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Array of Bose-Einstein condensates under time-periodic Feshbach-resonance management
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The dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodi-
cally time-modulated atomic scattering length@Feshbach-resonance management~FRM!# is investigated. The
cases of both slow and rapid modulations, in comparison with the tunneling frequency, are considered. We
employ a discrete variational approach for the analysis of the system. The existence of nonlinear resonances
and chaos is predicted at special values of the driving frequency. Soliton splitting is observed in numerical
simulations. In the case of the rapid modulation, we derive an averaged equation, which is a generalized
discrete nonlinear Schro¨dinger equation, including higher-order effective nonlinearities and intersite nonlinear
interactions. Thus the predicted discrete FRM solitons are a direct matter-wave analog of recently investigated
discrete diffraction-managed optical solitons.
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I. INTRODUCTION

Discrete solitons in nonlinear lattices with periodica
varying parameters have recently attracted much atten
Systems belonging to this type include arrays of opti
waveguides subject to periodic diffraction management@1,2#
and waveguide arrays with a periodic modulation of t
tunnel-coupling constant@3#. The corresponding model i
typically based on the discrete nonlinear Schro¨dinger
~DNLS! equation, with the coefficient in front of the secon
finite-difference term varying along the propagation distan
~formally, it looks like periodic time modulation of the coe
ficient!. It was shown that, in the case of rapid and stro
variations of the coupling constant, a stable breathing
crete soliton can exist@2# ~the so-called diffraction-manage
soliton!. On the other hand, application of a relatively slo
weak or moderate modulation at a resonant frequency re
in a splitting of the discrete soliton@3#.

In periodically modulated DNLS systems of another typ
the coefficient of the on-site cubic nonlinearity is subject
the modulation. In terms of nonlinear optics, these may
arrays of waveguides which have a layered structure, w
the strength@4#, or even sign@5#, of the nonlinearity alternat-
ing between layers. An alternative, and actually mo
straightforward, physical realization of this type of the latti
is offered by an array of droplets of a Bose-Einstein cond
sate~BEC! trapped in a deep optical lattice@6,7#, with the
BEC scattering length oscillating in time. The latter type
the time modulation may be provided by ac magnetic fi
tuned to the Feshbach resonance, as it was predicted
retically @8# and demonstrated experimentally@9#. By anal-
ogy with the well-known techniques of the dispersion ma
agement @10# and the above-mentioned diffractio
management@1,2# in nonlinear optics, this time-modulatio
technique, applied to BEC, may be called Feshba
resonance management~FRM!. Very recently, it has been
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demonstrated that FRM provides for an effective mechan
of stabilization of two-dimensional BECs, even in the a
sence of the dc-magnetic-field trap@11#. One-dimensional
solitons subject to the action of FRM were also recen
studied, which reveals stable breathers oscillating betw
the Gaussian and Thomas-Fermi shapes, and stable brea
of other types@12#.

One of the first experiments on the BEC in an optic
lattice @13# was devoted to the quantum interference in
macroscopic system. Nowadays, experiments on the B
trapped in a periodic potential are performed in seve
groups, who investigate Bloch oscillations, Bragg scatteri
Josephson dynamics, Landau-Zener tunneling, and othe
teresting effects. In recent works@14# a formation of bright
solitons in 7Li by tuning the effective interaction by mean
of the Feshbach resonance were studied. Therefore, a cu
state of experiments is quite sufficient for observation of d
crete matter-wave solitons and effects described below.

The aim of the present work is to consider the dynam
of solitons in the one-dimensional DNLS model with th
nonlinearity subject to periodic modulation. We will treat th
cases of both relatively slow and rapid modulations. In
former case, we will apply an analytical variational appro
mation ~VA !, which was developed for one-dimensional la
tice models in Refs.@15,16#, and direct simulations, to stud
resonances and splitting in the discrete-soliton dynamic~a
recent review of the VA technique can be found in Ref.@17#!.
In the latter case, using the multiscale method@18#, we will
derive an averaged equation, which has the form of a ge
alized DNLS equation with new nonlinear on-site and int
site terms. Using this equation and VA, we will analyze t
structure of average discrete-soliton solutions.

