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Local dimension and finite time prediction in spatiotemporal chaotic systems
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We show how a recently introduced statistic@Patil et al., Phys. Rev. Lett.81, 5878~2001!# provides a direct
relationship between dimension and predictability in spatiotemporal chaotic systems. Regions of low dimen-
sion are identified as having high predictability and vice versa. This conclusion is reached by using methods
from dynamical systems theory and Bayesian modeling. In this work we emphasize on the consequences for
short time forecasting and examine the relevance for factor analysis. Although we concentrate on coupled map
lattices and coupled nonlinear oscillators for convenience, any other spatially distributed system could be used
instead, such as turbulent fluid flows.
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I. INTRODUCTION

Systems formed by aggregates of parts that interact
nonlinear way are prototypes of complex behavior in ph
ics, biology, and economics. An often successful approac
the analysis of such systems is to use tools from dynam
systems theory applied locally at points of spatially distr
uted configurations. In many cases, local nonlinearities l
to unpredictable chaotic evolution where short time foreca
are still feasible. An instance of this situation is atmosphe
research where, for obvious reasons, prediction is often
most important goal to be achieved. In general, for la
spatially distributed systems, it is highly desirable to hav
simple diagnostic tool to identify regions of predictable b
havior. The main aim of this paper is to show that cert
spatial regions do indeed yield better forecasts than o
locations. To elaborate on this theme, we use the concep
bred vector~BV! dimension, introduced in Ref.@1# in the
context of the earth’s atmosphere, as a tool to identify
gions of high dimensionality. Our objective is then to sho
that this dimensional estimate is directly related to our abi
to make short time forecasts. A recently introduced Bayes
approach, the cluster weighted modeling~CWM! @2#, is one
of the methods on which we base our conclusions. We s
from a simple prediction algorithm@3# where the main idea
of the paper is readily recognized. The more sophistica
CWM approach in conjunction with the simpler predictio
algorithm will provide a clear link between dimension a
our ability to forecast the behavior of deterministic system
In particular, Bayesian approaches also permit the calc
tion of the variance~confidence intervals! of forecasts. In
Ref. @4#, we find a similar approach where a measure
predictability is based on the variance under the evolution
suitably defined functions in embedding space. Such an
proach requires long evolution times, which cannot be
forded in the present context, and, as will be seen herein,
problem is circumvented by the use of the CWM.
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The concept of correlation dimension@5,6# has some bear
ing on this subject since high-dimensional systems canno
easily distinguished from systems with dominant stocha
component, where predictability is known to be low. He
by prediction we mean the existence of a deterministic m
which can be successfully used to make short time foreca
in the least square sense or using some more general li
hood functions.

The paper is organized as follows. In Sec. II, we pres
the basic aspects and definitions of the BV dimension, fac
analysis, and the necessary tools to relate dimension
predictability. In Sec. III, the spatiotemporal systems giv
by coupled logistic maps and coupled Lorenz systems
discussed, and the results of the simulations are prese
Our concluding remarks are outlined in Sec. IV.

II. LOCAL DIMENSION AND PREDICTABILITY

The notion of dimension used herein is based on the c
cept of bred vectors. They are constructed in a similar way
Lyapunov vectors, but in practical applications they differ
two aspects. First, for bred vectors there is no global
thonormalization, and second, they are finite amplitude,
nite time vectors. Such properties facilitate the calculation
bred vectors and yield an efficient identification of regio
where short time forecasts are feasible.

