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Relating a Gluon Mass Scale to an Infrared Fixed Point in Pure Gauge QCD
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We show that in pure gauge QCD (or any pure non-Abelian gauge theory) the condition for the
existence of a global minimum of energy with a gluon (gauge boson) mass scale also implies the
existence of a fixed point of the � function. We argue that the frozen value of the coupling constant
found in some solutions of the Schwinger-Dyson equations of QCD can be related to this fixed point. We
also discuss how the inclusion of fermions modifies this property.
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the coupling constant found in Ref. [4], solving SDE,
clearly shows the existence of an infrared fixed point of
the QCD � function. Nevertheless, it is important to

finite function of its arguments, because the perturbative
contribution has been subtracted [10,12]. � must satisfy a
homogeneous renormalization group equation [13]
Non-Abelian gauge theories have the property of
asymptotic freedom [1]. For large momenta the coupling
becomes small, and perturbation theory seems to be an
appropriate computational tool. For small momenta the
coupling grows large, and we have to rely on nonpertur-
bative methods to study the infrared (IR) behavior of
these theories. In general, it is easier to apply nonpertur-
bative methods to pure gauge theories; i.e., the absence of
fermions may simplify the calculations. One of these
methods, in the case of pure gauge quantum chromody-
namics, is the study of Schwinger-Dyson equations (SDE)
for the gluon propagator [2]. Following this method it was
found some years ago that the gluon propagator is highly
singular in the IR, which could explain gluon confinement
in a simple way [2]. This early calculation contained a
series of approximations, and nowadays it is believed that
the gluon propagator IR behavior is smoother.

The softer IR behavior of the gluon propagator indi-
cates the existence of a gluon mass scale. This conclusion
was reached by a large number of nonperturbative meth-
ods. Cornwall argued that the gluon acquires a dynamical
mass solving a gauge invariant SDE [3]. Recent research
using a similar method with different approximations
also finds an IR finite propagator involving a gluon
mass scale [4]. These calculations are consistent with
lattice simulations of pure gauge QCD, where it is found
that the gluon propagator is modified at some mass scale
and is infrared finite [5]. A variational method approach
to QCD is also compatible with dynamical gluon mass
generation [6]. This gluon mass scale appears in some
other nonperturbative methods [7], as well as is necessary
in several phenomenological calculations [8].

At the same time that the dynamical gluon mass scale
is generated, the theory develops a freezing of the IR
coupling constant. This is a consequence that the coupling
behavior is related to the renormalization of the theory
propagators, and in this procedure the infrared behavior
of the gluon is transmitted to the coupling. Actually
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stress that the SDE solutions are always solved within
some approximation and in general in one specific gauge
and renormalization scheme. Therefore we expect that
any relationship between the gluon mass scale and the
infrared behavior of the coupling constant and, conse-
quently, a fixed point of the � function could not be
univocally determined. This fact is peculiar to our in-
ability to deal with the strong interaction physics, because
we expect that the absolute minimum of QCD vacuum
energy will be compatible with a unique gluon mass scale
(if this is the solution preferred by the vacuum).

In this work we show that the dynamical gluon mass
scale generation implies the existence of a fixed point of
the� function, although the presence of a fixed point does
not necessarily imply dynamical mass generation. We
start remembering that gauge theories without funda-
mental scalar bosons may generate dynamical masses
through the phenomenon of dimensional transmutation
[9]; i.e., we basically do not have arbitrary parameters
once the gauge coupling constant �g� is specified at some
renormalization point ���. In these theories all the physi-
cal parameters will depend on this particular coupling.

