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We discuss conservation laws for gravity theories invariant under general coordinate and local Lorentz
transformations. We demonstrate the possibility to formulate these conservation laws in many covariant
and noncovariant(ly looking) ways. An interesting mathematical fact underlies such a diversity: there is a
certain ambiguity in a definition of the (Lorentz-) covariant generalization of the usual Lie derivative.
Using this freedom, we develop a general approach to the construction of invariant conserved currents
generated by an arbitrary vector field on the spacetime. This is done in any dimension, for any Lagrangian
of the gravitational field and of a (minimally or nonminimally) coupled matter field. A development of the
‘‘regularization via relocalization’’ scheme is used to obtain finite conserved quantities for asymptotically
nonflat solutions. We illustrate how our formalism works by some explicit examples.
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I. INTRODUCTION

As is well known, in the Lagrangian approach every
continuous symmetry of the action gives rise to a conser-
vation law. This is the substance of the Noether theorem
which provides a construction of the corresponding con-
served currents that satisfy certain algebraic and differen-
tial identities. In particular, the energy and momentum of a
physical system are described by the currents that are
generated by the symmetry with respect to time and space
translations. In a similar way, the angular momentum is
described by a current related to the spacetime rotations.

In gravity theory, the definition of energy, momentum,
and angular momentum is a nontrivial problem that has a
long and rich history (see the reviews [1–3], for example).
The difficulty is rooted deeply in the geometric nature of
the gravitational theory and is related to the equivalence
principle which identifies locally gravity and inertia. As a
result, the conservation laws that arise from the general
coordinate (diffeomorphism) invariance normally have the
form of covariant, but not invariant, equations. The energy-
momentum currents in general transform nontrivially
under a change of the local coordinate system or a local
frame. In a recent paper [4] we have discussed the covari-
ance properties of conserved quantities in the framework of
the tetrad approach to general relativity theory.

Along with the covariant conservation laws that are
formulated in terms of the gravitational field variables
independently of the additional geometric structures on a
spacetime manifold, there exist a class of invariant conser-

vation laws. The corresponding conserved currents are
usually associated with a vector field that acts on spacetime
as a generator of a certain symmetry of the gravitational
configuration. However, no systematic and general method
for the construction of such invariant conserved quantities
was ever developed in the literature, at least not to our
knowledge. For example, quite a long time ago Komar
[5,6] proposed a very nice formula that gives reasonable
values of the total energy (mass) and angular momentum
for asymptotically flat configurations. However, although
these formulas have proved their apparent feasibility, and
despite certain achievements [7–21] in explaining their
relevance to the concepts of the gravitational energy and
angular momentum, many important issues remained un-
clear. In particular, the freedom in the choice of the gravi-
tational Lagrangian, of the gravitational field variables, of
the coupling to matter, of the matter Lagrangian, of the
background geometry (is it needed at all?), of the class of
relevant vector fields (should they be necessarily Killing
vector fields? why?); all these questions did not have a
satisfactory answer (in our opinion) in the existing litera-
ture. One of the motivations for the current study can be
formulated as ‘‘understanding Komar.’’

Another motivation is related to the interesting work of
Aros et al. [22,23] who have proposed a new conserved
quantity for asymptotically anti-de Sitter (AdS) space-
times. Actually, their result appeared both surprising and
confusing to us. The reason is that their conservation law
was derived from an invariant Lagrangian with the help of
(apparently) covariant computations, however, the result-
ing conserved current (and the corresponding total charge)
was not a scalar under local Lorentz transformations. How
could this happen? Two immediate guesses naturally can
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be formulated. Either the construction [22,23] is funda-
mentally inconsistent, then it is necessary to find the source
of the inconsistency. Or, if this result is nevertheless con-
sistent, then perhaps one can improve it in such a way that
from an invariant Lagrangian, by using covariant manipu-
lations, one would be able to derive invariant conserved
quantities. At the beginning, we considered the first guess
to be most probably true. However, a careful analysis has
demonstrated that the results of [22,23] are consistent, but
can be improved.

