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Interaction of pulses in the nonlinear Schrödinger model
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The interaction of two rectangular pulses in the nonlinear Schro¨dinger model is studied by solving the
appropriate Zakharov-Shabat system. It is shown that two real pulses may result in an appearance of moving
solitons. Different limiting cases, such as a single pulse with a phase jump, a single chirped pulse, in-phase and
out-of-phase pulses, and pulses with frequency separation, are analyzed. The thresholds of creation of new
solitons and multisoliton states are found.
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I. INTRODUCTION

The nonlinear Schro¨dinger ~NLS! equation is an impor-
tant model of the theory of modulational waves. It describ
the propagation of pulses in optical fibers@1,2#, the dynamics
of laser beams in a Kerr media, or the nonlinear difract
@3#, waves in plasma@4#, and the evolution of a Bose
Einstein condensate wave function@5#. The NLS equation is
written in dimensionless form as

iuz1uxx/21uuu2u50, ~1!

where u(x,z) is a slowly varying wave envelope,z is the
evolutional variable, andx is associated with the spatial var
able.

An exact solution of the NLS equation has a form of
soliton:

u~x,z!52h sech@2h~x12jz2x0!#

3exp@22i jx22i ~j22h2!z1 if0#, ~2!

where 2h and 2j are amplitude, or the inverse width, an
the velocity of the soliton,x0 andf0 are the initial position
and phase, respectively. The soliton represents a basic m
and plays a fundamental role in nonlinear processes.
dynamics of NLS solitons and single pulses even in the p
ence of various perturbations is well understood~see, e.g.,
Refs. @1,2#, and references therein!. However, the evolution
of several pulses is not studied in detail. In recent works@6#
~see also Ref.@2#! mostly an interaction of solitons and nea
soliton pulses was considered. A study ofnear-solitonpulses,
especially a use of the effective particle approach, often
sults in small variation of soliton parameters, including t
soliton velocities and as a consequence weak repulsio
attraction of solitons. Such a study does not involve a po
bility of an appearance of additional solitons. However,
many applications it is necessary to consider the interac
of pulses with arbitrary amplitudes or pulses with differe
parameters. For example, in optical communication syst
with the wavelength division multiplexing~WDM!, the ini-
tial signal consists of several solitons with different freque
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cies. An estimation of the critical separation between pul
is important for determination of the repetition rate of a p
ticular transmission scheme.

In the present work, the interaction of two pulses in t
NLS model is studied both theoretically and numerically. W
show the presence of different scenarios of the behavior,
pending on the initial parameters of the pulses, such as
pulse areas, the relative phase shift, the spatial and frequ
separations. One of our main observation is a fact that a p
real initial condition of the NLS equation can result in add
tional movingsolitons. As a consequence the number of so
tons, emerging from two pulses separated by some dista
can be larger than the sum of the numbers of solitons, em
ing from each pulse. Such properties were also found for
Manakov system@7#, which is a vector generalization of th
NLS equation. The scalar NLS equation was studied in R
@7# as a particular case. Later similar results and approxim
tion formulas for the soliton parameters were obtained
papers@8,9# ~see also Ref.@10#!. In works@7–10# mostly the
interaction ofreal pulses was analyzed, while here we co
sider pulses with a nonzero relative phase shift and
quency separation. A preliminary version of this study w
presented in work@11#.

The paper is organized as following. The linear scatter
problem associated with the NLS equation is considered
Sec. II. We also present the general solution of the prob
for the case of two rectangular pulses. In Sec. III, we stu
different particular cases, such as two in-phase pulses,
out-of-phase pulses, a single pulse with a phase jump
single chirped pulse, and two pulses with the frequency se
ration. The results and conclusions are summarized
Sec. IV.

II. DIRECT SCATTERING PROBLEM

In this paper we are interested only in an asymptotic s
of the pulse interaction. In order to simplify the problem a
to obtain exact results we consider the interaction of t
rectangularpulses~‘‘boxes’’ !. Therefore we take the follow-
ing initial conditions for Eq.~1!:

u~x,0![U~x!5H Q1 exp@2in1x# for x1,x,x2

Q2 exp@2in2x# for x3,x,x4

0 otherwise,

~3!
©2003 The American Physical Society10-1
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whereQ1 and Q2 are the complex constant amplitudes,w1
[x22x1 andw2[x42x3 are the pulse widths, and 2n1 and
2n2 are the detunings.