II. THE MODEL

We formulate the model in terms of the BEC trapped in
deep optical lattice, which is created by the interference
two counter-propagating optical beams. The dynamics o
BEC is governed by the Gross-Pitaevskii equation@19#
©2003 The American Physical Society06-1
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\2

2m
Dc1V~r !c1g~ t !ucu2c, ~1!

where V(r )5V0(x,y)sin2(kz) is the optical potential and
g(t)54p\2as(t)/m. Here as is the time-varying atomic
scattering length andm is the atomic mass. As it was men
tioned above, the time dependence ofas can be induced by
ac magnetic field~or laser radiation with a time-modulate
intensity! applied to the condensate. Due to the periodicity
V(r ), for a weakly coupled array of BECs, one can presen
solution as

c5(
n

un~ t !F~r2rn!, ~2!

where the functionF(r2rn) is assumed to be strongly lo
calized aroundnth site. Substituting Eq.~2! into Eq. ~1!,
integrating over the transverse coordinates, and taking
account the exchange integrals only for neighboring si
one arrives at a DNLS equation with a variable coefficien
front of the nonlinear term@6,7#:

i u̇n1
1

2
~un111un2122un!1a~ t !uunu2un50. ~3!

Here the overdot stands for the time derivative, time is m
dimensionless by means of the rescalingt→t\/(2K), where
K is the tunnel-coupling parameter between adjacent well
the optical lattice@6,7#, and

a~ t !5a01a1sin~vt ! ~4!

is a coefficient proportional to minus the atomic scatter
length in the BEC. Equation~3! describes the dynamics re
stricted within the lowest Bloch zone. Account of interzo
transitions requires an extension of the DNLS model@20#.
The valuesa0 and a1 can be controlled independently, a
they correspond to dc and ac magnetic fields, respective

Though the BEC system described above is the most
evant physical realization of Eq.~3!, the same model also
applies to an array of periodically modulated optic
waveguides, witht being the propagation distance, rath
than time. Without loss of generality, one can seta051 and
a0521 in Eq. ~4! for the cases of the negative and positi
scattering lengths~attraction and repulsion between atom!,
respectively. The wave functionun(t) is normalized so tha
the dynamical invariant of Eq.~3!,

W5 (
n52`

`

uunu2, ~5!

is the total number of particles. The characteristic length
the system 2p/k;1 mm, V0'\2k2/m, and the atomic
population in each well is;102—103 atoms. The character
istic frequency for the tunneling between wells isVL
52K/\;103 s21 and the separation between the ene
levels in a single well isV*104–105 s21. Therefore, it
makes sense to consider the variation of the driving
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quencyv in the intervalVL,2vK/\,V, which can be
realized in experiments~see, e.g., Ref.@21#!.

First, we consider stationary pulse-shaped solutions of
unperturbed DNLS equation witha150 in Eq. ~4! in the
form ~see, e.g., Refs.@16,22#!

un~ t !5Qnexp~ ikn2 ixt !, ~6!

wherek is a wave number andx is a frequency. As it follows
from the dispersion relation for the linearized equation~3!, a
localized solution with the maximum ofQn centered at some
fixed point exists only for particular values ofk at which the
group velocity vanishes, so we takek50 for a051, or,
equivalently,k5p for a0521.

The fundamental soliton fora051 was studied in detai
as a numerical solution to the nonlinear eigenvalue prob
with zero boundary conditions@16,22,23# ~see also a review
in Ref. @24#!. In the case ofa0521, solitons arestaggered
@23#, with the p phase difference between adjacent sit
thus, on the contrary to the continuum NLS equation,
DNLS model supports stable bright solitons for either si
~repulsion or attraction! of the nonlinear interaction.