In this paper, we present a detailed exposition of the
corresponding analysis. At the same time, we show that
indeed the results of Aros et al. can be improved along the
lines mentioned above. Namely, one of the aims of our
paper is to systematically investigate the derivation of
covariant and invariant conservation laws for the local
Lorentz and the diffeomorphism symmetry in gravity theo-
ries. As a result, we derive new explicitly invariant con-
servation laws for the currents that are true scalars under
general coordinate and local Lorentz transformations. The
Lagrangian approach seems to be most appropriate when
one discusses generally covariant models. We will thus use
the Lagrangian framework in this study. Nevertheless, it is
worthwhile to recall that the Hamiltonian approach reveals
many other important aspects, for example, the role of the
conserved charges in defining the generators of the corre-
sponding symmetry transformations [24]. These aspects
are discussed in a review [3] (see also the references
therein). For a covariant Hamiltonian formulation see, in
particular, [25–28].

Since both the diffeomorphism and the local Lorentz
symmetry are in the center of our attention, we naturally
turn to the so-called Poincaré gauge approach to gravity
[24,29–33] in which both symmetries are naturally real-
ized. Einstein’s general relativity arises as a particular
(degenerate) case in this framework. In the gauge theory
of gravity based on the Poincaré group (the semidirect
product of the Lorentz group and the spacetime transla-
tions) mass (energy-momentum) and spin are treated on an
equal footing as the sources of the gravitational field. The
gravitational gauge potentials are the local coframe 1-form
#� and the 1-form ��

� of the metric-compatible connec-
tion. The absence of nonmetricity and use of orthonormal
frames yield the skew symmetry of the connection, ��� �
����. The spacetime manifold carries a Riemann-Cartan
geometric structure with nontrivial curvature and torsion
that arise as the corresponding gauge field strengths:
R�� � d��

� � ��
� ^ ��

� and T� � d#� � ��
� ^ #�.

The structure of the paper is as follows. In Sec. II we
consider the consequences of the invariance of a general
Lagrangian of the gravitational field under local Lorentz
transformations of the frames and under spacetime diffeo-
morphisms. The Noether identities corresponding to the
Lorentz symmetry are derived. We then demonstrate that
these identities underlie the possibility to recast the Lie

equation for the diffeomorphism symmetry in an explicitly
covariant form. However, such a ‘‘covariantization’’ is
essentially nonunique, and it is determined by what we
call a generalized Lie derivative. The latter can be intro-
duced on a Riemann-Cartan manifold with the help of an
arbitrary (1, 1) tensorial field that has a ‘‘connection’’-like
transformation law under the action of the Lorentz group.
These observations are subsequently used in Sec. III A to
derive several equivalent forms of the Noether identities
for the diffeomorphism symmetry of the gravitational ac-
tion. In Sec. IV we extend the Lagrange-Noether machi-
nery to the Lagrangian of a matter field with an arbitrary
coupling to gravity (i.e., we allow also for nonminimal
coupling). Section V presents the main results of our paper:
here we give the explicit construction of the invariant
currents associated with an arbitrary vector field. The
next Sec. VI provides a natural extension of the construc-
tion to the case of an arbitrary generalized Lie derivative.
This, in particular, demonstrates the consistency of the
original construction of Aros et al. By applying our general
construction to the case of the Einstein-Cartan theory in
Sec. VII we show that the Komar formula arises as a
special case of our invariant current. Section VIII describes
the relocalization of the currents that is induced by the
change of the Lagrangian by a boundary term. In order to
demonstrate how the general formalism works, in Sec. IX
we apply our derivations to the computation of the con-
served charges (total mass and angular momentum) for
solutions without and with torsion. In the asymptotically
nonflat cases, the conserved charges turn out to be diver-
gent and we need to regularize them. We show that the
‘‘regularization via relocalization’’ method (which we re-
cently used in [4]) successfully works also here. Finally,
Sec. X contains a discussion of the results obtained and
gives an outlook of further possible developments and of
open problems.

