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Local dimension and finite time prediction in spatiotemporal chaotic systems
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We show how a recently introduced statigiRatil et al, Phys. Rev. Lett81, 5878(2001)] provides a direct
relationship between dimension and predictability in spatiotemporal chaotic systems. Regions of low dimen-
sion are identified as having high predictability and vice versa. This conclusion is reached by using methods
from dynamical systems theory and Bayesian modeling. In this work we emphasize on the consequences for
short time forecasting and examine the relevance for factor analysis. Although we concentrate on coupled map
lattices and coupled nonlinear oscillators for convenience, any other spatially distributed system could be used
instead, such as turbulent fluid flows.
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[. INTRODUCTION The concept of correlation dimensif#,6] has some bear-
ing on this subject since high-dimensional systems cannot be
Systems formed by aggregates of parts that interact in @asily distinguished from systems with dominant stochastic
nonlinear way are prototypes of complex behavior in physcomponent, where predictability is known to be low. Here,
ics, biology, and economics. An often successful approach iRY prediction we mean the existence of a deterministic map,
the analysis of such systems is to use tools from dynamicavhich can be successfully used to make short time forecasts,
systems theory applied locally at points of spatially distrib-in the least square sense or using some more general likeli-
uted configurations. In many cases, local nonlinearities leafiood functions.
to unpredictable chaotic evolution where short time forecasts The paper is organized as follows. In Sec. Il, we present
are still feasible. An instance of this situation is atmospheridhe basic aspects and definitions of the BV dimension, factor
research where, for obvious reasons, prediction is often thanalysis, and the necessary tools to relate dimension with
most important goal to be achieved. In general, for largePredictability. In Sec. Ill, the spatiotemporal systems given
spatially distributed systems, it is highly desirable to have &Y coupled logistic maps and coupled Lorenz systems are
simple diagnostic tool to identify regions of predictable be-discussed, and the results of the simulations are presented.
havior. The main aim of this paper is to show that certainOur concluding remarks are outlined in Sec. IV.
spatial regions do indeed vyield better forecasts than other
locations. To elaborate on this theme, we use the concept of || | ocAL DIMENSION AND PREDICTABILITY
bred vector(BV) dimension, introduced in Refl] in the
context of the earth’s atmosphere, as a tool to identify re- The notion of dimension used herein is based on the con-
gions of high dimensionality. Our objective is then to showcept of bred vectors. They are constructed in a similar way as
that this dimensional estimate is directly related to our abilityLyapunov vectors, but in practical applications they differ in
to make short time forecasts. A recently introduced Bayesiafivo aspects. First, for bred vectors there is no global or-
approach, the cluster weighted modeli@wWM) [2], is one  thonormalization, and second, they are finite amplitude, fi-
of the methods on which we base our conclusions. We staftite time vectors. Such properties facilitate the calculation of
from a simple prediction algorithrf8] where the main idea bred vectors and yield an efficient identification of regions
of the paper is readily recognized. The more sophisticatetvhere short time forecasts are feasible.
CWM approach in conjunction with the simpler prediction ~ Consider a two-dimensional2D) spatially distributed
algorithm will provide a clear link between dimension and System whose state at a given timeis defined over a col-
our ability to forecast the behavior of deterministic systemslection of points (,j). Here we take theM —1 nearest
In particular, Bayesian approaches also permit the calculaaeighbors for each pointi(j) in a square lattice wittM
tion of the variance(confidence intervajsof forecasts. In =25, as illustrated in Fig. 1. Logistic maps are one variable
Ref. [4], we find a similar approach where a measure ofdynamical systems, and in order to specify the corresponding
predictability is based on the variance under the evolution oftate at a point including its neighbors, we need an
suitably defined functions in embedding space. Such an apgv-dimensional state vector. Considering thg coordinates
proach requires long evolution times, which cannot be afof the Lorenz system specified at a suitable constéyper-
forded in the present context, and, as will be seen herein, thiglane, the state vector in this case requir& @omponents.
problem is circumvented by the use of the CWM. In general, the state vector, eithbt dimensional or
dimensional, will be called bred vector. Now, genelatés-
tinct perturbations of the state startingtg&t,; obtainingk
*Electronic address: gerson@ift.unesp.br local bred vectors. ThieX k covariance matrix of the system
Present address: Center for Nonlinear Dynamics, Department d§ just C=B'B, whereB is the M Xk (or 2M xk for the
Physics, Bharathidasan University, Tiruchirapalli 620024, TamilLorenz systemmatrix of local bred vectors each normalized
Nadu, India. to unity. In this paper, we will fixk=5.
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We describe now the criteria and tools that will be imple-
. § A A A p mented in the following section to spatially distributed sys-
J+2—0 N N N O— tems in order to obtain a connection between dimension and
predictability. We start with a simple prediction algorithm
that is very useful in the analysis of nonlinear time sef8s
j+1_O O O O O— To describe this criterion, consider a scalar time series ob-
tained from a component of the dynamical variables, say, the
x component, defined at a given site in the 2D lattice. Using
j —O O @ O O— delay coordinates, one considers neighbors, within a distance
smaller thans, to a given point in the embedding space. For
the present analysis, the choice of embedding dimension
j-1—CO O O O O— three is adequate. By propagating the corresponding neigh-
bors of a given vector in embedding space and averaging
them, we obtain a forecast of the vector. The more sophisti-