For convenience, here we briefly recapitulate basic pr
erties of DNLS solitons. Parameters of the discrete soli
~6!, found numerically from the nonlinear eigenvalue pro
lem @22#, are shown by points in Fig. 1. All values in th
figure as well as on the subsequent ones are dimension

FIG. 1. ~a! The inverse widtha ~left axis! and the frequencyx
~right axis! of the soliton vs its amplitudeA in the DNLS model
without the time modulation,a051. ~b! The normW ~left axis! and
the soliton’s areaS ~right axis! vs A. Point symbols represent dat
found from the numerical solution of the nonlinear eigenvalue pr
lem; the solid lines are the prediction of the analytical variatio
approximation@see Eqs.~11! and ~14!#.
6-2
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The left axis in Fig. 1~a! pertains to the inverse widtha,
which was found by matching the soliton’s tail to th
asymptotic expressionuunu5Aexp(2aunu), where A is the
soliton’s amplitude@cf. Eq. ~9! below#. The right axis in Fig.
1~b! corresponds to the pulse’s area, which we define aS
5(nuunu. The dependencies fora0521 have the same
form, with the only difference thatx is shifted so thatx
→22x. SinceW, x, anda are monotonic functions ofA,
the stationary solution~6! is defined by fixing of any one o
these parameters.

Similar to the case of the continuum NLS equation, t
addition of chirp to soliton~6! ~chirp imprinting! splits it into
two separating solitonlike pulses, if the chirpb exceeds a
critical ~threshold! value bth ~detailed consideration of a
similar problem in the continuum NLS equation was given
Ref. @25#!. We introduce the chirp by taking an initial cond
tion as

un~0!5Qnexp~ ibunu! ~7!

~the value ofb is restricted to the interval@2p,p#). The
dependence ofbth on the amplitudeA of the unperturbed
DNLS soliton is presented in Fig. 2.

In fact, the curves shown in Fig. 2 diverge at sufficien
largeA. The meaning of this is that, if the soliton’s amplitud
A exceeds the value 1.66, the initial pulse with any amo
of chirp gives rise to a soliton centered atn50, while other
parts of the initial pulse split off from it and move in oppo
site directions.

It is possible to understand the chirp-induced splitting
the pulse into two in the following way. The original chirpe
pulse Eq.~7! may be regarded as a superposition of t
pulses which carry the phase gradient of opposite signs~cf. a
similar model developed in the framework of the continuu
NLS equation in Ref.@25#!. As is known, the velocity of an
isolated soliton is generated by its phase gradient. Since
two constituents of the overall chirped pulse are origina
close to each other, the attraction between them is str
enough to keep them together. However, the increaseb
leads to increase of the opposite phase-gradient thrusts
plied to the constituents, and finally to splitting betwe
them.

FIG. 2. The critical value of the chirp added to the fundamen
discrete soliton, see Eq.~7!, which splits the soliton into two sepa
rating pulses, vs the amplitude of the unperturbed fundamental
ton. Squares~pluses! correspond toa051 (a0521).
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III. THE VARIATIONAL APPROXIMATION AND DIRECT
SIMULATIONS IN THE CASE OF SLOW

MODULATIONS

A. The general formalism of the variational approximation

DNLS equation~3! is derived from the Lagrangian

L5 (
n52`

`
i

2
~un* u̇n2unu̇n* !2

1

2
uun112unu21

1

2
a~ t !uunu4.

~8!

Following Ref.@15#, we base the VA for the soliton governe
by Eq. ~3! on the following ansatz:

un~ t !5Aexp~ if1 ibunu2aunu!, ~9!

whereA, f, b, anda are real functions of time. Substitut
ing ansatz~9! into Eq. ~8!, one can easily calculate the co
respondingeffective Lagrangianin a form

L

W
52

1

sinh~2a!

db

dt
1

cosb

cosha
1

1

4
Wa~ t !

sinha

cosh3a
cosh~2a!,

~10!

where

W5A2cotha ~11!

is a dynamical invariant, which coincides with the total num
ber of particles, obtained by substitution of ansatz~9! into
Eq. ~5!. We mention that a term in the full Lagrangian, fro
which it follows thatdW/dt50, contains the phase deriva
tive ḟ @which gives the frequency2x in the stationary state
see Eq.~6!#. That term was dropped in expression~10!, as it
does not contribute to other variational equations. Finally,
variational equations for the soliton’s chirpb and inverse
width a are

db

dt
52~cosb!

sinh3a

cosh~2a!
2

1

2
Wa~ t !

3~ tanh2a!
2 cosh~2a!21

cosh~2a!
, ~12!

da

dt
52~sinb!~sinha!tanh~2a!. ~13!