Our general notations are as in [32]. In particular, we use
the Latin indices i; j; . . . for local holonomic spacetime
coordinates and the Greek indices �;�; . . . label (co)frame
components. Particular frame components are denoted by
hats, 0̂, 1̂, etc. As usual, the exterior product is denoted by
^, while the interior product of a vector � and a p-form �
is denoted by �c�. The vector basis dual to the frame 1-
forms #� is denoted by e� and they satisfy e�c#� � ���.
Using local coordinates xi, we have #� � h�i dx

i and e� �
hi�@i. We define the volume n-form by � :� # 0̂ ^ � � � ^
#n̂. Furthermore, with the help of the interior product we
define �� :� e�c�, ��� :� e�c��, ���� :� e�c���, etc.,
which are bases for (n� 1)-, (n� 2)-, and (n� 3)-forms,
etc., respectively. Finally, ��1����n � e�n c��1����n�1

is the
Levi-Civita tensor density. The �-forms satisfy the useful
identities:

 #� ^ �� � ����; (1.1)
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 #� ^ ��� � ����� � �
�
���; (1.2)

 #� ^ ���� � ������ � �
�
���� � �

�
����; (1.3)

 #� ^ ����� � ������� � �
�
����� � �

�
�����

� �������; (1.4)

etc. The line element ds2 � g��#� � #� is defined by the
spacetime metric g�� of signature (�;�; � � � ;�).

II. GENERAL LAGRANGE-NOETHER
MACHINERY

We work on a n-dimensional spacetime manifold. The
Poincaré gauge potentials are the coframe #� and the
Lorentz connection ��

�. We assume that the gravitational
Lagrangian n-form V has the form

 V � V�#�; T�; R���; (2.1)

and that it is invariant under local Lorentz transformations.
As usual, let us introduce, according to the canonical
prescription, the following translational and rotational
gauge field momenta (n� 2)-forms [34]:

 H� :� �
@V
@T�

; H�
� :� �

@V

@R�
� : (2.2)

Moreover, we define the canonical energy-momentum and
spin (n� 1)-forms

 E� :�
@V
@#�

; E�� :� �#�� ^H�	; (2.3)

for the gravitational gauge field.
A general variation of the gravitational Lagrangian then

reads
 

�V � �#� ^ E� � ���
� ^ C��

� d��#� ^H� � ���
� ^H�

��; (2.4)

where we have defined the variational derivatives with
respect to (w.r.t.) the gravitational potentials:

 E � :�
�V
�#�

� �DH� � E�; (2.5)

 C �
� :�

�V

���
� � �DH

�
� � E

�
�: (2.6)

For an infinitesimal Lorentz transformation, ��
� �

��� � "
�
�, with "�� � �"��, we have

 �#� � "��#
�; ���

� � �D"��: (2.7)

Substituting this into (2.4), we find

 �V � "���#
� ^ E� �DC

�
��: (2.8)

Thus, the local Lorentz invariance of the gravitational

Lagrangian, �V � 0, yields the Noether identity

 DC�� � #�� ^ E�	 
 0: (2.9)

Now, let us derive the consequences of the diffeomor-
phism invariance of V. Let f be an arbitrary local diffeo-
morphism on the spacetime manifold. It acts with the
pullback map f� on all the geometrical quantities, and
the invariance of the theory means that [35]

 V�f�#�; f�T�; f�R�
�� � f��V�#�; T�; R�

���: (2.10)

Consider an arbitrary vector field � and the corresponding
local 1-parameter group of diffeomorphisms ft generated
along this vector field. Then, using ft in the above formula
and differentiating w.r.t. the parameter t, we find the iden-
tity

 �‘�#�� ^ E� � �‘�T�� ^H� � �‘�R��� ^H�
� � ‘�V:

(2.11)

Here the Lie derivative is given on exterior forms by

 ‘� � d�c � �cd: (2.12)

At first sight, the left-hand side (l.h.s.) of (2.11) does not
look to be invariant under local Lorentz transformations
because of the usual (not covariant) derivatives in (2.12).
However, it is invariant. In order to see this, let us recall the
property of the Lie derivative ‘��’!� � ’‘�!�
��cd’�! which is valid for any exterior form ! and
any function (0-form) ’. Then, taking into account the
local Lorentz transformations #0� � ��

