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Stable two-dimensional dispersion-managed soliton
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The existence of a dispersion-managed soliton in two-dimensional nonlineard8uj®o equation with
periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are
obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton
around the fixed points for the width and chirp are investigated and the corresponding frequencies are calcu-
lated. Analytical predictions are confirmed by direct partial differential equaB@E) and ordinary differen-
tial equation(ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The
existence of a dispersion-managed matter-wave soliton in such system is shown.
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[. INTRODUCTION strated that th@onlinearitymanagement can prevent the col-
lapse of solitons in 2D Kerr-type optical medi,6], as well

Nonlinear wave propagation in media with periodically as in 2D Bose-Einstein condensa{&s8]. From these one
varying dispersion has attracted a huge interest in the recefiin reasonably expect that the dispersion management can
years. A prominent example is a dispersion-manadzd) play a balancing role also in the 2D case, and the stable 2D
optical soliton, which is considered to become the majorDM soliton can exist. Such a possibility has recently been
concept in future soliton-based communication systems. I€onsidered in Re{9] by construction of the ground state for
was shown theoretically and experimentally that the stronghe periodic 2D NLS equation based on the averaged varia-
DM regime provides the undisturbed propagation of pulsedional principle and the techniques of integral inequalities,
over very long distances. DM solitons are robust to the-.€., the proof of the existence theorem for DM soliton was
Gordon-Haus timing jitter, which makes them favorablepresented. Analytical and numerical treatment of the prob-
against the standard solitofis,2]. Recently a model similar lem, however, has not been addressed so far.
to DM was developed for the propagation of an optical beam The purpose of this paper is to derive analytical expres-
in a nonlinear waveguide arrd®]. The width of beam and sions for the parameters of a 2D DM soliton and to study the
amplitude of discrete spatial solitons, called diffraction-conditions for their stability. In this regard, we use a time-
managed soliton$3], evolve in time periodically. In this dependent variational approatA) to derive a set of ordi-
context, the solitons considered in the present paper are clogary differential equationsODES for the soliton param-
to diffraction-managed solitons. A comprehensive review ofeters. The stability of the DM soliton is then inferred from
nonlinear phenomena with optical solitons in continuous andhe stability of fixed points of the VA equations.
discrete systems is presented in Héi. The field dynamics is governed by the following 2D NLS

Mathematically this type of problem is described by theequation:
one-dimensionallD) nonlinear Schrdinger(NLS) equation
with periodic dispersion—a nonlinear analog of the Mathieu
equation. The corresponding linear equation exhibits a rich
variety of stability and instability zones for the parameters.

The existence of a DM so_liton is one of the _nontrivial con- whered(t) =d,+d,(t) represents a time-periodical disper-
sequences of the stable diagram for the periodic NLS equasjon coefficient. In the strong DM regime it is assumed that

tion. d(t)~(1/e)d(t/€),e<1 and the dispersion averaged over

. AIthqugh well stqdied in the 1D case, the two- and threeq period ig/d(t))=d, (in this casedy>0 corresponds to a
dimensional extensions of this problem are far less explore egative dispersion and,<O0 to a positive one

The major difference here is that, contrary to the 1D case, the Equation (1) can be associated with two main physical

NLS equation in two and three dimensions is unstable,opiems:(i) beam propagation in 2D waveguide arrays with
against collapse. In particular, for the two dimensiofzdb) periodically variable coupling between waveguidés, 11:

case the collapse occurs if the initial power exceeds SOMgj) onlinear matter waves of Bose-Einstein condensates in
critical value, i.e., ifE>E.,. Recently it has been demon- 5 optical lattices

In case(i) the model equations for a 2D nonlinear fiber
array are given by12]

iug+d(t)Au+]|ul?u=0, 1
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wherey, is the envelope of electric field in theh fiber,A,  whereA,a,b, ¢ denote the amplitude, width, chirp, and lin-
is the finite second difference for 2[x(z) is the variable ear phase of the soliton, respectively. The corresponding
alongz coupling coefficienf10,11], »” is the group-velocity =~ space averaged Lagrangian is

dispersion, andy is the coefficient of nonlinearity. For long
wavelength pulses the group-velocity dispersiohcan be
neglected. Introducing the dimensionless variables
=t,4,= 2/ xu,, and considering the field distribution to

be broad in the transverse direction T siteg, one arrives at  whereN= 7wA?a? is the norm. The equations for the soliton

Eq. (1) with time and space interchanged and wdift) de-  parameters are derived from the Euler-Lagrange equations
scribing a varying diffraction along the longitudinal direc-

L 1 d(t
N: - _a2bt_ ¢t_ (_z)_d(t)a2b2+
a

N
. TG

47a

. LS L as

tion. Note that although the intrinsic discreteness of the array

may arrest the collapse of a 2D NLS wave, it does not nec- 2d(t)—E

essarily stabilize the pulse against decay. In the following, a;=2d(t), Bi=——— (6)
we show that this can be done employing dispersibfirac- a

tion) management by means of which a stable 2D soliton can )
be created before the strong shrinking of the wave occurs. Where3=ab, andE= [g|u|’rdr is the energy.