Consider a two-dimensional~2D! spatially distributed
system whose state at a given timet1 is defined over a col-
lection of points (i , j ). Here we take theM21 nearest
neighbors for each point (i , j ) in a square lattice withM
525, as illustrated in Fig. 1. Logistic maps are one varia
dynamical systems, and in order to specify the correspond
state at a point including its neighbors, we need
M-dimensional state vector. Considering thex-y coordinates
of the Lorenz system specified at a suitable constantz hyper-
plane, the state vector in this case requires 2M components.
In general, the state vector, eitherM dimensional or 2M
dimensional, will be called bred vector. Now, generatek dis-
tinct perturbations of the state starting att0,t1 obtainingk
local bred vectors. Thek3k covariance matrix of the system
is just C5BTB, whereB is the M3k ~or 2M3k for the
Lorenz system! matrix of local bred vectors each normalize
to unity. In this paper, we will fixk55.
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We order the eigenvalues of the covariance matrix asl1
>l2>•••>lk and define the singular values ofB as s i

5Al i . Here the connection with factor analysis is clear@7#,
since the eigenvalues of the covariance matrix give an i
of the local linear independence of thek local bred vectors.
An effective dimension of the space of bred vectors can
obtained by fixing a threshold value corresponding to
highest l eigenvalues, as is done in principal compone
analysis. Thus, an approximation of the data, supposing
average for simplicity, is contained in the productFL,
whereF5BLT is called the factor andL is the loading ma-
trix of dimensionl 3k. The rows of the loading matrix ar
the components of the eigenvectors corresponding to
dominant eigenvalues. Clearly, there is an arbitrariness in
stipulation ofl, and this ambiguity is absent when using t
concept of BV dimension.

The eigenvaluesl i represent the amount of variance
the set of thek unit bred vectors. In order to estimate unam
biguously the value of the threshold, one defines the follo
ing statistic@1#:

c i , j~s1 ,s2 , . . . ,sk!5

S (
l 51

k

s l D 2

(
l 51

k

s l
2

. ~1!

As each of thek bred vectors is normalized to unity,c as-
sumes values in the interval (0,k). Examples of the values o
this statistic for several distributions of bred vectors can
found in Ref.@1#. A property of the statistic just defined is it
robustness under noise or numerical errors. It can be use
determine the dominant eigenvaluesl; just take it to be the
smallest integer bigger thanc. In this sense, an approxima
tion to the bred vectors is obtained as the product of
corresponding factor and the loading matrix.

FIG. 1. Schematic diagram showing the choice of nearest ne
bors at site (i , j ) for local dimension. The bred vectors are th
dynamical variables associated with these sites.
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We describe now the criteria and tools that will be imp
mented in the following section to spatially distributed sy
tems in order to obtain a connection between dimension
predictability. We start with a simple prediction algorith
that is very useful in the analysis of nonlinear time series@3#.
To describe this criterion, consider a scalar time series
tained from a component of the dynamical variables, say,
x component, defined at a given site in the 2D lattice. Us
delay coordinates, one considers neighbors, within a dista
smaller thand, to a given point in the embedding space. F
the present analysis, the choice of embedding dimens
three is adequate. By propagating the corresponding ne
bors of a given vector in embedding space and averag
them, we obtain a forecast of the vector. The more soph
cated CWM@2# is a Bayesian approach where the embedd
time series is used to build local Gaussian models. One
the advantages of this method is that it goes beyond p
prediction since it includes errorbars~confidence intervals!
when estimating the future average value. The idea is
expand the joint probability distributionp(y,xW) in terms of
local Gaussian models. Using thex components at each sit
for definiteness, the value to be predictedy is taken as
x(n12t) ~e.g., with embedding dimensionm53 and delay
t), given the vector of delayed componentsxW5$x(n),
x(n1t),n%. The joint distribution is used to compute th
average predicted values,̂yuxW& and their variances

^(y2^yuxW&)2uxW&. This provides a criterion for predictability
since higher variance is associated with lower predictabil
The use of uncertainty as measured by the variance is
ployed in Ref.@4# to obtain a definition of predictability as
sociated with chaotic systems or stochastic processes,
such a method is used to distinguish between these
modes of evolution. Such a distinction has also been mad
the context of time series analysis using the CWM appro
@8#.

III. LOCAL DIMENSION IN SPATIOTEMPORAL
CHAOTIC SYSTEMS

A. Coupled logistic maps

We begin with the case of two-dimensional coupled m
lattices consisting of logistic maps@9#:

xn11
i , j 5~12e! f ~xn

i , j !1
e

4
@ f ~xn

i 21,j !1 f ~xn
i 11,j !

