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Array of Bose-Einstein condensates under time-periodic Feshbach-resonance management
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The dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodi-
cally time-modulated atomic scattering lendffeshbach-resonance managemé&®M)] is investigated. The
cases of both slow and rapid modulations, in comparison with the tunneling frequency, are considered. We
employ a discrete variational approach for the analysis of the system. The existence of nonlinear resonances
and chaos is predicted at special values of the driving frequency. Soliton splitting is observed in numerical
simulations. In the case of the rapid modulation, we derive an averaged equation, which is a generalized
discrete nonlinear Schadinger equation, including higher-order effective nonlinearities and intersite nonlinear
interactions. Thus the predicted discrete FRM solitons are a direct matter-wave analog of recently investigated
discrete diffraction-managed optical solitons.
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[. INTRODUCTION demonstrated that FRM provides for an effective mechanism
of stabilization of two-dimensional BECs, even in the ab-

Discrete solitons in nonlinear lattices with periodically sence of the dc-magnetic-field trafl]. One-dimensional
varying parameters have recently attracted much attentiorsolitons subject to the action of FRM were also recently
Systems belonging to this type include arrays of opticaistudied, which reveals stable breathers oscillating between
waveguides subject to periodic diffraction managenigr#]  the Gaussian and Thomas-Fermi shapes, and stable breathers
and waveguide arrays with a periodic modulation of theof other typeq12].
tunnel-coupling constanf3]. The corresponding model is ~ One of the first experiments on the BEC in an optical
typically based on the discrete nonlinear Schinger lattice [13] was devoted to the quantum interference in a
(DNLS) equation, with the coefficient in front of the second- macroscopic system. Nowadays, experiments on the BEC
finite-difference term varying along the propagation distancdrapped in a periodic potential are performed in several
(formally, it looks like periodic time modulation of the coef- groups, who investigate Bloch oscillations, Bragg scattering,
ficient). It was shown that, in the case of rapid and strongJosephson dynamics, Landau-Zener tunneling, and other in-
variations of the coupling constant, a stable breathing disteresting effects. In recent work$4] a formation of bright
crete soliton can exige] (the so-called diffraction-managed Solitons in ’Li by tuning the effective interaction by means
solitor). On the other hand, application of a relatively slow, of the Feshbach resonance were studied. Therefore, a current
weak or moderate modulation at a resonant frequency resulgate of experiments is quite sufficient for observation of dis-
in a splitting of the discrete solitof8]. crete matter-wave solitons and effects described below.

In periodically modulated DNLS systems of another type, The aim of the present work is to consider the dynamics
the coefficient of the on-site cubic nonlinearity is subject toOf solitons in the one-dimensional DNLS model with the
the modulation. In terms of nonlinear optics, these may béonlinearity subject to periodic modulation. We will treat the
arrays of waveguides which have a layered structure, witifases of both relatively slow and rapid modulations. In the
the strength4], or even sigri5], of the nonlinearity alternat- former case, we will apply an analytical variational approxi-
ing between layers. An alternative, and actually moremation(VA), which was developed for one-dimensional lat-
straightforward, physical realization of this type of the latticetice models in Refd.15,16], and direct simulations, to study
is offered by an array of droplets of a Bose-Einstein condentesonances and splitting in the discrete-soliton dynartécs
sate(BEC) trapped in a deep optical lattid6,7], with the  recent review of the VA technique can be found in R&7]).

BEC scattering length oscillating in time. The latter type of In the latter case, using the multiscale metha#], we will

the time modulation may be provided by ac magnetic fieldderive an averaged equation, which has the form of a gener-

tuned to the Feshbach resonance, as it was predicted thedized DNLS equation with new nonlinear on-site and inter-

retically [8] and demonstrated experimental§]. By anal- site terms. Using this equation and VA, we will analyze the

ogy with the well-known techniques of the dispersion man-structure of average discrete-soliton solutions.

agement [10] and the above-mentioned diffraction

managemenl,2] in nonlinear optics, this time-modulation

technique, applied to BEC, may be called Feshbach-

resonance manageme(fRM). Very recently, it has been We formulate the model in terms of the BEC trapped in a
deep optical lattice, which is created by the interference of
two counter-propagating optical beams. The dynamics of a