Many years ago Cornwall and Norton [10] emphasized
that the vacuum energy ��� in dynamically broken gauge
theories could be defined as a function of the dynami-
cal mass mg�p

2� � m�g;��, where mg�p
2� in pure gauge

QCD is related to the gluon polarization tensor. This mass
is not necessarily the gluon mass as it appears in the
Euclidean propagator determined in Ref. [3]; it may be
any momentum dependent mass scale that induces an IR
finite behavior for the gluon propagator as it appears in
Ref. [4]. In the sequence m�g;�� will be indicated just by
m. Actually, the vacuum energy may also depend on the
dynamical fermion and ghost masses. However, in that
which concerns ghosts, there is no evidence for scalar
fermion Goldstone excitations; i.e., it is rather unlikely
that ghosts develop mass [11].

The vacuum energy � � ��g;��, defined ahead, is a
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On the other hand, the dynamically generated masses can
be written as m � �f�g� [13], from what follows that
��@m=@�� � m and, consequently,

m
@�
@m

� ���g�
@�
@g

: (2)

This last and simple equation will be central to our argu-
ment, because it relates the stationary condition for the
vacuum energy �@�=@m � 0� [3,12] to the condition of
zeros of the � function, and we expect that the massive
solution indeed minimizes the energy [6]. Therefore in a
gauge theory with dynamically generated masses, the
condition for an extremum of the vacuum energy

��g�
@�
@g

�������@�=@m�0
� 0 (3)

always implies ��g� � 0. Of course, this is true only if
@�=@g � 0 when m � 0. Note that only at the global
minimum is the vacuum energy a gauge independent and
meaningful quantity. Exactly at this point we expect that
the mass scale, the coupling constant, and its � function
are uniquely determined.

We note that the coupling constant in the IR has no
unique determination, and it has been enough to match its
functional form with its ultraviolet behavior. This diver-
sity at the IR has the inconvenience that depending on the
choice we make, we have to face very different scenarios,
for instance, the singular behavior of the coupling [14] or
its freezing at low energies [3,4]. In this sense, it would be
appropriate to clarify what coupling constant and �
function we are referring to, since Eq. (2) was written
down without any specification of their functional form
and the renormalization scale where they are to be com-
puted. The point here is that Eq. (2) precedes any a priori
definition of the coupling constant and its associated �
function (at some renormalization scale), allowing us to
obtain very general properties of these functions if we
have some extra ingredient at hand. As discussed by
Coleman and Weinberg many years ago [9], there is a
unique way of linking g and �, and this can be achieved
by the vacuum energy at its minimum. In other words,
whatever the definition of g and � we choose, the mini-
mum of energy provides us with further information,
demanding them to conform to the existence of an IR
fixed point when there is dynamical mass generation.

To show that @�=@g � 0 we must refer to the vacuum
energy for composite operators [12], since the theory will
admit only condensation of composite operators as, for
instance, h�s G

��G��i in the pure gauge theory and
h� �   i when we add fermions. In order to do so we
introduce a bilocal field source J�x; y�, and � will be
calculated after a series of steps starting from the gen-
erating functional Z�J� [12]:
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Z�J� � exp	�W�J�


�
Z
d� exp

�
�
�Z

d4xL�x�

�
Z
d4xd4y��x�J�x; y���y�

��
;

(4)

where � can be a gauge boson or fermion field. From the
generating functional we determine the effective action
	�G� which is a Legendre transform of W�J� and is given
by 	�G� � W�J� �

R
d4xd4yG�x; y�J�x; y� (where G is a

complete propagator) leading to �	=�G�x; y� � �J�x; y�.
The physical solutions will correspond to J�x; y� � 0,
which will reproduce the SDE of the theory [12].

In general, if J is the source of the operator O, we have
[15]

�	
�J

�������J�0
� h0jOj0i: (5)

For translationally invariant (ti) field configurations
we can work with the effective potential given by
V�G�

R
d4x � �	�G�jti. Finally, from the above equa-

tions we can define the vacuum energy as [12]

� � V�G� � Vpert�G�; (6)

where we are subtracting from V�G� its perturbative
counterpart, and � is computed as a function of the
nonperturbative propagatorsG. These propagators depend
on the gauge boson, fermion, and ghost self-energies. We
will not consider fermions and, as long as the ghost self-
energy does not show any nontrivial pole, its direct con-
tribution is washed out from the vacuum energy. It should
be noted, however, that the ghosts can still interfere
through its effect on the gluon propagator [4]. � is a
function of the dynamical masses of the theory and is
zero in the absence of mass generation [12]. We shall
comment later on the actual � calculation.

