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The energy conservation of grating diffraction is analyzed in a particular condition of incidence in which two
incident waves reach a symmetrical grating from the two sides of the grating normal at the first-order Littrow
mounting. In such a situation the incident waves generate an interference pattern with the same period as the
grating. Thus in each direction of diffraction, interference occurs between two consecutive diffractive orders of
the symmetrical incident waves. By applying only energy conservation and the geometrical symmetry of the
grating profile to this problem it is possible to establish a general constraint for the phases and amplitudes of
the diffracted orders of the same incident wave. Experimental and theoretical results are presented confirming
the obtained relations. © 2006 Optical Society of America

OCIS codes: 050.1950, 050.5080.

1. INTRODUCTION

In the past forty years different methods have been suc-
cessfully employed to solve the diffraction problem of sur-
face relief gratings. The main purpose of these theories
has been the calculation of the diffraction efficiencies as a
function of the grating parameters, such as depth, period,
and shape of the profile. In recent years, however, many
applications of surface relief gratings in resonant and
subwavelength domains as polarizing elements have been
developed. For the design of such elements the phase of
the diffracted waves plays a crucial role.? Most theories
allow the calculation of such phases; however, the abso-
lute phase values have no physical meaning, and only the
relative phase differences are experimentally measurable.
In order to check the theoretical phase calculations, reci-
procity and energy conservation were used to establish
phase constraints for some particular cases involving only
four diffracted orders.>*

In this paper we obtain a general constraint for the
phases of the diffracted waves by applying only energy
conservation and geometric symmetry for a lossless grat-
ing at symmetrical Littrow mounting. Experimental and
theoretical results are presented confirming the obtained
relations.

2. WAVE MIXING CONDITION OR
SYMMETRICAL LITTROW MOUNTING

If a symmetrical grating (of period A) is illuminated si-
multaneously and symmetrically by two coherent waves
(fields E, and E,) of the same wavelength and at the first-
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order Littrow mounting (#=-6; and 6;, respectively),
then from the grating equation, in the ith direction of dif-
fraction there is a superimposition of two diffracted fields,
E,;, and E;,_;). Such a situation is illustrated in Fig. 1
for the transmitted orders (the reflected orders are omit-
ted for simplicity). The total number of existing transmit-
ted orders (2N) and reflected orders (2M) depends on the
wavelength-to-grating period (A) ratio and on the refrac-
tive index of the grating material.

This sum or superimposition is also called wave
mixing,® and the resulting irradiance in the ith diffraction
direction is given by

I
I;=ClE? = L) + Iyo1) + 2\L -1 COS(4 + @15y = @y(i-1)),
(1)

with C being a constant that depends on the refractive in-
dex of the media and E; the sum of the two diffracted
fields E,(;), and E,;_y). ¢ is the phase difference between
the incident waves, which represents the phase shift be-
tween the grating itself and the interference pattern gen-
erated by the two incident waves E, and E. ¢ is the phase
of each diffracted wave, caused by diffraction. I,;) and
I ;1) are the irradiances of the diffracted waves E,; and
E;_1), and I, and I; are the irradiances of the incident
waves E, and E,, respectively.

If the grating is lossless, the sum of the irradiances I; in
all the existing diffraction directions (reflected and trans-
mitted) must be equal to the sum of the irradiances of the
incident waves I,+I,. Using the superscripts T for the
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Fig. 1. Interference scheme between the transmitted diffracted
orders at symmetrical Littrow mounting. The reflected diffracted
orders are omitted for simplicity.

transmitted orders and R for the reflected orders, this en-
ergy conservation can be written as

N

T T [T 7T T T
> L)+ Lsi-1) + Ve Lsi-1) 0S¥ + @) = 5i-1))]
i=—N+1

M
R | IR R IR R R
> ) + L1y + VLo Ls-1) €08 + @iy = Psii-1)]
i=—M+1
=1.+1,. (2)

The irradiances of the diffracted waves can be written in
terms of their diffraction efficiencies 7 as

If(i) = ﬂfii)lr, (3)
Il = nol,, (4)
Iy = 7o s, (5)
Iy = miofs. (6)

By using the fact that for a lossless grating, energy con-
servation must be valid for each individual incident wave
E; and E,, we have