It is known that the NLS equation is integrable by t
inverse scattering transform method@3#. As follows from this
fact, initial conditions, which decrease sufficiently fast ax
56`, result in a set of solitons and linear waves~so called,
radiation!. The numberN and parameters of solitons emer
ing from an initial condition are found from the solution o
the Zakharov-Shabat scattering problem@3#:

i
]c1

]x
2 iU ~x!c25lc1 ,

2 i
]c2

]x
2 iU * ~x!c15lc2 , ~4!

with the following boundary conditions:

Cx→2`5S 1

0D e2 ilx, Cx→`5S a~l!e2 ilx

b~l!eilx D . ~5!

HereC(x) is an eigenvector,l is an eigenvalue,a(l) and
b(l) are the scattering coefficients, and an asterisk mea
complex conjugate. The numberN is equal to the number o
polesln[jn1 ihn , wheren51, . . . ,N, andhn.0, of the
transmission coefficient 1/a(l). Eachln is invariant onz. If
all jn are different thenu(x,z) at z→` represents a set o
solitons, each in the form of Eq.~2! with h5hn and j
5jn . If real parts of severalln are equal then a formation o
a neutrally stable bound state of solitons is possible.

The solution of the Zakharov-Shabat problem~4! with
potential~3! is written as

a~l!5ei (l1n1)w1ei (l1n2)w2

3H Fcos~k1w1!2 i
~l1n1!

k1
sin~k1w1!G

3Fcos~k2w2!2 i
~l1n2!

k2
sin~k2w2!G

2
Q1* Q2

k1k2
e22i (l1n1)x2e2i (l1n2)x3

3sin~k1w1!sin~k2w2!J , ~6!

b~l!5ei (l1n1)w1e2 i (l1n2)w2H 2
Q1*

k1
e22i (l1n1)x2 sin~k1w1!

3Fcos~k2w2!1 i
~l1n2!

k2
sin~k2w2!G

2
Q2*

k2
e22i (l1n2)x3 sin~k2w2!

3Fcos~k1w1!2 i
~l1n1!

k1
sin~k1w1!G J , ~7!
05661
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wherekj5@(l1n j )
21uQj u2#1/2.

Since the linear operator in Eq.~4! is not Hermitian, com-
plex eigenvalues are possible even for realu(x,0) ~e.g., see
Sec. III A!. Though this is an obvious fact, ‘‘an interestin
‘folklore’ property seems to have arisen in the literature ov
the last 25 years, namely, that only pure imaginary EVs~ei-
genvalues! can occur for symmetric real valued potential
@8#. As demonstrated below, the statement@Theorem~III ! in
Sec. II# of paper@12#, which claims this result, is incorrect
An existence of eigenvalues with nonzero real parts
Zakharov-Shabat problem with pure real potential was fi
shown in paper@7#.

Equations~6! and ~7! represent a general solution of th
scattering problems~4! and ~5! with initial condition ~3!.
Applications of these equations to particular cases of
pulse interaction are considered in the following section.

III. RESULTS

A. Interaction of in-phase pulses with equal amplitudes

1. Properties of eigenvalues

Here we analyze a simple case of two real pulses, se
rated by a distanceL[x32x2, with zero detuning, i.e.,Q1
5Q25Q0 , w15w2[w, andn15n250, whereQ0 is real.
Then using Eq.~6!, the equation for discrete spectrum
written as

F~l,Q0 ,w!6
Q0

k
eilL sin~kw!50, ~8!

where F(l,Q,w)[cos(k w)2ilsin(k w)/k, and k5(l2

1Q2)1/2. Note thatF(l,Q0 ,w)50 determines the discret
spectrum for a single box with zero detuning@13#. Therefore
the second term in Eq.~8! can be associated with the resu
of nonlinear interference. Recall also that for a single b
with amplitudeQ0 and widthw, the numberNSB of emerg-
ing solitons is determined as@3# NSB5 int(Q0w/p11/2),
where int() means an integer part. Results for the two bo
are reduced to those for a single box in limiting casesL
50 andL5`.

As shown by Klaus and Shaw@8#, the Zakharov-Shaba
problem with a ‘‘single-hump’’ real initial condition admits
pure imaginary eigenvalues only, i.e., solitons with zero
locity. We show that the case of two pulses provides mu
richer dynamics.