�#
�, E0� �

���1���E�, T0� � ��
�T

�, H0� � ���1���H�, R0� �
��

���
�1���R�

�, and H0�� � ��
���

�1���H
�
�, we

straightforwardly find that under the action of the local
Lorentz transformation, the l.h.s. of (2.11) will be shifted
by the term ���1�����cd��

���DC
�
� � #� ^ E��. This is

zero in view of the Noether identity (2.9).
Let us now notice that the 1-form ���1���d��

� is a flat
Lorentz connection. Then the above observation can be
used as follows. We can take an arbitrary Lorentz-valued
0-form B����� � �B����� and add a zero term,

 B�
��DC�� � #� ^ E��; (2.13)

to the l.h.s. of (2.11). As is easily verified, this addition is
equivalent to the replacement of the usual Lie derivative
(2.12) with a generalized Lie derivative L� :� ‘� �
B�

�	�� when applied to coframe, torsion, and curvature.
This generalized derivative will be covariant provided B��

transforms according to (A2). Here 	�� denote the corre-
sponding Lorentz generators for the object on which the
derivative acts.

There are many options for the choice of the generalized
covariant Lie derivative. One family of generalized Lie
derivatives corresponds to the case in which B�

� � �cA�
�,

where A�
� is an arbitrary Lorentz connection. For this
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family, one can verify that ‘� � �cA�
�	�� � �cD

A
�D

A
�c,

where D
A

:� d� A�
�	�� denotes the covariant derivative

defined by the connection A. We will consider the follow-
ing two possibilities:

 8� :� ‘� � �c��
�	�� � �cD�D�c; (2.14)

 

8

fg

�
:� ‘� � �c�

fg

�
�	�� � �cD

fg

�D
fg

�c: (2.15)

Here ��
� is the dynamical Lorentz connection of the

theory, whereas �
fg

�
� is the Riemannian connection (i.e.,

the anholonomic form of the Christoffel symbols). We
refer the reader to Appendix A for further details.

Yet another possibility satisfying the condition (A2),
that is not directly related to a connection, is given by

 L � :� ‘� ���
�	��; (2.16)

i.e., B�� :� ���
�, where

 ��� :� e��c‘�#�	: (2.17)

This, our third choice of generalized covariant Lie de-
rivative, is very different from the other two, as its exis-
tence is specific for the models with a coframe (tetrad) field
(and a metric). We will call (2.16) a Yano derivative since
its counterpart for the linear group was first introduced in
[36]. See also [37] for similar, but different definitions.

III. GRAVITATIONAL NOETHER IDENTITIES FOR
DIFFEOMORPHISM SYMMETRY

All the above three choices of the covariant Lie deriva-
tive are useful. The most common is the first option (2.14)
which directly yields covariant Noether identities [32].
(For a general discussion of the Noether theorems in
models with local symmetries see [38]).

A. Covariant Noether identities

Using the covariant Lie derivative 8� we recast (2.11)
into
 

�8�#
�� ^ E� � �8�T

�� ^H� � �8�R�
�� ^H�

� � 8�V

� A� dB � 0; (3.1)

from where (with �� :� �c#� denoting the components of
the vector field �), we find

 A � ����DE� � e�cT� ^ E� � e�cR�� ^ C���; (3.2)

 B � ���E� � e�cT
� ^H� � e�cR�

� ^H�
� � e�cV�:

(3.3)

Since the diffeomorphism invariance holds for arbitrary
vector fields �, A and B must necessarily vanish and thus

we find the familiar Noether identities:

 DE� 
 e�cT� ^ E� � e�cR�� ^ C��; (3.4)

 E� 
 e�cV � e�cT
� ^H� � e�cR�

� ^H�
�: (3.5)

B. Covariant Noether identities: another face

The second choice (2.15) brings (2.11) into a similar
form:
 

�8
fg

�#�� ^ E� � �8
fg

�T�� ^H� � �8
fg

�R��� ^H�
� � 8

fg

�V

� A0 � dB � 0: (3.6)

For B we still find (3.3), whereas A0 is different, acquiring
an additional piece proportional to the rotational Noether
identity, namely

 A0 � ����DE� � e�cT
� ^ E� � e�cR�

� ^ C��

� �e�cK����#� ^ E� �DC���	: (3.7)