N M
T R
E Msi-1) + E Tsi-1=1, (7)
i=—N+1 i=—M+1

N M
> 773@)‘F > 775-3(;'-1):1- (8)

i1=—N+1 1=—M+1

Substituting Eqgs. (3)—(8) into Eq. (2), it is possible to ob-
tain the following general constraint relating the phases
and the diffraction efficiencies of all existing diffraction
orders of a lossless grating at Littrow mounting:
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M
[® R R R
E N iy Ts(i—1) COS( + @pzy = @(i-1))
i=—M+1
N
[T 7 T T
+ 2N (i) Ms(i-1) COS(P + @) = @i=1)) = 0. (9)
i=—N+1

If the grating presents a symmetrical profile (in rela-
tion to the bisector of the incident beams), the diffraction
efficiencies and the phases of the symmetrical E, and E;
incident beams must be equal:

®r(i) = Ps(-i)» (10)

Tri) = Ms(-i)- (11)

Thus the constraint relation expressed by Eq. (9) simpli-
fies to

M
[ R R

2 v 775(—1’)775(1‘—1) COS(‘Ps(-i) - ‘Ps(i-1))

i=1

N

I T T
+ E \ s (i) Misti-1) €08(@g(_i) — @5-1)) = 0. (12)
i=1

This general constraint relates the phases and the ampli-
tudes of all existing diffracted orders of the same incident
E, wave (6= + ;) for a lossless symmetrical grating. A cor-
responding result can be obtained for the E, (§=-6;) in-
cident wave. This constraint can be used to check the
phase and amplitude values of the diffracted waves calcu-
lated by any theory.

Although the same constraint expressed by Eq. (12) can
be derived in grating theory from the unity of the scatter-
ing matrix for a lossless grating,6 the above derivation
gives a better physical insight into such phases. The
analysis of the distribution of the energy between the dif-
fracted orders allows, for example, previewing the phase
difference behavior as a function of the geometrical pa-
rameters of the grating.

Applying the constraint relation to a grating whose pe-
riod is small enough to allow just four diffracted orders
(the minus first and the zeroth diffracted orders by trans-
mission and by reflection) produces

/ R R [T T T T
\ 77{21”763 cos(@’; — @g) + \77-177 cos(¢-; — ¢5) =0. (13)

This relation represents the same phase constraint ob-
tained by Botten® and Botten et al.* by using the principle
of reciprocity, energy conservation, and the symmetry
properties of lossless diffraction gratings.

If the grating is a perfectly conducting grating (totally
reflecting grating), the efficiencies of the transmitted or-
ders are null; thus

<p1_31—<p§=m+77/2, (14)

with m being an integer.

The same occurs if the diffraction efficiencies of the re-
flected orders are negligible, as for example in the case of
a volume grating (Bragg grating). In this case,
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ol - =m + m/2. (15)

This 7/2 value of the phase difference between the first
and zeroth diffracted orders is a well-known result from
the coupled wave ‘cheory7 for dielectric volume gratings.
The same 7/2 phase value appears in the scalar diffrac-
tion theory® as the phase difference between successive
orders diffracted by phase gratings.

From the above results we can expect that the phase
difference between the first and zeroth orders deviates
from the 7/2 value if the diffraction efficiencies of the re-
maining diffracted orders are not negligible.

3. THEORETICAL RESULTS

The theoretical phases and amplitudes of diffracted
waves were calculated for gratings of three different peri-
ods (A=0.4, 0.6, and 0.8 um) as a function of the grating
depth by using the coordinate transformation method (the
C method).” A sinusoidal relief grating at Littrow mount-
ing was assumed with TE polarization and wavelength
N=457.9 nm. For the dielectric material of the relief grat-
ing we consider a real refractive index n=1.645.

Table 1 shows the results of the diffraction efficiencies
and phases of all the existing diffracted orders as well as
the values of both product terms in Eq. (12) for a grating
of period 0.4 um and depth 0.2 um. For this grating there
are only two transmitted diffracted orders and two re-
flected diffracted orders; thus both products must be
equal with opposite sign. Table 2 shows the corresponding
results for a grating of period 0.6 um and depth 0.5 um.
For this grating there are four transmitted diffracted or-
ders and two reflected diffracted orders; thus the sum of
the three product terms must equal zero. Table 3 shows
the results for a grating of period 0.8 um and depth
0.6 um. For this grating there are six transmitted dif-
fracted orders and four reflected diffracted orders; thus
the sum of the five product terms must equal zero.