J

Jj-2 ! O) ( O ( cated CWM[2] is a Bayesian approach where the embedded
‘% T T time series is used to build local Gaussian models. One of
. . . . . the advantages of this method is that it goes beyond point
12 -l ! I+l i+2 prediction since it includes errorbaftsonfidence intervals
FIG. 1. Schematic diagram showing the choice of nearest neighhén estimating the future average value. The idea is to
bors at site i,j) for local dimension. The bred vectors are the expand the joint probability distributiop(y,x) in terms of
dynamical variables associated with these sites. local Gaussian models. Using tkecomponents at each site
for definiteness, the value to be predictgdis taken as
We order the eigenvalues of the covariance matrixas Xx(n+27) (e.g., with embedding dimension=3 and delay
=\,=---=)\ and define the singular values Bfasa; 1), given the vector of delayed components={x(n),
= VA;. Here the connection with factor analysis is ClE&k ~ x(n+7),n}. The joint distribution is used to compute the
since the elg_enval_ues of the covariance matrix give an 'deéverage predicted values(y|;<> and their variances,
of the local linear independence of tkdocal bred vectors. >\ 202 . . o . .
é(y—<y|x)) |X). This provides a criterion for predictability

An effective dimension of the space of bred vectors can b . . : . ) . 7
. . ; Since higher variance is associated with lower predictability.
obtained by fixing a threshold value corresponding to th . ! X
he use of uncertainty as measured by the variance is em-

highest! eigenvalues, as is done in principal components loyed in Ref.[4] to obtain a definition of predictability as-
analysis. Thus, an approximation of the data, supposing zerg -, . . .

R . . sociated with chaotic systems or stochastic processes, and
average for simplicity, is contained in the produfiL,

T : . _such a method is used to distinguish between these two
w_here.’l-f— BL 1S called the factor andl is the_ Ioadmg. Ma-  hodes of evolution. Such a distinction has also been made in
trix of dimensionl X k. The rows of the loading matrix are

the components of the eigenvectors corresponding to thtEgT context of time series analysis using the CWM approach

dominant eigenvalues. Clearly, there is an arbitrariness in th

stipulation ofl, and this ambiguity is absent when using the

concept of BV dimension. Ill. LOCAL DIMENSION IN SPATIOTEMPORAL
The eigenvaluea,; represent the amount of variance in CHAQTIC SYSTEMS

the set of thek unit bred vectors. In order to estimate unam- A. Coupled logistic maps

biguously the value of the threshold, one defines the follow-

ing statistic[1]: We begin with the case of two-dimensional coupled map

lattices consisting of logistic mag9]:

k 2
('El 0') K= (L= TG+ ZLF0G )+ 104 )
w','(O'l,O'z,...,O'k)Z—k—_ (1) . 3
i 2 o2 +f(X'n'J 1)+f(xln'1+1)], @
= _
with
As each of thek bred vectors is normalized to unity; as- f0 = px(1-x), xe(0d), me (04, 5

sumes values in the interval &), Examples of the values of

this statistic for several distributions of bred vectors can bevhere i,j=1,2,... N and e represents the coupling
found in Ref.[1]. A property of the statistic just defined is its strength.