*Corresponding author. Email address: etsoy@physic.uzsci.net BEC is governed by the Gross-Pitaevskii equafibl

Il. THE MODEL
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where V(r)=V,(x,y)sir’(k2) is the optical potential and 3|
g(t)=4mh?aq(t)/m. Here ag is the time-varying atomic 3
scattering length anch is the atomic mass. As it was men- 2
tioned above, the time dependenceagfcan be induced by
ac magnetic fieldor laser radiation with a time-modulated 17
intensity) applied to the condensate. Due to the periodicity of S

0 L+ e S . . . ) 0
V(r),_ for a weakly coupled array of BECs, one can present a 0 05 1 15 2 25 3 35 4
solution as

A
16 " . . . . . . 6
9= U P(r—ry), 2 wl o

12 15
where the functionb(r—r,,) is assumed to be strongly lo- 10 |
calized aroundnth site. Substituting Eq(2) into Eq. (1), zgl. g 4“’
integrating over the transverse coordinates, and taking into 6| ++++ - gl
account the exchange integrals only for neighboring sites, 3
one arrives at a DNLS equation with a variable coefficient in 40 N3 13
front of the nonlinear term6,7]: 2y

0 ==

) 1 0 05 1 15 2 25 3 35 4
iUn+ 5 (Unsat Un—1—2Up) +a(t)|uy|?u,=0.  (3) A
FIG. 1. (a) The inverse widthx (left axis) and the frequency
Here the overdot stands for the time derivative, time is madéright axis of the soliton vs its amplitudé in the DNLS model

dimensionless by means of the rescalingt//(2K), where  without the time modulatiora,=1. (b) The normW (left axis) and
K is the tunnel-coupling parameter between adjacent wells ithe soliton’s ares (right axis vs A. Point symbols represent data

the optical latticd6,7], and found from the numerical solution of the nonlinear eigenvalue prob-
lem; the solid lines are the prediction of the analytical variational
a(t)=ap+a;sin(wt) (4) approximation{see Eqs(11) and(14)].

is a coefficient proportional to minus the atomic scatteringdueéncy o in the interval ) <2wK/# <, which can be
length in the BEC. EquatiofB) describes the dynamics re- realized in experimenttsee, e.g., Re{21]).

stricted within the lowest Bloch zone. Account of interzone  First, we consider stationary pulse-shaped solutions of the
transitions requires an extension of the DNLS mo@d].  unperturbed DNLS equation with; =0 in Eq. (4) in the
The valuesa, and a; can be controlled independently, as form (see, e.g., Ref§16,22)

they correspond to dc and ac magnetic fields, respectively. . _

Though the BEC system described above is the most rel- Un(t) = Qnexplikn—ixt), ©)
evant physical realization of Eq3), the same model also
applies to an array of periodically modulated optical
waveguides, witht being the propagation distance, rather
than time. Without loss of generality, one can agt1 and
ap=—1 in Eq. (4) for the cases of the negative and positive
scattering lengthsattraction and repulsion between atoms
respectively. The wave functiom,(t) is normalized so that
the dynamical invariant of Eq3),

wherex is a wave number angl is a frequency. As it follows
from the dispersion relation for the linearized equati®n a
localized solution with the maximum @&),, centered at some
fixed point exists only for particular values gfat which the
group velocity vanishes, so we take=0 for ag=1, or,
equivalently,x= 7 for ag=—1.

The fundamental soliton foay=1 was studied in detail
as a numerical solution to the nonlinear eigenvalue problem

o with zero boundary conditiond6,22,23 (see also a review
W= > |u,l? (5)  in Ref.[24]). In the case 0By=—1, solitons arestaggered
n=—o [23], with the 7 phase difference between adjacent sites;

thus, on the contrary to the continuum NLS equation, the
is the total number of particles. The characteristic length 0DNLS model supports stable bright solitons for either sign
the system 2/k~1 um, Vo=~%2k?/m, and the atomic (repulsion or attractionof the nonlinear interaction.
population in each well is- 10>—10° atoms. The character- For convenience, here we briefly recapitulate basic prop-
istic frequency for the tunneling between wells §3_  erties of DNLS solitons. Parameters of the discrete soliton
=2K/A~10* s*! and the separation between the energy(6), found numerically from the nonlinear eigenvalue prob-
levels in a single well isQ=10*-1C s 1. Therefore, it lem [22], are shown by points in Fig. 1. All values in the
makes sense to consider the variation of the driving frefigure as well as on the subsequent ones are dimensionless.
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Ill. THE VARIATIONAL APPROXIMATION AND DIRECT