Note that, independent of the period (number of orders)
and depth of the grating, the sum of the products remains
near zero, confirming the validity of the constraint stated
in Eq. (12) and that both amplitude and phase calculated
by the employed method® are credible.

Figure 2 shows a graph of the phase difference between
the minus first diffracted order and the zeroth diffracted
order by transmission ((pTI— <p0T) for sinusoidal surface re-

Table 1. Diffraction Efficiencies, Phases, and
Product Terms for a Sinusoidal Grating of
Period 0.4 ym and Depth 0.2 um

Order 7 ¢ (°)
-1T 0.18378 -159.223
oT 0.78592 -67.400
-1R 0.01378 +69.755
OR 0.01652 +33.020
Vo cos(e®, - of) Vol b cos(@™; - @)

0.01209° -0.01209"

“Value of product terms in Eq. (13) calculated using data from upper part of table.
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Table 2. Diffraction Efficiencies, Phases, and
Product Terms for a Sinusoidal Grating of
Period 0.6 ym and Depth 0.5 ym

Order 7 o (°)
2T 0.12465 -114.561
-1T 0.33247 101.015
oT 0.20777 146.126
1T 0.31934 81.953
-1R 0.00583 135.301
OR 0.00994 94.930
Vit cos(ef =) Nnlit cos(eli—¢b)  Nnlynt cos(ely— ol

0.00580“ 0.18549“ -0.19129"

“Value of product terms in Eq. (12) calculated using data from upper part of table.

Table 3. Diffraction Efficiencies, Phases, and
Product Terms for a Sinusoidal Grating of
Period 0.8 yum and Depth 0.6 ym

Order n o (°)
-3T 0.03598 -12.010
2T 0.10664 -108.241
-1T 0.14687 75.474

0T 0.06330 87.029
1T 0.51361 -6.953
2T 0.11579 -160.566
-2R 0.00606 -40.757
-1R 0.00079 -43.394
OR 0.00230 +9.918
1R 0.00868 -80.105

Vil 7t cos(ely— o) Nlynt cos(ely=¢h)  Vrkimb cos(¢l) - @l)

-0.05507¢ —-0.04581 0.09446
Vil cos(¢fy= o) oy oy cos(eFy - f)
0.00561 0.00081

“Value of product terms in Eq. (12) calculated using data from upper part of table.

lief gratings with three different periods (0.4, 0.6, and
0.8 um) as a function of the grating depth. Note that for
the grating period of 0.4 um the phase difference remains
close to the 7/2 value, as expected from Eq. (15). In the
same figure is shown (right axis) a graph of the sum of the
efficiencies of all remaining diffracted orders (excluding
the minus first and zeroth orders) as a function of the
grating depth. We can observe that the deviation of the
phase difference (<pT1—<p0T) from the 7/2 value with the
grating depth starts when the sum of the diffraction effi-
ciencies of the remaining diffracted orders increases, and
it occurs in the same sequence of grating period.

4. EXPERIMENTAL RESULTS

Using a method proposed in a previous paper,10 we mea-
sured the phase difference between the minus first and
the zeroth transmitted diffracted orders of surface relief
gratings at Littrow mounting. During the measurement a
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grating recorded in a photoresist film of AZ 1518, coated
on a glass substrate, is repositioned in the same setup in
which it was recorded.!® In order to avoid the effects of
the reflection at the rear side of the substrate, the glass
substrate was index matched with a glass prism.