robustness under noise or numerical errors. It can be used to In this simulation, we us&l=50, u=4, e=0.4, and pe-
determine the dominant eigenvaluegust take it to be the riodic boundary conditions. The reference spatial variables
smallest integer bigger thap. In this sense, an approxima- x"!, i,j=1,2... N, are obtained by evolving systef®)

tion to the bred vectors is obtained as the product of thdrom random initial conditions. The number of iterations is
corresponding factor and the loading matrix. chosen to be 5015 so that transients are removed.
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~ FIG. 2. Gray scale plot showing the regions of légark and FIG. 4. Prediction of time series for the coupled logistic maps
high (bright) local dimensions for the coupled logistic ma(a3. by using cluster weighted modeling. The origiteircles and pre-

dicted valuedfilled circles with error bansof the time series diq)
We generate additional spatial variables by adding smallow BVD location (2,37) andb) high BVD location (28,7).
perturbations to the reference variables at time 5000 to mea-

sure the local instability of the coupled maps. Thus, at timeémension is maximum. In addition, similar results were ob-
5015, we have spatial distributions corresponding to the reftained for points with other local dimension values. We
erence variable and four distinct perturbations. The local difound that the prediction error is consistently low in regions
mension values at the spatial points are computed at this timgf low local dimension and high in the regions of relatively
value using the statistic defined in Ed) as discussed in the high local dimension.

preceding section. Figure 2 illustrates the results of the lo- The Bayesian approach, known as the cluster weighted
gistic maps(2) calculations where dark regions correspondmodeling, will provide more insights into the predictability
to low dimensions and bright regions represent high dimenissue. Particularly important is the relationship between vari-
sions. We found that the local dimension has a minimumance of predicted average value and the BV dimension. We

value y=1.0323 ati=2, =37 and a maximum valu¢’  qngjder the average predictig|x) using the conditional

=2.3636 ati=28, j=7. We note that the maximum and distribution obtained from the joint distributiop(y,X). As

minimum values at the spatial points,j) are practically . . ) .
constant under evolution of systg®) a few steps forward or discussed in the preceding section, we tgk@ be thex

backward. variable at timen+ 27 and x={x, X, ,,n}; here we take

In order to establish a connection between dimension and=1. Figure 4 presents a series of predicted values, using
predictability, we analyze the time series at the points (2,37/lways the two most recent original values, and the corre-
and (28,7) discussed above. We apply the simple predictiogiPonding variances. In most analyzed cases, we found the

algorithm in the range froom=5015 ton=5040. Figure 3 following behavior. Lattice sites with high BV dimension
shows the prediction error97:|xi’j _Xi,iJ for x237 and  'esult in predicted values with larger variances than those

org - - pre with low BV dimension, or either the prediction tends to fall

x%7 with §=0.05. It is evident that the prediction error is . . . . ;
small at the lattice point (2,37) where the local dimension isout5|de the confidence interval defined by the variance of the

- . - future value. These facts are shown in Figs) 4nd 4b) for
minimum, and large at the point (28,7) where the local di the low and high BV dimensions, respectively 1.0323 and

2.3636. In this case, the simple prediction results are more
compelling than the CWM since the difference between
highest and lowest BV dimensions is not big enough. In the
following section, we discuss another system where the
maximum BV dimension is about four times larger than the
minimum dimension over the spatial distribution. In this

case, the conclusion that the uncertainty in prediction is re-

. lated to dimension is even more forceful.