1 f ~xn
i , j 21!1 f ~xn

i , j 11!#, ~2!

with

f ~x!5mx~12x!, xP~0,1!, mP~0,4!, ~3!

where i , j 51,2, . . . ,N and e represents the coupling
strength.

In this simulation, we useN550, m54, e50.4, and pe-
riodic boundary conditions. The reference spatial variab
xi , j , i , j 51,2 . . . ,N, are obtained by evolving system~2!
from random initial conditions. The number of iterations
chosen to be 5015 so that transients are removed.

h-
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LOCAL DIMENSION AND FINITE TIME PREDICTION . . . PHYSICAL REVIEW E67, 066204 ~2003!
We generate additional spatial variables by adding sm
perturbations to the reference variables at time 5000 to m
sure the local instability of the coupled maps. Thus, at ti
5015, we have spatial distributions corresponding to the
erence variable and four distinct perturbations. The local
mension values at the spatial points are computed at this
value using the statistic defined in Eq.~1! as discussed in the
preceding section. Figure 2 illustrates the results of the
gistic maps~2! calculations where dark regions correspo
to low dimensions and bright regions represent high dim
sions. We found that the local dimension has a minim
value c51.0323 ati 52, j 537 and a maximum valuec
52.3636 ati 528, j 57. We note that the maximum an
minimum values at the spatial points (i , j ) are practically
constant under evolution of system~2! a few steps forward or
backward.

In order to establish a connection between dimension
predictability, we analyze the time series at the points (2,
and (28,7) discussed above. We apply the simple predic
algorithm in the range fromn55015 ton55040. Figure 3
shows the prediction errors,h5uxorig

i , j 2xpred
i , j u, for x2,37 and

x28,7 with d50.05. It is evident that the prediction error
small at the lattice point (2,37) where the local dimension
minimum, and large at the point (28,7) where the local

FIG. 2. Gray scale plot showing the regions of low~dark! and
high ~bright! local dimensions for the coupled logistic maps~2!.

FIG. 3. Simple finite prediction error for the coupled logist
maps. The error remains minimum forx2,37 ~low BVD point! and
high values of error obtained forx28,7 ~high BVD point!.
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mension is maximum. In addition, similar results were o
tained for points with other local dimension values. W
found that the prediction error is consistently low in regio
of low local dimension and high in the regions of relative
high local dimension.

The Bayesian approach, known as the cluster weigh
modeling, will provide more insights into the predictabilit
issue. Particularly important is the relationship between v
ance of predicted average value and the BV dimension.
consider the average prediction^yuxW& using the conditional
distribution obtained from the joint distributionp(y,xW). As
discussed in the preceding section, we takey to be thex

variable at timen12t and xW5$xn ,xn1t ,n%; here we take
t51. Figure 4 presents a series of predicted values, u
always the two most recent original values, and the co
sponding variances. In most analyzed cases, we found
following behavior. Lattice sites with high BV dimensio
result in predicted values with larger variances than th
with low BV dimension, or either the prediction tends to fa
outside the confidence interval defined by the variance of
future value. These facts are shown in Figs. 4~a! and 4~b! for
the low and high BV dimensions, respectively 1.0323 a
2.3636. In this case, the simple prediction results are m
compelling than the CWM since the difference betwe
highest and lowest BV dimensions is not big enough. In
following section, we discuss another system where
maximum BV dimension is about four times larger than t
minimum dimension over the spatial distribution. In th
case, the conclusion that the uncertainty in prediction is
lated to dimension is even more forceful.

B. Coupled Lorenz systems

We next consider a two-dimensional array of diffusive
coupled Lorenz oscillators represented by the followi
equations@10#:

FIG. 4. Prediction of time series for the coupled logistic ma
by using cluster weighted modeling. The original~circles! and pre-
dicted values~filled circles with error bars! of the time series at~a!
low BVD location (2,37) and~b! high BVD location (28,7).
4-3
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ẋi , j5s~yi , j2xi , j !1c~yi 21,j1yi 11,j

1yi , j 211yi , j 1124yi , j !,

ẏi , j52xi , j zi , j1Rxi , j2yi , j , ~4!