Let us now compare the properties of eigenvalues at
ferent S[Q0w ~Fig. 1!. In Fig. 1, as well as in subsequen
figures of the paper, all variables are dimensionless. In
first two cases,S51.8 andS52.0, there is one soliton atL
50 and there are two solitons atL5`, while in the case
S52.5 there are two solitons in both limits. The dependen
of eigenvalues onL at S52.5 is obvious, while that atS
51.8 and 2.0 looks unexpected. First, the number of solit
at intermediateL is larger than that in the limitsL50 and
L5`. Second, the two real boxes lead to eigenvalues w
nonzero real part. Third, forS52.0 there is a ‘‘fork’’ bifur-
cation atL5LF'4.1, when two eigenvalues coincide. A
largerL three pure imaginary eigenvalues constitute a thr
soliton state, so that the limiting two-soliton case atL→` is
0-2
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realized as a limit of a three-soliton solution with an amp
tude of the third soliton tending to zero.

Results of numerical simulations of the NLS equation~1!
agree with the analysis of Eq.~8!. For example, as shown i
Fig. 2, in accordance with Fig. 1~b! there are one fixed an
two moving solitons atS52.0 andL52, and there are a
three-soliton state and two moving solitons atS52.0 andL
55. Note that an appearance of moving solitons and mu
soliton states is not related to the rectangular form of ini
pulses. For example, an initial conditionu(x,0)
50.7@sech(x12.5)1sech(x22.5)# also results in moving
solitons.

Below we discuss in details the behavior of the eigenv
ues, namely, we find a threshold of appearance of new ro
estimate a number of emerging solitons, and calculat
threshold for the fork bifurcation. It should be mention
that eigenvalues with a nonzero real part do not exist onl
S5@3p/4,3.3# andS5@7p/4,5.51# ~see Sec. III A 2!, so that
the dependence atS52.5 is rather an exception than a ge
eral rule. This result allows to understand why moving so
tons are not observed in interaction of near-soliton pul
with an areaS'p.

FIG. 1. In-phase pulses: the dependence of real~dashed lines!
and imaginary~solid lines! parts ofln on the separation distance
w51. The numbers near the lines correspond ton. ~a! Q051.8, ~b!
Q052.0, ~c! Q052.5.
05661
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2. Appearance of new eigenvalues

Solving numerically Eq.~8!, one can conclude that new
eigenvalues penetrate to the upper half plane ofl in pairs by
crossing the real axis. Therefore, the bifurcation param
can be found from Eq.~8!, assuming thatl5b, whereb is
real:

cot y56
A2S22y2

y
, ~9!

b56Q0 sin~bL !. ~10!

Herey5kw, k5(b21Q0
2)1/2, and the signs are taken suc

that tan(y)tan(bL),0 is satisfied. As follows from the defi
nition of y and Eq.~9!, one hasS<y,2S.

Analysis of Eqs.~9! and~10! results in the following con-
clusions.

~i! As follows from Eq.~9!, the numberNPP of the pen-
etration points depends only onS and is determined from

NPP54~m2n11!22uFS2S n1
1

4DpG
22uFS2S n1

3

4DpG24u~Sm2S! for S>3p/4,

~11!

wherem5 int(A2 S/p), n5 int(S/p), u(x) is the Heaviside
function, andSm is a root of

tan~A2Sm
2 21!5A2Sm

2 21, ~12!

which satisfiesmp<(2Sm
2 21)1/2,(m11)p. It is easy to

find that NPP50 for S,p/4 and NPP52 for p/4,S
,3p/4. Equation~12! defines such values ofS5Sm , when
the right-hand side of Eq.~9! with plus sign touches coty
curve. All penetration pointsb j , where j 51, . . . ,NPP , are
symmetrically situated with respect tob50.

FIG. 2. Evolution of two rectangular pulses,Q052, w51. ~a!
One fixed soliton and two moving solitons atL52. ~b! Three-
soliton state atL55.
0-3
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~ii ! All roots ub j u<Q0, which follows from 2S22y2

>0.
~iii ! For everyb j , Eq.~10! defines the separation distan

L5LC , when eigenvalues cross the real axis.
~iv! As follows from Eq.~10! there is aninfinite number

of thresholdsLC for a givenb j . However, the total numbe
of eigenvalues in the upper half plane ofl is, most probably,
finite, because for someLC eigenvalues pass to the upp
half plane, and for otherLC eigenvalues go to the lower ha
plane. The direction of eigenvalue motion is defined by
derivativedl/dL at l5b j .