We can now write Eq. (3) in the following form:

� ��g�
�
@�
@J

@J
@g

�
J�0

� 0: (7)

Of course, we assume that the conditions for a global
minimum of the vacuum energy @�=@m � 0 and J � 0
are equivalent. However, @�=@J � �@	=@J, and as a
consequence of Eq. (5) we have

��g�h0jOj0i
@J
@g

�������J�0
� 0: (8)

Using the inversion method devised by Fukuda [16] it
is possible to show that @J@g � 0 when there is condensation,
i.e., h0jOj0i � # � 0. In Ref. [16] it was verified that to
compute a nonperturbative quantity like # the usual
procedure is to introduce a source J and to calculate the
series
152001-2
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# �
X1
n�0

gnhn�J�: (9)

In practice we have to truncate Eq. (9) at some finite order,
which gives us only the perturbative solution # � 0 when
we set J � 0. The right-hand side of Eq. (9) should be
double valued at J � 0 for another solution to exist, which
is not the present case. The alternative method is to invert
Eq. (9), solving it in favor of J and regarding # as a
quantity of the order of unity. One obtains the following
series:

J �
X1
n�0

gnkn�#�; (10)

where the kn’s satisfying n  m (m being some finite
integer) are calculable from hn, also satisfying n  m.
One can find a nonperturbative solution of # by setting
J � 0 through a truncated version of Eq. (10). The im-
portant point for us is that by construction of Eq. (10) we
verify that when J � 0 and # � 0 the same value of #
that satisfies Eq. (10) leads trivially to

@J=@gjJ�0 � 0: (11)

To make this point clear, observe that Eq. (10) allows us
to look at J as a function of g and #; hence we can
imagine a surface in the space spanned by J, g, and #.
Nevertheless, this surface has physical meaning only for
J � 0, resulting in a curve in the �g; #� plane where the
derivative of Eq. (11) is calculated. Therefore, the two
terms, @J=@g and h0jOj0i, of Eq. (8) are different from
zero in the condensed phase.

According to the above discussion and looking at
Eq. (8), the only possibility to obtain @�=@m � 0 is
when we have a fixed point [��g� � 0], from which comes
our main assertion that the condition for the existence of
a gluon (gauge boson) mass scale at the global minimum
of the vacuum energy also implies the existence of a fixed
point of the � function. The reverse is not necessarily
true, since the theory may have a fixed point consistent
with the absence of any dynamical mass.

It should be remembered that there are more than one
SDE solution consistent with a dynamical mass scale for
the gluon. These solutions, as discussed previously, de-
pend on the different approximations used to solve the
equations and gauge choice, and they necessarily do not
lead to a global minimum of energy. It is reasonable to
expect that only the true solution, massive or not, will
give the absolute minimum of energy and if it has a gluon
mass scale it will be related to a unique fixed point.

We can demonstrate the connection between the gauge
boson mass scale and the existence of the fixed point in a
different way if we particularize the problem to pure
gauge QCD. Its Lagrangian is given by L � 1

2G
2
�� and

� � A� in Eq. (4). Following an argumentation pre-
sented by Cornwall [3] we can now rescale the fields
Aa� � g�1ÂAa�, Ga

�� � g�1ĜGa
��, and regularize the vac-
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uum energy (and the potential) setting its perturbative
part equal to zero in order to obtain

Z � Z�1
p

Z
dÂA� exp

�
�g�2

Z
d4x

1

4

	X
a

�ĜGa
���

2


�

� e�V�; (12)

where V is the volume of Euclidean space-time and Zp is
the perturbative functional. Differentiating with respect
to g it follows that