In accordance with the above general analysis, the differ-
ence of (3.1) and (3.6) is proportional to the difference of
the connections

 K�
� :� �

fg

�
� � ��

�: (3.8)

This quantity is known as contortion 1-form. In particular,
the torsion is recovered from it as T� � K�

� ^ #
�. The

corresponding curvature 2-forms are related via

 R�
� � R

fg

�
� �D

fg

K�
� � K�

� ^ K�
�: (3.9)

Combining together the terms with E�, with the help of
(3.8) and (3.9) we can recast (3.7) into
 

A0 � ����D
fg

�E� � C��e�cK�
��

� C�� ^ �e�cR
fg

�
� � 8

fg

�K���	: (3.10)

Again, since the diffeomorphism invariance holds for an
arbitrary vector field �, we recover the corresponding
Noether identity in the alternative form

 D
fg

�E� � C��e�cK�
�� 
 �e�cR

fg

�
� � 8

fg

�K��� ^ C��:

(3.11)

The identities (3.4) and (3.11) are equivalent, but in con-
trast to the usual (3.4), the alternative form (3.11) is less
known. It was derived previously in [33] using a different
method.

C. ‘‘Noncovariant’’ Noether identities

Besides the above choices, it is still possible to work
with the noncovariant ordinary Lie derivative (2.12). Then
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we start directly with the identity (2.11) which we recast
into
 

�‘�#�� ^ E� � �‘�T�� ^H� � �‘�R��� ^H�
� � ‘�V

�A� dB � 0: (3.12)

Again B is given by (3.3), but A changes into
 

A � ����DE� � e�cT
� ^ E� � e�cR�

� ^ C��

� �e�c�����#� ^ E� �DC���	

� ����dE� � �e�cd#�� ^ E�

� �e�cd��
�� ^ C�� � �e�c��

��dC��	:

(3.13)

As a result of the diffeomorphism invariance for an arbi-
trary � we find yet another form of the Noether identity
(3.4), namely

 d�E� � C��e�c��
�� 
 �‘e�#

�� ^ E� � �‘e���
�� ^ C��:

(3.14)

One may call this form of the Noether identity ‘‘noncovar-
iant’’ since it explicitly involves the noncovariant gravita-
tional field potentials ��

� (and not the corresponding field
strengths) and the ordinary (noncovariant) Lie derivative.
However, just like the noncovariantly looking expression
(2.11), the identity (3.14) is in fact covariant. Moreover, all
the three forms (3.4), (3.11), and (3.14) are completely
equivalent.

IV. MATTER: DYNAMICS AND NOETHER
IDENTITIES

Matter fields can be represented by scalar-, tensor-, or
spinor-valued forms of some rank, and we will denote all of
them collectively as �A, where the superscript A indicates
the appropriate index (tensor and/or spinor) structure. We
will assume that the matter fields �A belong to the space of
some (reducible, in general) representation of the Lorentz
group. For an infinitesimal Lorentz transformation (2.7) the
matter fields transform as

 �0A � �A � ��A; ��A � "���	
�
��
A
B�B: (4.1)

Here �	���
A
B denote the corresponding matrices of gen-

erators of the Lorentz group. For definiteness, we consider
the case when the matter field �A is a 0-form on the
spacetime manifold. This includes scalar and spinor fields
of any rank [39].

A. Lagrangian and field equations

We assume that the matter Lagrangian n-form L de-
pends most generally on �A, d�A and the gravitational
potentials #�, ��

�. According to the minimal coupling
prescription, derivatives of the gravitational potentials are
not permitted. We usually adhere to this principle. How-
ever, Pauli-type terms and Jordan-Brans-Dicke-type terms

may occur in phenomenological models or in the context of
a symmetry breaking mechanism. Also the Gordon decom-
position of the matter currents and the discussion of the
gravitational moments necessarily requires the inclusion of
Pauli-type terms, see [40,41]. Therefore, we develop our
Lagrangian formalism in sufficient generality in order to
cope with such models by including in the Lagrangian also
the derivatives d#�, and d��

� of the gravitational poten-
tials. In view of the assumed invariance of L under local
Lorentz transformations, the derivatives can enter only in a
covariant form, namely

 L � L��A;D�A; #�; T�; R�
��: (4.2)

That is, the derivatives of the matter fields appear only
in a covariant combination, D�A � d�A � ��

� ^

�	���
A
B�B, whereas the derivatives of the coframe and

connection can only appear via the torsion and the curva-
ture 2-forms.