The position of penetration pointsb j as a function ofS is
shown in Fig. 3~a!, where only positiveb j are presented. As
follows from Eq.~9! the numberNPP decreases by 2, whenS
passes (2l 11)p/4, wherel 51,2 . . . , andNPP increases by
4, when S exceedsSm @see Eq.~12!#. Therefore one can
obtain that Eq.~9! has no roots only atS5@3p/4,S2# and at
S5@7p/4,S3#, whereS2'3.26 andS3'5.51 are found from
Eq. ~12!. This property is clearly seen in Fig. 3. The depe
dence ofLC on S is presented in Fig. 3~b!. Only the thresh-
olds, such thatb jLC5@0,2p#, are shown for eachb j .

3. Thresholds of the fork bifurcation

Here we analyze a bifurcation, when a pair of comp
eigenvalues becomes pure imaginary, e.g.,LF'4.1 in Fig.
1~b!. The equation that determines pure imaginary eigen
ues can be obtained from Eq.~6! with Re@l#50, i.e., l
5 ig:

coty5
2AS22y26Sexp@2AS22y2L/w#

y
. ~13!

Here y5kw, k5(2g21Q0
2)1/2. It is easy to show thatk2

FIG. 3. ~a! The dependence ofb j on S. ~b! ThresholdLC , when
eigenvalues cross the real axis of thel plane, as a function ofS.
05661
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should be positive~there is no real solution fork2,0). As a
consequence, all pure imaginary eigenvalues satisfyg j
<Q0.

The value ofL5LF , when new pure imaginary root o
Eq. ~13! appears, corresponds to the fork bifurcation. T
bifurcation thresholdLF can be found from the condition tha
the functions, corresponding to the right-hand side of E
~13!, touch the coty curve.

Lower bound of the number of the pure imaginary eige
values is found asNLB5 int(2S/p11/2). This number is an
actual number of the pure imaginary eigenvalues for allS,
except of the regions where

p

2
1p l ,S,

3p

4
1p l , l 50,1, . . . . ~14!

If S satisfies Eq.~14! then the number of pure imaginar
eigenvalues can be eitherNLB or NLB12, depending on
whetherL,LF(S) or L.LF(S), respectively. Therefore the
appearance of new pure imaginary eigenvalues, in o
words, the fork bifurcation, is possible only ifSsatisfies Eq.
~14!. Figure 4 represents the dependence ofLF on S, where
only one interval, corresponding tol 51 in Eq. ~14!, is
shown; the behavior forl .1 is similar. One can calculate
that LF(S51.8)510.4, which is why the fork bifurcation is
not seen in Fig. 1~a!.

B. Two out-of-phase pulses with equal amplitudes

In this section we study the influence of consta
phase shift on the pulse interaction, i.e., we considerQ1
5Q0exp(2ia), Q25Q0exp(ia), whereQ0 and a are real,
w15w2[w, and n15n250. The nonzero relative phas
shift 2a changes greatly the properties of the eigenvalues
that the behavior presented in Sec. III A is hard to realize
experiments, because it is difficult to prepare two pulses
actly in phase. The phase shift breaks thesimultaneousap-
pearance of a pair of solitons atl56b j , and affects the
fork bifurcation.

For aÞ0, the equations for eigenvalues and for penet
tion points can be obtained from Eq.~8! and Eqs.~9! and
~10! by changinglL→lL1a and bL→bL1a in the ex-
ponent and sinus functions, respectively. Therefore the n
ber and positions of the penetration points are the same a
the casea50. As for the thresholdLC , it is shifted on the
valuea/b j , so thatLC(a)5LC(a50)1a/b j , where only
LC>0 should be taken into account.

FIG. 4. ThresholdLF of the fork bifurcation as a function ofS.
0-4
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The influence of the phase shift on the distribution
eigenvalues is shown in Fig. 5. As seen, now new eigen
ues appear one by one, not in pairs, and, as a consequ
the fork bifurcation disappears. Further, the real parts of
roots do not vanish at finiteL, but decrease smoothly. Th
means that the presence of the phase shift breaks up a
tisoliton state, which is known to be neutrally stable to p
turbations.

At L50, the phase shift corresponds to the phase jum
a single pulse. Such a phase jump can result in an appear
of additional solitons as shown in Fig. 5~b!. The threshold of
the phase shifta th , when the first new soliton appears, c
be found from the conditiona th5ub1uLC(a50), whereb1
is the position of the penetration point nearest to zero.

