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Interaction of pulses in the nonlinear Schralinger model
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The interaction of two rectangular pulses in the nonlinear &thger model is studied by solving the
appropriate Zakharov-Shabat system. It is shown that two real pulses may result in an appearance of moving
solitons. Different limiting cases, such as a single pulse with a phase jump, a single chirped pulse, in-phase and
out-of-phase pulses, and pulses with frequency separation, are analyzed. The thresholds of creation of new
solitons and multisoliton states are found.
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[. INTRODUCTION cies. An estimation of the critical separation between pulses
is important for determination of the repetition rate of a par-
The nonlinear Schidinger (NLS) equation is an impor- ticular transmission scheme.

tant model of the theory of modulational waves. It describes In the present work, the interaction of two pulses in the
the propagation of pulses in optical fib¢is2], the dynamics NLS model is studied both theoretically and numerically. We
of laser beams in a Kerr media, or the nonlinear difractionshow the presence of different scenarios of the behavior, de-
[3], waves in plasmd4], and the evolution of a Bose- pending on the initial parameters of the pulses, such as the
Einstein condensate wave functifh]. The NLS equation is pulse areas, the relative phase shift, the spatial and frequency

written in dimensionless form as separations. One of our main observation is a fact that a pure
_ ) real initial condition of the NLS equation can result in addi-
iU + Uy/2+ |ul“u=0, (1) tional movingsolitons. As a consequence the number of soli-

) ) ) tons, emerging from two pulses separated by some distance,
where u(x,z) is a slowly varying wave envelope,is the  can be larger than the sum of the numbers of solitons, emerg-
evolutional variable, and is associated with the spatial vari- jng from each pulse. Such properties were also found for the

able. _ _ Manakov systeni7], which is a vector generalization of the
An exact solution of the NLS equation has a form of anLs equation. The scalar NLS equation was studied in Ref.
soliton: [7] as a particular case. Later similar results and approxima-

tion formulas for the soliton parameters were obtained in
u(x,2) =27 sech2n(x+2£z—Xo)] paperd8,9] (see also Ref.10]). In works[7—10] mostly the
XexH —2i éx—2i(&2—pd)z+id,], (2)  interaction ofreal pulses was analyzed, while here we con-
sider pulses with a nonzero relative phase shift and fre-
where 27 and 2 are amplitude, or the inverse width, and quency separation. A preliminary version of this study was
the velocity of the solitonx, and ¢, are the initial position ~presented in work11].
and phase, respectively. The soliton represents a basic mode The paper is organized as following. The linear scattering
and plays a fundamental role in nonlinear processes. Theroblem associated with the NLS equation is considered in
dynamics of NLS solitons and single pulses even in the presSec. Il. We also present the general solution of the problem
ence of various perturbations is well understdede, e.g., for the case of two rectangular pulses. In Sec. Ill, we study
Refs.[1,2], and references thergirHowever, the evolution different particular cases, such as two in-phase pulses, two
of several pulses is not studied in detail. In recent wgfds out-of-phase pulses, a single pulse with a phase jump, a
(see also Ref.2]) mostly an interaction of solitons and near- single chirped pulse, and two pulses with the frequency sepa-
soliton pulses was considered. A studynefr-solitonpulses, ~ ration. The results and conclusions are summarized in
especially a use of the effective particle approach, often reSec. IV.
sults in small variation of soliton parameters, including the
soliton velocities and as a consequence weak repulsion or Il. DIRECT SCATTERING PROBLEM

attraction of solitons. Such a study does not involve a possi- In thi int ted onlv | totic stat
bility of an appearance of additional solitons. However, for n this paper we are nterested only in an asymptolic state

many applications it is necessary to consider the interactio{?f thstp_ulse mti:ractlol?. In order t%SIIT;E“f){ tthe pr;)blemfaénd
of pulses with arbitrary amplitudes or pulses with different 0 ? aml exalc re“sbu S v!e _cr(;nm fer € Itn kerat?] |ofn ”0 WO
parameters. For example, in optical communication system!’s.ec antglul arpudgtc_as( ?Xeé )'1 ] eretore we take the follow-
with the wavelength division multiplexingWDM), the ini- ing initial conditions for Eq.(1):

tial signal consists of several solitons with different frequen- Qiexd2ivyx] for x;<x<x,

u(x,00=U(x)=1{ Qzexd2iv,x] for xz<x<x, (3)
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whereQ; andQ, are the complex constant amplitudes,  wherek;=[(\+ vj)2+ |QJ-|2]1’2.
=X,— X1 andw,=X,— X3 are the pulse widths, andv2 and Since the linear operator in E@) is not Hermitian, com-
2v, are the detunings. plex eigenvalues are possible even for re@t,0) (e.g., see