3f ',
ol “B.:;Eﬁ SIMULATIONS IN THE CASE OF SLOW
B MODULATIONS
_f 0 e A. The general formalism of the variational approximation
4L T g ] DNLS equation(3) is derived from the Lagrangian
2 \Q::S}I_‘:..E o . 1 1
g i : .
3 ‘ ‘ ‘ ? L= Z E(U:Un—UnU:)—§|Un+1—Un|2+ za(t)|un|4-
04 06 08 1 12 14 16 18 n=- 8
A ®

FIG. 2. The critical value of the chirp added to the fundamentalFollowing Ref.[15], we base the VA for the soliton governed
discrete soliton, see E7), which splits the soliton into two sepa- BY EQ.(3) on the following ansatz:
rating pulses, vs the amplitude of the unperturbed fundamental soli- _ . .
ton. Squaresgpluse$ correspond t@y=1 (ap=—1). Un(t)=Aexp(i ¢+ib|n|— a|n]), ©

whereA, ¢, b, anda are real functions of time. Substitut-

The left axis in Fig. 1a) pertains to the inverse width,  ing ansatz9) into Eq. (8), one can easily calculate the cor-
which was found by matching the soliton’s tail to the respondin@ﬂ’ective Lagrangiamn a form

asymptotic expressiofu,|=Aexp(—a|n|), where A is the

soliton’s amplitudecf. Eq. (9) below]. The right axis in Fig. L 1 db cosb 1 sinha

1(b) corresponds to the pglse’s area, which we definSas ;= ~ smk(—Za) aﬂL m+ ZWa(t)

=3,|u,|. The dependencies faa,=—1 have the same

form, with the only difference thay is shifted so thaty

—2—x. SinceW, y, and « are monotonic functions oA,  where

the stationary solutioi6) is defined by fixing of any one of

these parameters. W= AZcotha (11
Similar to the case of the continuum NLS equation, the, o ) ] o _

addition of chirp to solitor{6) (chirp imprinting splits itinto S & dynamical invariant, which coincides with the total num-

two separating solitonlike pulses, if the chitpexceeds a ber of particles, obtained by substitution of ansedy into

critical (threshold value by, (detailed consideration of a EG.(5). We mention that a term in the full Lagrangian, from

similar problem in the continuum NLS equation was given inwhich it follows thatdW/dt=0, contains the phase deriva-

Ref.[25]). We introduce the chirp by taking an initial condi- tive ¢ [which gives the frequency y in the stationary state,

tion as see Eq{(6)]. That term was dropped in expressid®), as it

does not contribute to other variational equations. Finally, the

variational equations for the soliton’s chitp and inverse

cosh2a),

(10

cosha

Un(0)=Qnexp(ib|nl) (@)

width « are

(the value ofb is restricted to the intervdl— 7, 7]). The @=2(cosb) sint’a _ EWa(t)
dependence oby, on the amplitudeA of the unperturbed dt coshi2a) 2
DNLS soliton is presented in Fig. 2.

In fact, the curves shown in Fig. 2 diverge at sufficiently x(tanr?a)z costiza)—1 (12)
largeA. The meaning of this is that, if the soliton’s amplitude cosh2a) '’
A exceeds the value 1.66, the initial pulse with any amount

A . : . da

of chirp gives rise to a soliton centeredrat 0, while other 8 _ _ (sinb)(sinha)tank(2a). (13

parts of the initial pulse split off from it and move in oppo- dt
site directions.