The accuracy of the measurement is dependent on the
accomplishment of a high-precision repositioning, when a
moiré-like pattern should be formed.'® The experimental
measurements of the phase difference between the nega-
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tive first and the zeroth transmitted diffracted orders
(¢T1—¢g) for holographic surface relief gratings of period
0.8 um and different depths are shown in Fig. 3. For com-
parison, in the same figure are shown the theoretical ex-
pected curves for phase difference (qo?l— <p(7;) for three dif-
ferent grating profiles: sinusoidal, lamellar, and
triangular. Note that despite the large experimental er-
rors, the experimental measurements of the phase differ-
ence (cpTl—q)OT) follow the expected theoretical curve for
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Fig. 2. Phase difference between the minus first and the zeroth diffracted orders by transmission ((p?l— @5) as a function of the grating
depth for sinusoidal relief gratings in photoresist (n=1.645) for the TE polarization and A=457.9 nm and for three different grating
periods 0.4, 0.6, and 0.8 um. In the same graphic (right scale) is shown the sum of the diffraction efficiencies of all other existing dif-

fracted orders (excluding the minus first and zeroth).
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Fig. 3. Experimental results for the phase difference between the minus first and zeroth transmitted diffracted orders (¢7; - ¢f) for a
holographic surface relief photoresist grating of period 0.8 um with different grating depth. In the same figure are shown the theoretical
phase difference between the first and zeroth transmitted diffracted orders (¢”; - ¢}) as a function of the grating depth for three different
grating profiles: lamellar (with filling factor=0.5), sinusoidal, and triangular. The inset is the scanning electron micrograph of the cross

section of the indicated sample.
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Fig. 4. Experimental measurements and corresponding theoretical curves for the phase difference between the minus first and zeroth

diffracted orders ((,DTI—(,Dg) by transmission and by reflection ((p}fl—<p§)

for a holographic surface relief photoresist grating (n=1.645) of

period 0.4 um as a function of the grating depth for the TE polarization and A=457.9 nm.

the sinusoidal profile. Some experimental points deviate
from the curve corresponding to the sinusoidal grating
profile, approaching the curve corresponding to the lamel-
lar grating profile. An analysis of the grating profiles of
such samples by scanning electron microscopy confirm
the changes in the sinusoidal profile, as can be seen in the
inset photograph.

The departure of the phase difference (@Tl—chT) from
the #/2 value as a function of the grating depth is differ-
ent for the three different grating profiles. This occurs as
a result of the different increase, in energy of the remain-
ing diffraction orders as the grating depth increases, for
the different grating profiles. As the sum of the efficien-
cies of the remaining diffracted orders for a lamellar grat-
ing increases more rapidly with the depth than that for a
sinusoidal grating profile, the departure from the =/2
value also occurs more rapidly. For the same reason the
opposite behavior should be expected for the triangular-
shaped grating.

Figure 4 shows the experimental measurement of the
phase difference (qo?l—gog) and (<pf31—qog) for photoresist
gratings of period 0.4 um and different depths. The
squares show the measurement for the transmitted or-
ders (@Tl—cpT), and the triangles show the phase differ-
ence (cp{el— ¢,) measured for the reflected orders.

The measurement of the phase differences between the
reflected orders presents a larger error bar as well as a
larger dispersion compared with the transmitted orders,
because the same mismatch in the grating replacement
produces a greater distortion in the reflected wavefronts
than in the transmitted ones. In addition, the reflection at
the photoresist—glass interface introduces an error in the
phase measurements that can be neglected for the trans-
mitted orders, because their intensities are higher.

Note that for the transmitted orders the phase differ-
ence remains close to 7/2 while the phase difference be-

tween the reflected orders does not. This occurs because
for this period there are only two diffracted transmitted
orders and two reflected diffracted orders, and the diffrac-
tion efficiencies of the reflected orders are negligible in
comparison with those of the transmitted orders. Thus
from Eq. (15) the phase difference between the two more
efficient orders must be close to 7/2.

5. CONCLUSIONS

Using only energy conservation and the symmetry prop-
erties of the grating, we derived a general constraint re-
lating the phases and amplitudes of the diffracted orders
for a lossless symmetrical grating at Littrow mounting.
Although this same constraint can be derived from a gen-
eral treatment of the diffraction problem by using reci-
procity, energy conservation, and the symmetry proper-
ties of a grating, this formulation gives a physical insight
for the phases allowing one to predict the phase-
difference behavior as a function of the grating param-
eters (such as period, depth, and material).

The numerical verification of this phase constraint [Eq.
(12)] allows checking the confidence of the calculated am-
plitude and phase values of the diffracted orders as well
as the method of calculation. The experimental measure-
ments of the phase differences between the minus first
and zeroth diffracted orders demonstrate that both the
behavior expected by the phase constraint and the theo-
retical calculation of the phases are correct.
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