It is known that the NLS equation is integrable by the Sec. Il A). Though this is an obvious fact, “an interesting
inverse scattering transform methi@. As follows from this  ‘folklore’ property seems to have arisen in the literature over
fact, initial conditions, which decrease sufficiently fastxat the last 25 years, namely, that only pure imaginary Edis
= +oo, result in a set of solitons and linear wayvss called, genvalues can occur for symmetric real valued potentials”
radiation. The numbeiN and parameters of solitons emerg- [8]. As demonstrated below, the statemgFieorem(lll) in
ing from an initial condition are found from the solution of Sec. Il of paper[12], which claims this result, is incorrect.
the Zakharov-Shabat scattering problgs An existence of eigenvalues with nonzero real parts for

Zakharov-Shabat problem with pure real potential was first

ia—wl—iU(x)wz:)\wl, shown in papef7].

X Equations(6) and (7) represent a general solution of the
scattering problemg4) and (5) with initial condition (3).
O Applications of these equations to particular cases of the
i1y () P1=Nihz, (4)  pulse interaction are considered in the following section.
with the following boundary conditions: [ll. RESULTS
a()\)e_”‘x A. Interaction of in-phase pulses with equal amplitudes
Wx-;—:x:: eii)\xa \I,X—NC: IAX . (5) 1. P 1 f ej |
0 b(\)e . Properties of eigenvalues

) , ) ) Here we analyze a simple case of two real pulses, sepa-
Here W (x) is an eigenvecton, is an eigenvaluea(X) and a4 by a distance =x5—x,, with zero detuning, i.e.Q,

b(\) are the scattering coefficients, and an asterisk means 20,=0Q,, W;=W,=w, and v;=r,=0, whereQ, is real.
complex conju_gate. The numbhiris equal to the number of 114, using Eq.(6), the equation for discrete spectrum is
poles\,=¢&,+i7,, wheren=1, ... N, and »,>0, of the

n - 7 i written as

transmission coefficient 4(\). Each\, is invariant onz. If
all ¢, are different theru(x,z) at z—« represents a set of Qo iy .
solitons, each in the form of Eq2) with »=7, and & F(A,Qo,w) =~ €™ sin(kw) =0, ®)
=¢, . Ifreal parts of several, are equal then a formation of
a neutrally stable bound state of solitons is possible. where F(\,Q,w)=coskw)—ixsinkw)/k, and k=(\?

The solution of the Zakharov-Shabat problé®) with  +Q?)Y2 Note thatF(\,Qq,w)=0 determines the discrete
potential(3) is written as spectrum for a single box with zero detunifig]. Therefore

the second term in Eq8) can be associated with the result
of nonlinear interference. Recall also that for a single box
with amplitudeQ, and widthw, the numbeiNgg of emerg-

a()\) — ei()\+ Vl)Wlei()\+ vp)Wo

X cos(klwl)—iwsin(klwl)} ing solitons is determined &3] Ngg=int(Qow/ 7+ 1/2),
ky where int() means an integer part. Results for the two boxes
are reduced to those for a single box in limiting cates
(Nt
X | cogkoWy) — i —— sin(k,w,) =0 andL=ro.
k2 As shown by Klaus and Shaj8], the Zakharov-Shabat
Q*Q problem with a “single-hump” real initial condition admits
— k1—|<ze*2i()\+”1)x262i()\+”2)x3 pure imaginary eigenvalues only, i.e., solitons with zero ve-
172

locity. We show that the case of two pulses provides much
richer dynamics.
Xsirl(klwl)sin(kzwz)], (6) Let us now compare the properties of eigenvalues at dif-
ferentS=Qqw (Fig. 1. In Fig. 1, as well as in subsequent
o* figures of the paper, all variables are dimensionless. In the
O )Wy a— i+ v W 1 2i 1% first two casesS=1.8 andS=2.0, there is one soliton &t
b(x) =/t imeTi0 T 2[ Ky © vrmesin(kow,) =0 and there are two solitons ht=, while in the case
S=2.5 there are two solitons in both limits. The dependence
cokoWy) + i (N vy) sin(kzwz)} of eigenvalues orl at S=2.5 is obvious, while that a
K =1.8 and 2.0 looks unexpected. First, the number of solitons
* at intermediatel is larger than that in the limitt =0 and
_%G—Zi(xwzm sin(koW,) L=. Second, the two real boxes lead to eigenvalues with
ko nonzero real part. Third, fo8= 2.0 there is a “fork” bifur-
(A1) cation atL=LF~4..1, When tvvp eigenvalues c_oincide. At
cogk,w,) —i —1sin( klwl)H, (7)  largerL three pure imaginary eigenvalues constitute a three-
Ky soliton state, so that the limiting two-soliton casd.at «~ is