It is possible to understand the chirp-induced splitting of
the pulse into two in the following way. The original chirped
pulse Eq.(7) may be regarded as a superposition of two First, we dwell on the unperturbed case, wit{t)
pulses which carry the phase gradient of opposite sigh®  =consta, [cf. Eq. (4)]. In this case, all the points with
similar model developed in the framework of the continuum=0 andb=const are stationary solutions, i.e., fixed points
NLS equation in Ref[25]). As is known, the velocity of an (FP9. However, they do not correspond to localized waves,
isolated soliton is generated by its phase gradient. Since thberefore they are formal solutions. Further, it is easy to see
two constituents of the overall chirped pulse are originallythat Egs.(12) and (13) give rise to nontrivial FPs withbgp
close to each other, the attraction between them is strong 0 forag=1, andbp= 7 for ag= —1, and the correspond-
enough to keep them together. However, the increase of ing value arp being defined by the equatida5]
leads to increase of the opposite phase-gradient thrusts ap-
plied to the constituents, and finally to splitting between
them.

B. Revisiting the stationary model

1
sinhargp=7 W(1+3 tantfagp). (14)
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FIG. 3. The frequency of small intrinsic oscillations of the dis-
crete solitons around the stationary configurations, in the agse
=1, vs the soliton’s amplitud@. The solid line shows the fre-
quency wg as predicted, in the framework of the variational ap-
proximation, by Eq.(15). Points connected by the dotted line are 8
values of the forcing frequency which produce a resonant response
in numerical simulations of Eq3) with a small time-periodic forc-
ing term added to it. For comparison, the dashed line shows the
soliton’s internal frequencyy|.

The parameters of the FP, which correspond to stationary b

discrete solitor(6), are shown by.sol|d lines in Fig. 1. As is FIG. 4. () The phase plane of the dynamical system based on
seen, the results of the VA are in good agreement with the:qs (12) and (13), in the case of,=1, a;=0, andW=1.5202.
exact numerical solution of Eq3). Deviation inS (area of  gych a value oW corresponds to a soliton with=1. (b) An

the pulse indicates that the VA is not applicable in the limit example of chaotic dynamics for the periodically modulated system
of smallA. This is clear because this limit corresponds to theat w=1.5202,a,=1, a;=0.027 66, ando=0.481.

continuum system, whose stationary soliton solution differs

from ansatz9). ap=—1 is obtained by the shitt— 7—b, while that for the
Linearization of Eqs(12) and(13) around the FP yields a caseay=0 is obtained by settinggp— 0. As it follows from
squared frequency of small oscillations, here, the stable FP, which corresponds to the discrete soliton,
exists foreithersign ofay and vanishes ihy=0. As it also
, Sint(app)cos(app) . follows from Fig. 4a), the evolution initiated by the initial
= cosf(2arn 4sini(agp)[ cOSH2app) +2] condition with «(0)=app and smallb(0) corresponds to
FP

oscillations near the FP. However, for large valuefogd)|,
W the asymptotic value ak(t) att—o tends to zero. This fact
— —————[5 costi(2agp) —2cosMi2arp) — 1]} . is in qualitative agreement with the above-mentioned result

cost(agp) that the addition of a chirp may destroy the soliton.

(15 C. The variational approximation for the nonstationary model

Using Eq.(14), one can show thabg given by Eq.(15) is We now proceed to the case of the ac-driven system, with
always positive, i.e., VA does not predict afartificial) in-  a,#0. If a; is small, strong response of the system to the
stability. The dependence ab, on A, obtained from Eq. time-periodic modulation is expected when the modulation
(15), is shown by a solid line in Fig. 3. In the same figure, frequencyw is close to the eigenfrequenay, of the internal
crosses show resonant values of the frequency found fromscillations of the soliton in the unperturbed system, which is
numerical simulations of Eq3) with a small coefficieng; given by Eq.(15); in fact, the resonant response was already
in front of the variable part of the nonlinearity coefficient, taken into regard when collecting the data shown by crosses
see Eq(4). In the simulations, the forcing frequenaywas in Fig. 3. Moreover, the dynamics is expected to become
varied at the fixed smak,, with the purpose to identify a chaotic, via the resonance-overlapping mechanism, if the
value that generated strongest resonant response. The relativedulation amplitude; exceeds some threshold value.
difference between the thus found resonance frequency and The Poincaremap illustrating a typical example of the
the value predicted by Eq15) is about 0.1, and the overall chaotic behavior, as found from the numerical solution of
behavior of the curves is identical. It is worthy to note thatEgs.(12) and(13), is presented in Fig.(®). Shown are the
wo almost coincides with the soliton’s frequenfgyl. Thus, discrete trajectories initiated by sets of the initial conditions,
the results presented in Figs. 1 and 3 justify the validity ofnamely, the one withl{;,«;)=(0,0.789), that corresponds
the VA based on ansat®). to the stationary discrete soliton with=1 in the unper-