5015 5020 5025 5030 5035 5040
n B. Coupled Lorenz systems

FIG. 3. Simple finite prediction error for the coupled logistic ~ \We next consider a two-dimensional array of diffusively
maps. The error remains minimum f&#3” (low BVD point) and  coupled Lorenz oscillators represented by the following
high values of error obtained fo?®’ (high BVD point. equationg 10]:
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FIG. 5. Gray scale plot showing the regions of lgslark and
high (bright) local dimensions for the coupled Lorenz syste@s

wherei,j=1,2,... N, 0=16,R=40, =4, andc=1. We
use 50<50 (N=50) oscillators with periodic boundary con-
ditions. Equations(4) are solved numerically using the

10 20 30 40 50

i

L= o(Yij =X )T Ce(Yi—1jtYisa
+Yij-1tYij+r1—4Yij)s
Yi,j: =X jZi it RX% j=Vij»

Z ;=X ¥ij— Bz,

(4)

PHYSICAL REVIEW E67, 066204 (2003

i@
SIITIEIIITTPPPeiists
0r predicted —e—

original ©
-10 |
0t (b) o ofol ol
SES
it
0y o)
M
5020 5025 5030 5035 5040

FIG. 7. Prediction of the time series using cluster weighted
modeling at(a) (3,50) and(b) (11,46).

=\(Xorig™ Xpred “ + (Yorig— Ypred - The results concerning

the cluster weighted modeling are shown in Fig. 7. Here,
high local dimension imply a consistent increase in the vari-
ances represented by larger error bars. In this case, there is a
clear relationship between the predictability and the local BV
dimension.

IV. SUMMARY AND CONCLUSIONS

Predictability is related to the uncertainty in the outcome

fourth-order Runge-Kutta method with random initial condi- of future events during the evolution of the state of a system.

tions. We actually consider the andy components repre-
senting a map of the above system by the Poinsaion

We have interpreted the CWM as a tool to detect such an
uncertainty and used it in spatially distributed systems. The

taken atz=R—1. The spatial distribution of the local simple prediction algorithm in conjunction with the CWM
dimensions is calculated in a similar fashion as in the case dbrms a powerful set of methods to relate predictability and
coupled map lattices discussed earlier. A low value ofdimension. Another tool based on the variance of future

=1.1447 is found at lattice pointi)=(3,50), while a
high value ¢=4.1226 is computed ati,j)=(11,46).

states of a system is also employed in Réf.where a level
of predictability is defined and applied to distinguish be-

Figure 5 shows the regions of different local dimensionstween deterministic and stochastic behaviors. Such a distinc-

for the coupled Lorenz system$4). The finite time
prediction error in Fig. 6 use$~0.8 in the simple pre-
diction algorithm. Here, the error is calculated ag

60 :
(11,46)

§4O

i

=}

H20 ¢ (3,50) 1
0 - I I . I 4
5020 5025 5030 5035 5040

n

tion requires a propagation time longer than the short time
behavior used herein, and the cluster weighted modeling is
more appropriate in the present context. Both methods, how-
ever, CWM or Ref[4], are more than diagnostic tools and
can be used to make real time predictions.

The short time evolution used here is not only a require-
ment for predicting chaotic systems but also guarantees the
consistency of our conclusions. This comes about since the
primary step is to identify spatial points of small BV dimen-
sion and then to make short time forecasts for the variables at
these points. If the dimension changed substantially during
the short time evolution then the relationship between di-
mension and prediction could not be maintained. In this
work, predictions are made over intervals of 20 or 25 units of
time (cycle9 and under such circumstances the value of BV

FIG. 6. Simple finite time prediction error for the coupled Lo- dimension is practically constant.

renz systems. The absolute error remains minimum at (3,50) for

For deterministic evolution some systems are more pre-

which the BV dimension is low, and high values of error obtained atdictable than others, and this can be measured by Lyapunov
(11,46), the high BV dimension point.

exponents. However, these exponents are well defined only
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asymptotically and are not unique for finite time calculationsat most imply some differences for instance in the error func-

[11-14. In such cases bred vectors are the proper tool tdions with no impact on the main conclusions. In a further

use, and in this paper we provided the connection betweeinvestigation, we intend to apply the concept of BV dimen-

predictability and the value of the BV dimension. sion and the tools used herein to several configurations of
The concept of bred vectors is intimately related to theflyids in the turbulent regime.

analysis of geophysical flowid,15]. Other forecasting tech-

niques could be envisaged for real applications other than the

CWM [16,17. Thg main thgsis_of thi_s work, howeve(, will ACKNOWLEDGMENT

remain unaltered in such situations since the system is deter-
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