X

X
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. 3.7 577 7 _. FIG. 2. Evolution of two rectangular pulse®,=2, w=1. (a)
R One fixed soliton and two moving solitons ht=2. (b) Three-
01 2 3 4 5 6 7 8 soliton state at. =5.
L
2. Appearance of new eigenvalues
2N 4 (c) Solving numerically Eq(8), one can conclude that new
° eigenvalues penetrate to the upper half plang of pairs by
% 15 crossing the real axis. Therefore, the bifurcation parameter
E 1|32 can be found from Eq8), assuming thak = 3, whereg is
= real:
" os
28°—y?
0 N coty=+————, 9
01 2 3 4 5 6 7 8 y
L .
B=+Qosin(BL). (10)

FIG. 1. In-phase pulses: the dependence of (éashed lines
and imaginary(solid line9 parts of\, on the separation distance, Herey=«w, k=(B*+ QS)”Z, and the signs are taken such
w=1. The numbers near the lines correspond.t@) Q,=1.8,(b)  that tanfy)tan(BL)<0 is satisfied. As follows from the defi-
Qp=2.0, (c) Qp=2.5. nition of y and Eq.(9), one hasS<y<2S.

Analysis of Eqs(9) and(10) results in the following con-
realized as a limit of a three-soliton solution with an ampli- clusions.
tude of the third soliton tending to zero. (i) As follows from Eq.(9), the numbeiNyp of the pen-

Results of numerical simulations of the NLS equati®h  etration points depends only &and is determined from
agree with the analysis of E¢). For example, as shown in
Fig. 2, in accordance with Fig.() there are one fixed and
two moving solitons atS=2.0 andL=2, and there are a
three-soliton state and two moving solitonsSat 2.0 andL

1
n+—

ik

=5. Note that an appearance of moving solitons and multi- _ _ E _ _

soliton states is not related to the rectangular form of initial 29[8 n+ 4) Tr} 40(Sn=9)  for S=3/4,
pulses. For example, an initial conditionu(x,0) (11)
=0.7 sechi+ 2.5)+sechk—2.5)] also results in moving

solitons. wherem=int(\2 S/7), n=int(S/), 6(x) is the Heaviside

Below we discuss in details the behavior of the eigenvalfunction, andS,, is a root of
ues, namely, we find a threshold of appearance of new roots,
estimate a number of emerging solitons, and calculate a tan( \/28§1—1)=\/2an—1, (12
threshold for the fork bifurcation. It should be mentioned
that eigenvalues with a nonzero real part do not exist only awhich satisfiesmr=<(2S3—1)Y2<(m+1)m. It is easy to
S=[37/4,3.3 andS=[7=/4,5.5] (see Sec. lll A2 sothat find that Npp=0 for S<w/4 and Npp=2 for w/4<S
the dependence &=2.5 is rather an exception than a gen- <3w/4. Equation(12) defines such values &=S,,, when
eral rule. This result allows to understand why moving soli-the right-hand side of Eq9) with plus sign touches cot
tons are not observed in interaction of near-soliton pulsesurve. All penetration pointg;, wherej=1, ... Npp, are
with an areaS~ . symmetrically situated with respect =0.
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6! should be positivéthere is no real solution fot?<0). As a
5 consequence, all pure imaginary eigenvalues satigfy
P4t =Qp.
3t The value ofL=Lg, when new pure imaginary root of
2| Eq. (13) appears, corresponds to the fork bifurcation. The
1t bifurcation threshold g can be found from the condition that
0 - . the functions, corresponding to the right-hand side of Eg.
0 2 4 6 SS 10 12 14 (13), touch the coy curve.