The phase plane of Eqél2) and (13) for ap=1 anda;  turbed system g;=0) and (©,,a,)=(0.13,0.74). The
=0 is shown in Fig. 48), where arrows point out a direction modulation frequencyw is close to the eigenfrequency of
of motion along a trajectory. The phase plane for the case admall oscillationswy,.
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For the former initial condition, the point in the space
(b, ) is chaotically moving away from the unperturbed FP.
However, the chaotic evolution is a transient feature, as the
point eventually moves so that(t) asymptotically tends to
zero, implying infinite broadening of the soliton. As for the
second set of initial conditions, a new FP is found in a vicin-
ity of the unperturbed one. This new FP predicts the exis-
tence of quasistationary discrete FRM solitons in the case of
the slow modulation. Similar behavior near the correspond-
ing stationary point is observed for the cagg=—1.

D. Direct simulations

We have performed a systematic comparison of the pre-
dictions produced by the VA against direct simulations of full
DNLS equation(3). The simulations show that, generally
speaking, VA correctly predicts only an initial stage of the
dynamics. The radiation of linear waves by a soliton, which
is ignored by the VA, gives rise to an effective dissipation,
which makes the resonance frequency different from
Furthermore, sincey depends oW, and the radiation loss
results in gradual decrease \& the soliton decouples from
the resonance. In principle, VA might be made more accurate
by adding a radiation mod€tail” ) to the ansatz, cf. the
analysis developed in Ref26] for the soliton in the con- n 102035
tinuum NLS equatior(see also the reviepl7]), but we do
not aim to develop such an involved generalization of the VA FIG. 5. Evolution of a discrete soliton with the initial amplitude
in the present work. In any case, a conclusion is that thé=1 in the periodically modulated system witiy=1, ©=0.5,
dynamics of the discrete soliton, as found from direct nu-and different values o#;.
merical simulation of Eq(3) for a;=<0.05, is close to that
predicted by the variational equatio(i?) and(13). Namely, ciable amplitude stays aroumd=0. Fora;=0.2, the modu-
oscillations of the soliton’s parameters are regular for verylation results in generation of several moving pulses. How-
small modulations, and become chaotic wrenexceed a ever, if a soliton with conspicuous amplitude is eventually

150

threshold, see below. found aroundn=0, this case was classified as a “stable
Typical examples of the soliton dynamics with=0.5  soliton.”
and different values of the modulation amplitualeare dis- Figure 6 also displays the dependence of a threshold am-

played in Fig. 5. An important observation, which is not plitude a;, past which the initial state chaotically drifts to
predicted at all by the single-soliton ansatzsitting of the ~ «=0, versusw as found from simulations of Eqé12) and
pulse, which is observed in Fig.H. Note that for other (13). As is seen, the splitting actually occurs far above the
values ofa,, in Figs. 5a) and 5c), a stable soliton is ob- threshold in a region of the developed dynamical chaos. The
served, centered at=0, whose parameters oscillate becausediagram for the casay=—1 looks similar, but not exactly

of the modulation. Therefore, the splitting which occurs atthe same.
a;=0.1 is due to an interplay between the soliton itself, its

intrinsic eigenmodes, and the energy exchange with radiation

modes(continuous spectrumlt is noteworthy that the split- 05 s - EEEE
ting is qualitatively similar to that revealed by direct simula- 0.4 | 80L&
tions of the continuum NLS equation with periodic modula- : e NN
tion of the linear dispersion terfvhose discrete counterpart w 037 o8 "8 E
is the finite-difference combination in E¢3)], which was 0.2 | : g g g
reported in Ref[27]. A similar phenomenon was also ob- = cEdEERyEd
served in the discrete model with the finite-difference term R CREE Ry gl Ry
subject to periodic modulatiof8]. e | Hadundond