B. Revisiting the stationary model

First, we dwell on the unperturbed case, witha(t)
5const[a0 @cf. Eq. ~4!#. In this case, all the points witha
50 andb5const are stationary solutions, i.e., fixed poin
~FPs!. However, they do not correspond to localized wav
therefore they are formal solutions. Further, it is easy to
that Eqs.~12! and ~13! give rise to nontrivial FPs withbFP
50 for a051, andbFP5p for a0521, and the correspond
ing valueaFP being defined by the equation@15#

sinhaFP5
1

4
W~113 tanh2aFP!. ~14!

l

li-
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The parameters of the FP, which correspond to station
discrete soliton~6!, are shown by solid lines in Fig. 1. As i
seen, the results of the VA are in good agreement with
exact numerical solution of Eq.~3!. Deviation inS ~area of
the pulse! indicates that the VA is not applicable in the lim
of smallA. This is clear because this limit corresponds to
continuum system, whose stationary soliton solution diff
from ansatz~9!.

Linearization of Eqs.~12! and~13! around the FP yields a
squared frequency of small oscillations,

v0
25

sinh3~aFP!cosh2~aFP!

cosh3~2aFP!
H 4sinh~aFP!@cosh~2aFP!12#

2
W

cosh4~aFP!
@5 cosh2~2aFP!22cosh~2aFP!21#J .

~15!

Using Eq.~14!, one can show thatv0
2 given by Eq.~15! is

always positive, i.e., VA does not predict any~artificial! in-
stability. The dependence ofv0 on A, obtained from Eq.
~15!, is shown by a solid line in Fig. 3. In the same figur
crosses show resonant values of the frequency found f
numerical simulations of Eq.~3! with a small coefficienta1
in front of the variable part of the nonlinearity coefficien
see Eq.~4!. In the simulations, the forcing frequencyv was
varied at the fixed smalla1, with the purpose to identify a
value that generated strongest resonant response. The re
difference between the thus found resonance frequency
the value predicted by Eq.~15! is about 0.1, and the overa
behavior of the curves is identical. It is worthy to note th
v0 almost coincides with the soliton’s frequencyuxu. Thus,
the results presented in Figs. 1 and 3 justify the validity
the VA based on ansatz~9!.

The phase plane of Eqs.~12! and ~13! for a051 anda1
50 is shown in Fig. 4~a!, where arrows point out a directio
of motion along a trajectory. The phase plane for the cas

FIG. 3. The frequency of small intrinsic oscillations of the d
crete solitons around the stationary configurations, in the casa0

51, vs the soliton’s amplitudeA. The solid line shows the fre
quencyv0 as predicted, in the framework of the variational a
proximation, by Eq.~15!. Points connected by the dotted line a
values of the forcing frequency which produce a resonant resp
in numerical simulations of Eq.~3! with a small time-periodic forc-
ing term added to it. For comparison, the dashed line shows
soliton’s internal frequencyuxu.
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a0521 is obtained by the shiftb→p2b, while that for the
casea050 is obtained by settingaFP→0. As it follows from
here, the stable FP, which corresponds to the discrete sol
exists foreither sign of a0 and vanishes ifa050. As it also
follows from Fig. 4~a!, the evolution initiated by the initial
condition with a(0)5aFP and smallb(0) corresponds to
oscillations near the FP. However, for large values ofub(0)u,
the asymptotic value ofa(t) at t→` tends to zero. This fac
is in qualitative agreement with the above-mentioned re
that the addition of a chirp may destroy the soliton.

C. The variational approximation for the nonstationary model

We now proceed to the case of the ac-driven system, w
a1Þ0. If a1 is small, strong response of the system to t
time-periodic modulation is expected when the modulat
frequencyv is close to the eigenfrequencyv0 of the internal
oscillations of the soliton in the unperturbed system, which
given by Eq.~15!; in fact, the resonant response was alrea
taken into regard when collecting the data shown by cros
in Fig. 3. Moreover, the dynamics is expected to beco
chaotic, via the resonance-overlapping mechanism, if
modulation amplitudea1 exceeds some threshold value.