Lower bound of the number of the pure imaginary eigen-

FIG. 3. (@) The dependence @, on S (b) ThresholdLc, when ~ Vvalues is found adl, g=int(2S/7+1/2). This number is an
eigenvalues cross the real axis of theplane, as a function & actual number of the pure imaginary eigenvalues forSall

except of the regions where

(i) All roots |B;|<Qq, which follows from 25?—y? 3
=0, T m<s<ZZiml, 1=01,.... (14)

(iii ) For everyg; , Eq.(10) defines the separation distance 2 4
L=Lc, when eigenvalues cross the real axis.

(iv) As follows from Eq.(10) there is aninfinite number
of thresholds. ¢ for a giveng;. However, the total number
of eigenvalues in the upper half plane)ofs, most probably,
finite, because for some. eigenvalues pass to the upper

: ds, the fork bifurcation, is possible only$fsatisfies Eq.
half plane, and for othelt eigenvalues go to the lower half words,
plane. The direction of eigenvalue motion is defined by the(14)' F|gurg 4 represents the d.ependencdlz,ofon S whe_re
derivatived\/dL at\= g3, . only one interval, corresponding tb=1 in Eq. (14), is

shown; the behavior fok>1 is similar. One can calculate
thatLg(S=1.8)=10.4, which is why the fork bifurcation is
not seen in Fig. (g).

If S satisfies Eq.(14) then the number of pure imaginary
eigenvalues can be eithét g or N g+2, depending on
whetherL<Lg(S) or L>Lg(S), respectively. Therefore the
appearance of new pure imaginary eigenvalues, in other

The position of penetration poinf; as a function oSis
shown in Fig. 8), where only positives; are presented. As
follows from Eq.(9) the numbeiNpp decreases by 2, wheh

passes (P+1)w/4, wherel=1,2 ..., and\Npp increases by _ _
4, when S exceedsS,, [see Eq.(12)]. Therefore one can B. Two out-of-phase pulses with equal amplitudes
obtain that Eq(9) has no roots only e86=[3#/4,S,] and at In this section we study the influence of constant

S=[77/4,S;], whereS,~3.26 andS;~5.51 are found from phase shift on the pulse interaction, i.e., we consiQgr
Eq. (12). This property is clearly seen in Fig. 3. The depen-=Qgexp(-ia), Q,=Qqexp(a), whereQ, and a are real,
dence ofLc on Sis presented in Fig.(®). Only the thresh- w,=w,=w, and v;=v,=0. The nonzero relative phase

olds, such thap;Lc=[0,27], are shown for eacls; . shift 2a changes greatly the properties of the eigenvalues, so
that the behavior presented in Sec. Il Ais hard to realize in
3. Thresholds of the fork bifurcation experiments, because it is difficult to prepare two pulses ex-

Here we analyze a bifurcation, when a pair of complex@Ctly in phase. The phase shift breaks #maultaneousap-

eigenvalues becomes pure imaginary, elg~4.1 in Fig. Pearance of a pair of solitons at==p;, and affects the

1(b). The equation that determines pure imaginary eigenvalfOrK bifurcation. _ _
ues can be obtained from E¢) with REA]=0, i.e., A For a#0, the equations for eigenvalues and for penetra-
tion points can be obtained from E¢) and Eqgs.(9) and

=iy:
4 (10) by changing\L—AL+a and BL— BL+ « in the ex-
ez N~ ponent and sinus functions, respectively. Therefore the num-
coty = STy ESexd — VS —yLiw] . (13 ber and positions of the penetration points are the same as for
y the casew=0. As for the threshold. ., it is shifted on the

value o/ Bj, so thatLc(a)=Lc(a=0)+a/B;, where only
Herey=«xw, k=(—y>+Q3)2 It is easy to show thak?>  Lc=0 should be taken into account.
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FIG. 6. Single chirped pulse; the dependence of fdakhed
lines) and imaginary(solid lineg parts of A, on v for Qy=2, w
=1, L=0. The numbers near the lines correspona.to