żi , j5xi , j yi , j2bzi , j ,

wherei , j 51,2, . . . ,N, s516, R540, b54, andc51. We
use 50350 (N550) oscillators with periodic boundary con
ditions. Equations~4! are solved numerically using th
fourth-order Runge-Kutta method with random initial cond
tions. We actually consider thex and y components repre
senting a map of the above system by the Poincare´ section
taken at z5R21. The spatial distribution of the loca
dimensions is calculated in a similar fashion as in the cas
coupled map lattices discussed earlier. A low value
c51.1447 is found at lattice point (i , j )5(3,50), while a
high value c54.1226 is computed at (i , j )5(11,46).
Figure 5 shows the regions of different local dimensio
for the coupled Lorenz systems~4!. The finite time
prediction error in Fig. 6 usesd'0.8 in the simple pre-
diction algorithm. Here, the error is calculated ash

FIG. 5. Gray scale plot showing the regions of low~dark! and
high ~bright! local dimensions for the coupled Lorenz systems~4!.

FIG. 6. Simple finite time prediction error for the coupled L
renz systems. The absolute error remains minimum at (3,50)
which the BV dimension is low, and high values of error obtained
(11,46), the high BV dimension point.
06620
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2. The results concerning
the cluster weighted modeling are shown in Fig. 7. He
high local dimension imply a consistent increase in the va
ances represented by larger error bars. In this case, there
clear relationship between the predictability and the local
dimension.

IV. SUMMARY AND CONCLUSIONS

Predictability is related to the uncertainty in the outcom
of future events during the evolution of the state of a syste
We have interpreted the CWM as a tool to detect such
uncertainty and used it in spatially distributed systems. T
simple prediction algorithm in conjunction with the CWM
forms a powerful set of methods to relate predictability a
dimension. Another tool based on the variance of futu
states of a system is also employed in Ref.@4# where a level
of predictability is defined and applied to distinguish b
tween deterministic and stochastic behaviors. Such a dist
tion requires a propagation time longer than the short ti
behavior used herein, and the cluster weighted modelin
more appropriate in the present context. Both methods, h
ever, CWM or Ref.@4#, are more than diagnostic tools an
can be used to make real time predictions.

The short time evolution used here is not only a requi
ment for predicting chaotic systems but also guarantees
consistency of our conclusions. This comes about since
primary step is to identify spatial points of small BV dime
sion and then to make short time forecasts for the variable
these points. If the dimension changed substantially dur
the short time evolution then the relationship between
mension and prediction could not be maintained. In t
work, predictions are made over intervals of 20 or 25 units
time ~cycles! and under such circumstances the value of B
dimension is practically constant.

For deterministic evolution some systems are more p
dictable than others, and this can be measured by Lyapu
exponents. However, these exponents are well defined

or
t

FIG. 7. Prediction of the time series using cluster weigh
modeling at~a! (3,50) and~b! (11,46).
4-4
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LOCAL DIMENSION AND FINITE TIME PREDICTION . . . PHYSICAL REVIEW E67, 066204 ~2003!
asymptotically and are not unique for finite time calculatio
@11–14#. In such cases bred vectors are the proper too
use, and in this paper we provided the connection betw
predictability and the value of the BV dimension.

The concept of bred vectors is intimately related to
analysis of geophysical flows@1,15#. Other forecasting tech
niques could be envisaged for real applications other than
CWM @16,17#. The main thesis of this work, however, wi
remain unaltered in such situations since the system is d
ministic and the simple prediction algorithm or the CWM a
essentially finite-dimensional maps. Other algorithms wo
s

s

s

a
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at most imply some differences for instance in the error fu
tions with no impact on the main conclusions. In a furth
investigation, we intend to apply the concept of BV dime
sion and the tools used herein to several configurations
fluids in the turbulent regime.
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