C. Two pulses with frequency separation

In this section we analyze initial condition~3! with the
following parametersQ15Q25Q0 , w15w25w, 2n15n2
5n, whereQ0 is a real constant. This case models the wa
length division multiplexing in optical fibers, the case wh
an input signal consists of two or more pulses with differe
frequencies. Actually, sinceQ0 can be taken sufficiently
large we consider the interaction of multisoliton states. T
detailed analysis of the interaction of sech pulses at diffe
frequencies is presented in papers@14# and in review@15#. In
particular, the authors of papers@14,15# consider the evolu-
tion of a superposition ofN solitons with the same positio
of the centers, but with different frequencies. As shown
these works there is a critical frequency separation, ab
which N solitons with almost equal amplitudes emerge. B
low this critical value the number of emerging solitons c
not equalN and their amplitudes can appreciably differ fro

FIG. 5. Out-of-phase pulses: The dependence of real~dashed
lines! and imaginary~solid lines! parts ofln on L for Q052, w
51. The numbers near the lines correspond ton. ~a! a5p/8, ~b!
a5p/4.
05661
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each other. It was also demonstrated that an introduction
time shift between pulses results in a decrease of the
quency separation threshold. The geometry described by
~3! corresponds to the combination of the WDM and tim
division multiplexing schemes, therefore our study can g
some insight into such a behavior of the threshold. Moreo
the authors of works@14,15# mostly used the perturbatio
technique and numerical simulations, while in the pres
paper we deal with an exact solution of the Zakharov-Sha
problem.

First let us consider the caseL50 that corresponds to th
case of a singlechirpedpulse of width 2w. The dependence
of the eigenvalues onn, which plays here the role of a chir
parameter, is shown in Fig. 6. At smalln the interaction of
the pulse components is strong, so that there is one p
imaginary eigenvalue, or a single soliton with zero veloci
At largern the frequency difference of the pulse compone
results in a repulsion of the components, or a pulse splitt

FIG. 7. Pulses with frequency separation: The dependenc
real ~dashed lines! and imaginary parts~solid lines! of ln on L for
Q052, w51. The numbers near the lines correspond ton. ~a! n
50.5, ~b! n51.25.

FIG. 6. Single chirped pulse; the dependence of real~dashed
lines! and imaginary~solid lines! parts ofln on n for Q052, w
51, L50. The numbers near the lines correspond ton.
0-5
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At sufficiently largen the velocities of emerging soliton
tend, as expected, to62n.

There is also a narrow region ofn, e.g.,n5@0.98,0.99# in
Fig. 6, where three solitons, one fixed and two moving s
tons, exist. This region separates two different types of
evolution of a chirped pulse. The left boundary, which c
responds to the appearance of new eigenvalues, of the re
is found from the condition similar to that considered in S
III A 2. The right boundary is found froma(l50)50,
which defines the values ofn as a function of the othe
parameters, when the pure imaginary root disappears.

The dependence of the spectrum onL is presented in Fig.
7. At small n @Fig. 7~a!# we see again an appearance
additional solitons similar to the casen50 ~Fig. 1!. At larger
n @Fig. 7~b!# the repulsion is so strong that it suppresses
appearance of small-amplitude solitons. Therefore there
threshold of the frequency separation above which the in
action of two pulses is negligible. This result is in agreem
with the conclusions of paper@15#.

IV. CONCLUSION

The interaction of two pulses in the NLS model is studi
by means of the solution of the associated scattering p
lem. The strong dependence of the dynamics on the par
v,

-
,
t.

0

05661
i-
e
-
ion
.

f

e
a

r-
t

b-
m-

eters of the initial pulses is shown. For intermediate sepa
tion distancesL the existence of additional moving soliton
is possible even in the case of two in-phase pulses with
same frequencies. These additional solitons can be con
ered as a result of the nonlinear interference of pulses.
phase shift of two pulses removes a degeneracy in the
havior, namely it affects the symmetry of the parameters
emerging solitons and results in a breakup of multisolit
states peculiar to the in-phase case. It is also shown tha
strong frequency separation suppresses the appearance
ditional solitons. The results obtained in the present pa
can be useful for the analysis of the transmission capacit
communication systems and for interpretation of expe
ments on the interaction of two laser beams in nonlin
media. Recently, the generation of up to ten solitons has b
observed experimentally in quasi-one-dimensional Bo
Einstein condensate of7Li with attractive interaction@16#.
Our study can be also helpful for interpretation of this e
periment.
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