The Poincare´ map illustrating a typical example of th
chaotic behavior, as found from the numerical solution
Eqs.~12! and ~13!, is presented in Fig. 4~b!. Shown are the
discrete trajectories initiated by sets of the initial condition
namely, the one with (b1 ,a1)5(0,0.789), that correspond
to the stationary discrete soliton withA51 in the unper-
turbed system (a150) and (b2 ,a2)5(0.13,0.74). The
modulation frequencyv is close to the eigenfrequency o
small oscillationsv0.

se

e

FIG. 4. ~a! The phase plane of the dynamical system based
Eqs. ~12! and ~13!, in the case ofa051, a150, andW51.5202.
Such a value ofW corresponds to a soliton withA51. ~b! An
example of chaotic dynamics for the periodically modulated sys
at W51.5202,a051, a150.027 66, andv50.481.
6-4
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For the former initial condition, the point in the spac
(b,a) is chaotically moving away from the unperturbed F
However, the chaotic evolution is a transient feature, as
point eventually moves so thata(t) asymptotically tends to
zero, implying infinite broadening of the soliton. As for th
second set of initial conditions, a new FP is found in a vic
ity of the unperturbed one. This new FP predicts the ex
tence of quasistationary discrete FRM solitons in the cas
the slow modulation. Similar behavior near the correspo
ing stationary point is observed for the casea0521.

D. Direct simulations

We have performed a systematic comparison of the p
dictions produced by the VA against direct simulations of f
DNLS equation~3!. The simulations show that, general
speaking, VA correctly predicts only an initial stage of t
dynamics. The radiation of linear waves by a soliton, wh
is ignored by the VA, gives rise to an effective dissipatio
which makes the resonance frequency different fromv0.
Furthermore, sincev0 depends onW, and the radiation loss
results in gradual decrease ofW, the soliton decouples from
the resonance. In principle, VA might be made more accu
by adding a radiation mode~‘‘tail’’ ! to the ansatz, cf. the
analysis developed in Ref.@26# for the soliton in the con-
tinuum NLS equation~see also the review@17#!, but we do
not aim to develop such an involved generalization of the
in the present work. In any case, a conclusion is that
dynamics of the discrete soliton, as found from direct n
merical simulation of Eq.~3! for a1&0.05, is close to tha
predicted by the variational equations~12! and~13!. Namely,
oscillations of the soliton’s parameters are regular for v
small modulations, and become chaotic whena1 exceed a
threshold, see below.

Typical examples of the soliton dynamics withv50.5
and different values of the modulation amplitudea1 are dis-
played in Fig. 5. An important observation, which is n
predicted at all by the single-soliton ansatz, issplitting of the
pulse, which is observed in Fig. 5~b!. Note that for other
values ofa1, in Figs. 5~a! and 5~c!, a stable soliton is ob-
served, centered atn50, whose parameters oscillate becau
of the modulation. Therefore, the splitting which occurs
a1*0.1 is due to an interplay between the soliton itself,
intrinsic eigenmodes, and the energy exchange with radia
modes~continuous spectrum!. It is noteworthy that the split-
ting is qualitatively similar to that revealed by direct simul
tions of the continuum NLS equation with periodic modu
tion of the linear dispersion term@whose discrete counterpa
is the finite-difference combination in Eq.~3!#, which was
reported in Ref.@27#. A similar phenomenon was also ob
served in the discrete model with the finite-difference te
subject to periodic modulation@3#.

Results of the systematic numerical study of the splitt
of the pulse with the initial amplitudeA51 are summarized
in Fig. 6. Absorbing boundary conditions were used in
simulations, the total number of particles wasN>200 and
the dimensionless simulation time was, at least, 60p/v. We
classify as splitting cases when at least two pulses eme
moving in opposite directions, and no pulse with an app
05360
.
e

-
-
of
-

e-
l

,

te

e
-

y

e
t

n

g

e

e,
-

ciable amplitude stays aroundn50. Fora1*0.2, the modu-
lation results in generation of several moving pulses. Ho
ever, if a soliton with conspicuous amplitude is eventua
found aroundn50, this case was classified as a ‘‘stab
soliton.’’