A similar situation arises in cadé@) for a Bose-Einstein
condensatdBEC) confined in a 2D optical lattice. In this 1l. SYSTEM OF AVERAGED VARIATIONAL EQUATIONS
case dynamics of the condensate is governed by the Gross-

Pitaevskii(GP) equation Let us consider the evolution of a pul¢éa beam or a

soliton matter wave, depending on the physical system in
consideratioh using the division on the fast and slow time

52 scales[17-19. The width and chirp of the pulse are then
ihW=— ﬁA‘I’+V(X,y;t)‘I’+on|‘I’|2‘I’, (3 represented aa(t)=a+a,, B(t)=+ B8, wherea, are
slowly varying functions on the scale elland a;,3; are
rapidly varying functions. The solutions fer , 3, are

where  g,p=0sp/(27a,), Osp=4mh3ag/m, a, _

=(himw)*? and  with  V(x,y)=Vy(t)[co(ko) _ Adod; Oty — 2Qd; B8 ot 7
+co(kyy)] denoting an optical lattice with the amplitude a= 2wt 02) sin(Q2t) w21 02 cosg ), (7)
periodically varying in time. Spatiotemporal wave collapse

in the framework of a similar equatigwhen the potential is 6od E 2d. Q)

periodic in one directionV(x,y)=Vycoskyx)] was consid- 1:_—1 sin(Qt)—_—l cogQt), (8)
ered in Ref[13], where analytical expression for the upward a*(wi+Q?) a’(wi+Q?)

shift of collapse criterion was derived for potentials rapidly o

oscillating in spacélargeky). By adopting an effective mass wherewéz —60/a*, o=2d,—E. Note thato<0 for over-

description one can show that the 2D GP equalibf can  critical energy for collaps&>E., =2 atd,=1 given by the

be reduced to the DM NLS equati¢h). The effectiveness of VA. The exact value, corresponding to the so-called

DM applied to quasi-1D atomic matter waves was experi-“Townes soliton” is E.,=1.862[20]. Considering the limit

mentally demonstrated in RefL5]. of high frequencie€)?> w3~ 1 for the averaged parameters
For analytical considerations it is convenient to refer toof the system we finally get

the axially symmetric case for whichA=¢?%/dr?+(1/

r)(a/ar), and apply the harmonic modulation for dispersion _ 3d§0‘
managementd(t) =dy+d;sin(t). We remark that although a=2p| dot+ —= |, 9)
in the present paper we do not consider the case of two-step Q%

dispersion management: d(t)=d., if t,+nt,>t 5 —
>nt,,andd(t)=d_, if (n+1)t,>t>nt,+t,, where t, —_ o 12id, 120di8

g
=t,+t_, andn=0,1,2 ..., this approach can also be ef- '81_§+ 02a’ 02a° (10

fectively used for the creation of stable 2D DM solitons.

Our analysis of the pulse dynamics under dispersion manthijs system has the Hamiltonian structure with the Hamil-
agement is based on the variational app[c{a:lhts],_accord— tonian given by
ing to which a space averaged Lagrangian [Ldr is con-
structed starting from a suitable ansatz for the soliton profile. o 2A%d, -,
In the following we shall calculate by using the following H= PR B
Gaussian ansatz:

SAZO' dl
d0+ §4 , A= 51 (11)

from which the equations of motion follow as;
i b(t)r2 =dH/dB, Bi=—dHloa. F_rom this Hamiltonian one can
u(r,t)=A(t)exp( i +ig(t) ], (4)  also see that the mechanism for collapse suppression origi-
2a? 2 nates from the repulsive potential near the small values of
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FIG. 1. Phase portrait of the variational equatig@swith pa-
rametersdy=1, d;=3.5, =50, E=N/27=2.3034.

