~iii ! with g50.0002 shown in Figs. 1~c!,
2~c!, and 3~c!, respectively. In case~i!, the time lagt in the
calculation of Lyapunov exponents was found to be 0.6 a
in cases~ii ! and~iii ! it was found to be 0.9. In Fig. 4 we plo
the largest Lyapunov exponent versus the time used for

FIG. 2. Ẋ vs X in case~ii ! when the sign of the scattering leng
a was suddenly made negative from positive in Eq.~1! for j
50.0004, n50.4 and ~a! g50.0001, t5200, ~b! g50.0002, t
5200, and~c! g50.0002,t520 000.
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calculation in the three cases above. In all three cases
largest exponent is found to lead to a convergent posi
value at large finite time that shows the existence of chao
all the cases. We also found that the oscillation in Fig. 3~a!
corresponding to case~iii ! with g50 is also chaotic.

There has been confirmation of chaos in the nonlin
Schrödinger equation@10# and in the Landau-Ginzburg equa
tion @11# with similar nonlinear terms as in the GP equatio
although the details of the two equations are different. Al
there has been theoretical prediction of chaos in a coupled
of GP equations@12#. The numerical study of chaos in

FIG. 3. Ẋ vs X in case~iii ! when the scattering lengtha was
suddenly changed to22a in Eq. ~1! for j50.0004,n50.4 and~a!
g50, t5200, ~b! g50.0002, t5200, and ~c! g50.0002, t
520 000.

FIG. 4. Lyapunov exponents for the chaotic attractors of Fi
1~c!, 2~c!, and 3~c! labeled~i!, ~ii !, and~iii !, respectively.
8-3
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collapsing Bose-condensed gas in Ref.@13# is worth men-
tioning. In that work chaos was confirmed in the normal tim
evolution of the GP equation~1! without any external impul-
sive force. The chaotic attractor in that study was found
stay only for a short interval of time (;500), where in the
present study with impulsive forces the chaotic oscillatio
are found to appear immediately after the application of
impulsive force and stay for more than 20 000 units of timt.
This makes the analysis of the chaos via Lyapunov expon
more reliable.

The appearance of chaos in nonlinear dynamics is of
terest from a theoretical point of view. Here we have de
onstrated the chaotic oscillation in an attractive BEC un
an impulsive force using the mean-field GP equation. T
use of the GP equation in this paper is justified as this eq
tion produces a faithful representation of the BEC for bo
repulsive and attractive interactions@5,6#. We also performed
.A

M.

r,
,
C.

ur
.

v.

tt
-

.

.
.

.A

04360
o

s
e

nt

-
-
r
e
a-

simulation when the condensate is repulsive after the ap
cation of the impulsive force. No chaotic oscillation was d
tected in that case. From this it seems that the final-s
interatomic attraction plays an important role in the gene
tion of this chaotic dynamics.

In summary, from a numerical simulation based on t
solution of the Gross-Pitaevskii equation~1! for attractive
interaction with an absorptive quintic three-body recombin
tion term (j) and a linear source termg, we find that sus-
tained chaotic oscillation can result in a BEC under the
tion of an impulsive force generated by suddenly chang
the interatomic scattering length or the harmonic-oscilla
trapping potential.
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