Figure 6 also displays the dependence of a threshold
plitude a1, past which the initial state chaotically drifts t
a50, versusv as found from simulations of Eqs.~12! and
~13!. As is seen, the splitting actually occurs far above
threshold in a region of the developed dynamical chaos.
diagram for the casea0521 looks similar, but not exactly
the same.

FIG. 5. Evolution of a discrete soliton with the initial amplitud
A51 in the periodically modulated system witha051, v50.5,
and different values ofa1.

FIG. 6. The diagram in the plane (v,a1) for the casea051.
Open and solid rectangles correspond to stable and splitting
tons, respectively. The initial soliton’s amplitude isA51. The solid
line is the chaos-onset threshold as predicted by the variati
equations.
6-5
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IV. THE AVERAGED EQUATION FOR THE CASE
OF RAPID MODULATIONS

In this section we consider the case of high-frequen
modulations, withe[1/v!1. Note that we do not require
a1 to be small. Since near the Feshbach resonance s
variations of a magnetic field results in appreciable chan
of the scattering length, sufficiently largea1 can be easily
achieved.

In this case, it is natural to use the multiscale meth
@18,11#. To this end, we introduce a set of time scalest
5t/e, tk5ekt, wherek50,1,2, . . . , andlook for a solution
in the form

un5Un1eun
(1)1e2un

(2)1•••. ~16!

We substitute Eq.~16! into Eq. ~3! and collect terms at the
same order ine. Then, at ordere0 we obtain

i
]Un

]t0
1 i

]un
(1)

]t
1

1

2
~Un111Un2122Un!1a~t!uUnu2Un50,

~17!

wherea(t)[a(t/e), andUn is a function of the slow vari-
ablestk . After averaging on the fast variablet, one has

i
]Un

]t0
1

1

2
~Un111Un2122Un!1a0uUnu2Un50, ~18!

wherea0[^a(t)& standing for the average value of the va
able coefficienta(t). Then the equation for first correctio
un

(1) takes the form

i
]un

(1)

]t
52@a~ t !2a0# uUnu2Un ,

a solution to which is

un
(1)5 i ~m12^m1&!uUnu2Un ,

wherem1[*0
t@a(x)2a0#dx, and^•••& again stands for the

average value. At ordere1, we obtain]Un /]t150, and

un
(2)5~m22^m2&!@ uUnu2~Un111Un21!2 1

2 Un
2~Un11*

1Un21* !2 1
2 uUn11u2Un112 1

2 uUn21u2Un21#

2 1
2 @~m12^m1&!222M #uUnu4Un ,

where m2[*0
t@m1(x)2^m1&#dx, and M5(^m1

2&
2^m1&

2)/2. Finally, at ordere2 we find

]Un

]t2
5 iM @ uUn11u2~2uUnu2Un111Un

2Un11* !

1uUn21u2~2uUnu2Un211Un
2Un21* !23uUnu4

3~Un111Un21!#12iMa0uUnu6Un . ~19!

Substituting Eqs.~18! and ~19! into the relation
05360
y

all
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d

]Un

]t
5

]Un

]t0
1e

]Un

]t1
1e2

]Un

]t2
1•••,

one can derive the averaged equation

iU̇ n1
1

2
~Un111Un2122Un!1a0uUnu2Un

522Ma0e2uUnu6Un2Me2@ uUn11u2~2uUnu2Un11

1Un
2Un11* !1uUn21u2~2uUnu2Un211Un

2Un21* !

23uUnu4Un1123uUnu4Un21#, ~20!

where M[a1
2/4 for the case of the periodic modulation

Eq. ~4!.
Equation ~20! is the higher-order DNLS equation pro

duced by the averaging procedure, which contains extra
site and intersite~nonlocal! nonlinearities. A change of vari
ables qn[Un1e2M uUnu4Un allows to rewrite Eq.~20!,
retaining only terms up toO(e2), in the following form:

i q̇n1
1

2
~qn111qn2122qn!1a0uqnu2qn

5
1

2
e2M @3uqnu4~qn111qn21!12uqnu2qn

2~qn11* 1qn21* !