@ lnZ
@g

�
1
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a

�ĜGa
���

2
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� �

V@�
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; (13)

where the subscript ‘‘reg’’ on the gluon condensate indi-
cates that the regularization is by subtraction of the
perturbative expectation value in the same way as indi-
cated in Eq. (6). The factor V on the right-hand side is
canceled with the one coming out from the x integration.
As long as the condensate is different from zero for some
g > 0, and there are indications that this happens for any
g > 0 [17] (and the same would happen for the gluon
mass scale [3,4]), @�=@g � 0, since this quantity is
proportional to the condensate. This argumentation is
correct only in the light-cone gauge (or any ghost-free
gauge) as discussed in Ref. [3], for which the derivation of
Eq. (13) is valid. Furthermore, the condensate must be
consistent with the deepest minimum of energy.
According to Eqs. (2) and (3), this result constitutes an
alternative proof of our statement that the theory has a
nontrivial fixed point at the global minimum of energy,
though restricted to a particular scheme.

It would be suitable to compute the vacuum energy �
and show explicitly the connection between its minimum
and the fixed point. However, to compute � we must
know the full nonperturbative Green functions of the
theory, which obviously is not an easy task. In general,
this is accomplished using IR finite propagators within
some rough approximations [3,6,18].

We can now discuss what happens if instead of a pure
gauge theory we also have fermions. Actually part of the
arguments presented here were already discussed by some
of us when studying fermionic condensation and mass
generation in the case of strong coupling QED [19], but
the implications were not fully realized and only later it
became clear to us [20] that the vacuum energy in QCD
with massless fermions is basically dominated by the
gluonic (gauge boson) condensation (or mass) rather
than by the fermionic one. This fact can be observed if
we recover some of the results of Ref. [20] in the following
form:

h�i / �
1

162

�
3�N2 � 1�

2
am4 � Nb%4

�
; (14)

where h�i is the QCD vacuum energy at the extrema
of energy in the case that we have a massless fermion,
152001-3
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N � 3 is the number of colors, a and b are constants
determined by the theory and calculated in Ref. [20], m
is the gluon mass, and % is the dynamical fermion mass,
which are ultimately connected to the gluon and fermion
condensates. There are several points to discuss about this
expression. First, it was derived in Landau gauge and
involves many approximations. We are far from a satis-
factory determination of the full momentum dependence
of the dynamical masses used as input to compute
Eq. (14), but we believe that this equation can roughly
describe the actual behavior. Second, currently assumed
values for the gluon and fermion masses [8,18–20] in-
dicate that the first term of the right-hand side dominates
the other by at least 1 order of magnitude. Usual estimates
of the dynamical masses give the ratio m=% � 2. Third,
as is well known, the gluonic SDE are coupled to the
fermionic and the ghost ones, i.e., the dynamical gauge
boson mass is affected by the presence of fermions and
ghosts and vice versa. However, in the case of fermions
the effect is small, at least in what concerns the gluon
mass [20,21]. Therefore, the global minimum of energy of
QCD (or any other non-Abelian gauge theory) is dictated
by the gauge bosons, and we can argue that any fixed
point of the theory will be determined by the gauge boson
sector. The fermions introduce only small changes in the
position of the vacuum energy. It is also clear that if we
increase the number of fermions too much we will change
the values of the dynamical masses as well as the relative
importance of each term in Eq. (14).

In conclusion, we have shown that the condition for the
global minimum of the vacuum energy for a non-Abelian
gauge theory with a dynamically generated gauge boson
mass scale implies the existence of a nontrivial IR fixed
point of the theory. This vacuum energy depends on the
dynamical masses through the nonperturbative propaga-
tors of the theory. Our results show that the freezing of
the QCD coupling constant observed in the calculations
of Refs. [3,4] can be a natural consequence of the onset of
a gluon mass scale, giving strong support to their claim.
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