Results of the systematic numerical study of the splitting 02 04 06 08 1 12 14 16

w

of the pulse with the initial amplitud&=1 are summarized
in Fig. 6. Absorbing boundary conditions were used in the F|G. 6. The diagram in the planes(a,) for the caseay=1.
simulations, the total number of particles wids=200 and  Open and solid rectangles correspond to stable and splitting soli-
the dimensionless simulation time was, at leasty/0. We  tons, respectively. The initial soliton’s amplitudeAs= 1. The solid
classify as splitting cases when at least two pulses emerggne is the chaos-onset threshold as predicted by the variational
moving in opposite directions, and no pulse with an appreequations.
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IV. THE AVERAGED EQUATION FOR THE CASE

U, U,
OF RAPID MODULATIONS

oty

au,

+ 2
oty

&Un+.“,
at,

+e€

In this section we consider the case of high-frequency ] )
modulations, withe=1/w<1. Note that we do not require ©On€ can derive the averaged equation
a, to be small. Since near the Feshbach resonance small
variations of a magnetic field results in appreciable changeg)

of the scattering length, sufficiently large can be easily
achieved.

In this case, it is natural to use the multiscale method

[18,11]. To this end, we introduce a set of time scates
=t/e, t,=€t, wherek=0,1,2 ..., andlook for a solution
in the form

Up=Up+euM+e2u@+. ... (16)

We substitute Eq(16) into Eg. (3) and collect terms at the
same order ire. Then, at ordee® we obtain

U, o autt
| |
ﬁto (97'

+5(Unsa+Up 1= 2Up) +a(n)|U,[2U,=0,
(a7

wherea(r)=a(t/€), andU, is a function of the slow vari-
ablest, . After averaging on the fast variabte one has

U,
"oty

1
+ E(Un+l+Un—l_zun)+a0|Un|2Un:Oa (18

whereay=(a(7)) standing for the average value of the vari-
able coefficienta(7). Then the equation for first correction
uM) takes the form

1
i ol
T

_[a(t)_ao] |Un|2Unv

a solution to which is

Ul =i (= (1)) U205,

whereu= [g[a(x) —ap]dx, and(- - -) again stands for the
average value. At order’, we obtaindU,,/dt;=0, and

*
n+1

uP= (o= () |Unl*(Upi 1+ Upog) —3UA(U
+U:71)_ % |Un+1|2Un+l_ %|Unfl|2Unfl]
- %[(M1_<M1>)2_2M]|Un|4un,

and  M=((u)

where  uo=[gl p1(X) —(n1)]dx,
—(u1)?)/2. Finally, at ordere? we find

n

at,

=iM[|Up11/2(2|Up |20, +U2UR, D)
+|Up_1/2(2JU |20, +U2UE ) —3[U, |4
X (Upy1+ U, 1) ]+2iMaglU,|8U,. (19

Substituting Eqs(18) and (19) into the relation

nt E(Un-%—l"_Un—l_zun)+a0|Un|2Un

= _ZMa052|Un|6Un_M52[|Un+1|2(2|un|zun+1
+U2UE, ) +|Un-1|%(2]U, 20, -+ URUE )

_3|Un|4Un+l_3|Un|4Un—l]v (20
where M=a?/4 for the case of the periodic modulation in
Eq. (4).

Equation (20) is the higher-order DNLS equation pro-
duced by the averaging procedure, which contains extra on-
site and intersiténonloca) nonlinearities. A change of vari-
ables g,=U,+€’M|U,|*U, allows to rewrite Eq.(20),
retaining only terms up t®(e?), in the following form:

L1
1gnt E(qn+l+Qn71_an)+a0|qn|2qn

1 2 4 20420 y* *
5 € M[3]an*(An+ 1+ An-1) + 2[00l *A5(A7 1+ A7-1)

+ 100+ 1]*dns 1+ | An-a] *an-1]
- 52M[|Qn+1|2(2|Qn|ZQn+l+ qﬁq:+1)

+ -1/ 2(2]anl2an- 1+ q2ar_ )] (21)

An advantage of the equation in for(@1) is that it can be
derived from a Lagrangian

L

q=Lo—

1 o0
2 EZMn;x (|Qn+1|2_ |qn|2)2(q: On+1

+0n0n+ 1), (22)
wherel is obtained from the underlying Lagrangié8) by
the substitutioru,—q, anda(t)—ag. The existence of the
LagrangiarL , allows one to apply the VA such as in Sec. III.