1uqn11u4qn111uqn21u4qn21#

2e2M @ uqn11u2~2uqnu2qn111qn
2qn11* !

1uqn21u2~2uqnu2qn211qn
2qn21* !#. ~21!

An advantage of the equation in form~21! is that it can be
derived from a Lagrangian

Lq5L02
1

2
e2M (

n52`

`

~ uqn11u22uqnu2!2~qn* qn11

1qnqn11* !, ~22!

whereL0 is obtained from the underlying Lagrangian~8! by
the substitutionun→qn anda(t)→a0. The existence of the
LagrangianLq allows one to apply the VA such as in Sec. II

For the application of VA, we take the ansatz forqn in the
form

qn5Bexp~ ic1 icunu2bunu!, ~23!

cf. Eq. ~9!. Substituting Eq.~23! into Eq. ~22!, we calculate
the effective Lagrangian

Lq5L024e2MWq
3cos~c!

sinh2~b!tanh3~b!

sinh~3b!
.

HereL0 is the same expression as in Eq.~10!, with a change
b→c, a→b, W→Wq5B2coth(b), and a(t)→a0. Now
one can deduce a dynamical system for the variablec andb
similar to Eqs.~12! and ~13!. The fixed point (bFP,0) for
a051, or (bFP,p) for a0521 of this system represents
6-6
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FRM soliton in the case of rapid modulations, wherebFP is
to be found from the equation

sinh~bFP!2
Wq

4
@113tanh2~bFP!#

14sgn~a0!e2MWq
2sinh~bFP!tanh2~bFP!

3
@10115cosh~2bFP!2cosh~4bFP!#

@112cosh~2bFP!#
2

50.

~24!

The normW̄ and amplitudeĀ of the fieldUn in the averaged
soliton are related to those of the fieldqn as

W̄'Wq@122e2MWq
2~ tanh3b!coth~3b!#,

Ā'Aq~12e2MAq
4!. ~25!

The dependenceW̄(Ā) found from Eqs.~24! and ~25! at
different values ofd[a1

2/(4v2) is displayed in Fig. 7. Dif-

ferent curves in the figure terminate at finite values ofĀ
because relation~25!, as well as the change of variablesUn
→qn , are not valid outside the corresponding intervals. A

FIG. 7. The dependence ofW̄ vs Ā of an average soliton
~dashed lines! is compared with that of the unperturbed DNL
equation~solid line!, a051.
hi

se

-

tt

05360
it

is suggested by Fig. 7, one can effectively control the soli
by an appropriate choice of the modulation parameters.
crease of the total number of particles in the averaged s
ton, as compared to that in the unperturbed soliton with
same amplitude, is clearly seen in Fig. 7.

V. CONCLUSIONS

We have studied the dynamics of an array of Bo
Einstein condensates with the time-dependent scatte
length. Applying the variational approximation, the fr
quencyv0 of small intrinsic oscillations of the soliton wa
predicted. The possibility of chaotic dynamics in the ne
resonance case, when the driving frequencyv is close tov0,
was shown. Direct simulations have demonstrated that
modulations of sufficient strength may result in splitting
the soliton. Results of the simulations were summarized
the form of the diagram which shows the splitting regions
the (v,a1) plane. The existence of stable Feshbac
resonance-managed discrete matter-wave solitons was
onstrated in the cases of both slow and rapid modulation
the nonlinearity coefficient. In the latter case, the soliton d
namics reduces to the generalized DNLS equation, wh
involves additional on-site and intersite nonlinearities.
making use of this equation, properties of the averaged s
ton were predicted. In particular, increase of the total num
of atoms in this soliton in comparison with the ordinary d
crete soliton of the same amplitude was shown.

Thechirp imprintingdiscussed in Sec. II can be an effe
tive tool, similar to the phase-engineering method@28#, for
manipulating the condensate’s wave function. Pulse splitt
induced by the chirp imprinting, or otherwise by the app
cation of Feshbach-resonance modulation, can be used
source of coherent pulse pairs in an atomic Mach-Zehn
interferometer@29#.
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