each other. It was also demonstrated that an introduction of a
time shift between pulses results in a decrease of the fre-
quency separation threshold. The geometry described by Eq.
(3) corresponds to the combination of the WDM and time-
division multiplexing schemes, therefore our study can give
some insight into such a behavior of the threshold. Moreover,
the authors of work$14,15 mostly used the perturbation
FIG. 5. Out-of-phase pulses: The dependence of (@ashed technique and numerical simulations, while in the present
lines) and imaginary(solid line9 parts of\, on L for Q,=2, w  paper we deal with an exact solution of the Zakharov-Shabat
=1. The numbers near the lines corresponah.téa) o= /8, (b) problem.
a=m7l4. First let us consider the cage=0 that corresponds to the
case of a singlehirpedpulse of width 2v. The dependence
The influence of the phase shift on the distribution ofof the eigenvalues on, which plays here the role of a chirp
eigenvalues is shown in Fig. 5. As seen, now new eigenvalparameter, is shown in Fig. 6. At smallthe interaction of
ues appear one by one, not in pairs, and, as a consequente pulse components is strong, so that there is one pure
the fork bifurcation disappears. Further, the real parts of thémaginary eigenvalue, or a single soliton with zero velocity.
roots do not vanish at finite, but decrease smoothly. This At larger v the frequency difference of the pulse components
means that the presence of the phase shift breaks up a muigsults in a repulsion of the components, or a pulse splitting.
tisoliton state, which is known to be neutrally stable to per-

Eigenvalues

turbations. L5
At L=0, the phase shift corresponds to the phase jump of 1 b
a single pulse. Such a phase jump can result in an appearance 2
of additional solitons as shown in Fig(l5. The threshold of g 0.5 1y
the phase shifty,, when the first new soliton appears, can 8§ o
be found from the conditionvy,=|3;|Lc(a=0), wheregs; &
is the position of the penetration point nearest to zero. 051
C. Two pulses with frequency separation 10 1 2 3 4 5 6 7 8
In this section we analyze initial conditiof8) with the L
following parameter);=Q,=Qq, Wi=Wyo=W, —v;=1, L5
=v, whereQ, is a real constant. This case models the wave- - it
length division multiplexing in optical fibers, the case when ! ®
an input signal consists of two or more pulses with different § 057 12
frequencies. Actually, sinc&®, can be taken sufficiently § 0
large we consider the interaction of multisoliton states. The 5 05|
detailed analysis of the interaction of sech pulses at different |
frequencies is presented in papEgtd] and in review[15]. In R U 2 ____]
particular, the authors of pap€f$4,15 consider the evolu- -1.5 T "1 PR

tion of a superposition oN solitons with the same position
of the centers, but with different frequencies. As shown in
these works there is a critical frequency separation, above F|G. 7. Pulses with frequency separation: The dependence of
which N solitons with almost equal amplitudes emerge. Be-real (dashed linesand imaginary partésolid lineg of X, on L for

low this critical value the number of emerging solitons canQ,=2, w=1. The numbers near the lines correspond.ga) v

not equalN and their amplitudes can appreciably differ from =0.5, (b) »=1.25.
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At sufficiently large v the velocities of emerging solitons eters of the initial pulses is shown. For intermediate separa-
tend, as expected, th2v. tion distanced the existence of additional moving solitons
There is also a narrow region of e.g.,»=[0.98,0.99in  is possible even in the case of two in-phase pulses with the
Fig. 6, where three solitons, one fixed and two moving soli-same frequencies. These additional solitons can be consid-
tons, exist. This region separates two different types of thered as a result of the nonlinear interference of pulses. The
evolution of a chirped pulse. The left boundary, which cor-phase shift of two pulses removes a degeneracy in the be-
responds to the appearance of new eigenvalues, of the regitvavior, namely it affects the symmetry of the parameters of
is found from the condition similar to that considered in Sec.emerging solitons and results in a breakup of multisoliton
1A 2. The right boundary is found froma(A=0)=0, states peculiar to the in-phase case. It is also shown that the
which defines the values of as a function of the other strong frequency separation suppresses the appearance of ad-
parameters, when the pure imaginary root disappears. ditional solitons. The results obtained in the present paper
The dependence of the spectrumlois presented in Fig. can be useful for the analysis of the transmission capacity of
7. At small v [Fig. 7(a)] we see again an appearance ofcommunication systems and for interpretation of experi-
additional solitons similar to the case=0 (Fig. 1). Atlarger ~ ments on the interaction of two laser beams in nonlinear
v [Fig. 7(b)] the repulsion is so strong that it suppresses thénedia. Recently, the generation of up to ten solitons has been
appearance of small-amplitude solitons. Therefore there is @bserved experimentally in quasi-one-dimensional Bose-
threshold of the frequency separation above which the intefEinstein condensate ofLi with attractive interactior{16].
action of two pulses is negligible. This result is in agreemen©Our study can be also helpful for interpretation of this ex-
with the conclusions of pap¢d5]. periment.
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