For the application of VA, we take the ansatz éprin the
form

g,=Bexpig+ic|n|—Bn|), (23

cf. Eq. (9). Substituting Eq(23) into Eq. (22), we calculate
the effective Lagrangian

sink?(B)tank(B)
sinh(38)

Herel, is the same expression as in Efj0), with a change
b—c, a—pB, W—W,=B?coth(8), and a(t)—ay. Now
one can deduce a dynamical system for the varialaed 8
similar to Egs.(12) and (13). The fixed point Bgp,0) for
ap=1, or (Bgp,m) for ap=—1 of this system represents a

Lq=Lo—4€eMW;cogc)
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25 is suggested by Fig. 7, one can effectively control the soliton
gj by an appropriate choice of the modulation parameters. In-
2 3=005------ ] 1 crease of the total number of particles in the averaged soli-
=0 - ton, as compared to that in the unperturbed soliton with the
Iz 1.5 same amplitude, is clearly seen in Fig. 7.

V. CONCLUSIONS

L We have studied the dynamics of an array of Bose-
02 04 06 08 1 12 14 Einstein condensates with the time-dependent scattering
A length. Applying the variational approximation, the fre-
L quencywq of small intrinsic oscillations of the soliton was
FIG. 7. The dependence aV vs A of an average soliton predicted. The possibility of chaotic dynamics in the near-
(daShed ”neb is Compared with that of the unperturbed DNLS resonance case, when the driving frequemdy close th)o,
equation(solid line), ap=1. was shown. Direct simulations have demonstrated that the
modulations of sufficient strength may result in splitting of
FRM soliton in the case of rapid modulations, whéig-is  the soliton. Results of the simulations were summarized in

to be found from the equation the form of the diagram which shows the splitting regions in
W the (w,a;) plane. The existence of stable Feshbach-
sSinh( Bep) — — [ 1+ 3tani(Bep) ] resonance-managed discrete matter-wave solitons was dem-
4 onstrated in the cases of both slow and rapid modulations of

the nonlinearity coefficient. In the latter case, the soliton dy-

2 2 i
+4sgnag)e Mqumr(B,:p)tank?(B,:p) namics reduces to the generalized DNLS equation, which

[10+ 15c0sli2 8gp) — cosi4Bep) | involves additional on-site and intersite nonlinearities. By
X 5 =0. making use of this equation, properties of the averaged soli-
[1+2costi2Bep) ] ton were predicted. In particular, increase of the total number

(24)  of atoms in this soliton in comparison with the ordinary dis-
crete soliton of the same amplitude was shown.

The normW and amplitudeA of the fieldU,, in the averaged The chirp imprinting discussed in Sec. Il can be an effec-
soliton are related to those of the fiald as tive tool, similar to the phase-engineering metha8], for
. manipulating the condensate’s wave function. Pulse splitting
W=~ W[ 1-2e*MWj(tani?)coth(34)], induced by the chirp imprinting, or otherwise by the appli-
cation of Feshbach-resonance modulation, can be used as a
KmAq(l_gMAg)_ (25) source of coherent pulse pairs in an atomic Mach-Zehnder
interferometeff29].
The dependenc&V/(A) found from Egs.(24) and (25) at
different values ofs=a2/(4w?) is displayed in Fig. 7. Dif- ACKNOWLEDGMENTS
ferent curves in the figure terminate at finite valuesAof B.A.M. appreciates the hospitality of the Instituto de Fi-

because relatiof25), as well as the change of variablgs, sica Teorica at UNESHSao Paulo, Brazil F.Kh.A. ac-
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