width ~1/a_6, which counteracts to the attractive force in-

duced by the nonlinearity- 1/a%. The exact balance between
these forces gives rise to a stable state. This state is oscill
tory with the frequency which will be defined later. The sta-
bilization mechanism of a 2D NLS equation soliton is similar
to that of the inverted pendulum with oscillating pivot point
[21]. We should note that the averaged dynamics is no

potential—a velocity dependent term appears in the interac-

tion potential[see fourth term in Eq(11)]. Although this

term does not contribute to the fixed point, it is important for

the description of oscillatory dynamics of 2D DM solitons.
The systemg9) and (10) have the fixed points

-z

Note thatA is proportional to the strength of the disper-
sion mapD=2wd,/Q; thereforea,~ /D in analogy with

12dA 2

o

C

12

solution with a stationary width for the anomalous residual
dispersiond,>0,E>2d,. This is confirmed by the phase
portrait (Fig. 1) of the variational systen).

Let us analyze the stability of fixed points for the anoma-
lous residual dispersiody>0. We assume&=a.+ ea;,pB
= €f3;. Substituting into Eq(9) and Eq.(10), and collecting
terms of ordere we find

6A%0

ap= Zdo“‘T B1=Mpy, (13
30 84A%d,

Bit=— I’ 28 a;=—S5a. (14

The oscillations of the width and chirp near the fixed points
are stable ifMS>0, which is always satisfied fody>0,
E>2d,. The frequency of secondary slow oscillations of a
2D DM soliton is proportional to/M S.

Ill. NUMERICAL SIMULATIONS

To avoid the singularity at=0 we consider the problem
in Cartesian coordinates =g+ d; and r?=x?+y?. Then

S
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FIG. 2. Evolution of a 2D DM soliton according to numerical
solution of Eq.(1). The wave function is normalized t8=27E,
with Ey=2.3034, and the dispersion mapdg=1, d;=3.5, Q)
=50.

numerical simulations can be performed by 2D fast Fourier
transform[22]. The results are produced using a 2D grid of
256X 256 points over the domaixy e[ —6.4, 6.4 and the
time stepst=0.001. To prevent the back action of a small
mount of linear waves, resulting from the periodic pertur-
ation, the absorption on the domain boundaries is em-
ployed, which also imitates the infinite domain condition.
The dispersion map was supposed to have paramdters
1,d,;=3.5,Q0=50.
This choice of parameters corresponds to moderate dis-
persion managemenb(=0.45). The axial section profile of
the wave functiofu(r,t)|? as obtained by direct numerical
solution of the partial differential equatiqPDE) (1) is pre-
sented in Fig. 2. As can be seen, rather stable quasiperiodic
dynamics is realized for a selected parameter setting. Note
that if the periodic modulation of the dispersion had not been
applied, the initial waveform would have collapsed within
~ 3. The dispersion management stabilizes the pulse against
collapse or decay, providing undisturbed propagation over
very long distances. The agreement between the predictions
of the variational equation&) for the width of a 2D DM
oliton and the corresponding result from the full PDE simu-
lations is reported in Fig. 3. As can be observed from this
figure, the width of a 2D DM soliton performs quasiperiodic

motion with the average width a~0.8 according to varia-

tional equations, while the PDE simulation yields=0.7.
The fixed point for the above set of parameter values, ac-

cording to Eq.(12) is a.=0.6635 (see Fig. 1 The fre-
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FIG. 3. Stable quasiperiodic dynamics of the width of a 2D DM
soliton. Solid line—variational equatior(§) solved forE=N/2x
=2.3034, and the initial conditiona(0)=1, B(0)=0. Dashed
line—full PDE simulations of Eq(1).
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guencies of slow dynamics given by the VA equations and IV. CONCLUSION
PDE are also in good agreemgiig. 3). The estimate for
the frequency of slow oscillations from E@L3) yields w, In conclusion, we have demonstrated the possibility to

— /MS=3.5; therefore, the period i§,=1.9. The direct stabilize the 2D soliton with overcritical energg ¢ E.,) by
gauge from Fig. 3 shows thdl,=2.2, in reasonable agree- applying dispersion management. The developed theory
ment with the above VA estimate. based on the variational approximation successfully de-
For Bose-Einstein condensates in a 2D optical lattice thé&cribes the long term evolution of a 2D DM soliton, which is
dispersion coefficient can be expressedi@3=m/m* (t) in confirmed by direct PDE simulations. We discussed the pos-
the effective mass formalisiil4]. The effective massn* sible experimental realization of a stable 2D DM soliton in
substantially differs from the true mass (becoming even Bose-Einsten condensates confined to optical lattices.
negative and can be varied by changing the parameters of
the periodic potential, or inducing the transitions between
energy bands. ACKNOWLEDGMENTS
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