For the total variation of the matter Lagrangian with
respect to the material and the gravitational fields, we find

 �L � �#� ^
@L
@#�

� �T� ^
@L
@T�

� �R�
� ^

@L

@R�
�

� ��A ^
@L

@�A � ��D�A� ^
@L

@D�A (4.3)

 

� �#� ^�� � ���
� ^ 
�� � ��A ^

�L

��A

� d
�
�#� ^

@L
@T�

� ���
� ^

@L

@R��
� ��A ^

@L

@D�A

�
:

(4.4)

Here, as usual, we denote the covariant variational deriva-
tive of L with respect to the matter field �A as

 

�L

��A
:�

@L

@�A �D
@L

@�D�A�
; (4.5)

and the canonical currents of energy-momentum and spin
are defined, respectively, by [42]

 �� :�
�L
�#�

�
@L
@#�

�D
@L
@T�

; (4.6)

 
�� :�
�L

���
�

� �	���
A
B�B ^

@L

@�D�A�
� #�� ^

@L

@T�	
�D

@L

@R�
� :

(4.7)

The principle of stationary action �
R
Vtot � 0, V tot :�

V � L, for the coupled system of the gravitational and
material fields, see (2.4) and (4.4), then yields the dynami-
cal equations:
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�L

��A
� 0; (4.8)

 E � ��� � 0; (4.9)

 C �
� � 


�
� � 0: (4.10)

B. Lorentz symmetry

It is straightforward to derive the Noether identities
following from the invariance of L under the local
Lorentz group and under diffeomorphisms. Using the in-
finitesimal transformations (2.7) and (4.1), we find for the
Lorentz symmetry:
 

�L � "��

�
#� ^�� �D
�� � �	

�
��
A
B�B ^

�L

��A

�

� d
�
"��

�
�
�� � �	

�
��
A
B�B ^

@L

@D�A

� #� ^
@L

@T�
�D

@L

@R��

��
� 0: (4.11)

The term in the total derivative vanishes identically in view
of the definition (4.7) of the spin current 
��. Then, from
the arbitrariness of "��, we find the corresponding Noether
identity:

 D
�� � #�� ^��	 
 ��	���AB�B ^
�L

��A � 0: (4.12)

With� we denote ‘‘weak identities,’’ i.e., an identity valid
assuming that the matter field equations are satisfied.

C. Diffeomorphism symmetry

For a diffeomorphism generated by an arbitrary vector
field �, we find directly from (4.3):

 ‘�L � �‘�#
�� ^

@L
@#�

� �‘�T
�� ^

@L
@T�

� �‘�R�
��

^
@L

@R��
� �‘��A� ^

@L

@�A � �‘�D�A� ^
@L

@D�A :

(4.13)

In complete analogy to the purely gravitational case, we
have a wide choice of covariant Lie derivatives which we
can use in the above identity instead of the ordinary Lie
derivative ‘�. However, we will not repeat once again the
detailed analysis of all possibilities, taking into account the
equivalence of the final results. Instead, here we give de-
tails for the covariant option (2.14) only. We then find
 

� 8�L� �8�#�� ^
@L
@#�

� �8�T�� ^
@L
@T�

� �8�R���

^
@L

@R��
� �8��A� ^

@L

@�A � �8�D�A� ^
@L

@D�A

� A� dB � 0; (4.14)

where, after some algebra, we find
 

A � ���c#��D
�L
�#�

� ��cT�� ^
�L
�#�

� ��cR�
�� ^

�L
���

�

� ��cD�A� ^
�L

��A ; (4.15)

 

B � ��c#��
@L
@#�

� ��cT�� ^
@L
@T�

� ��cR��� ^
@L

@R�
�

� ��cD�A� ^
@L

@D�A � �cL: (4.16)

Using the fact that � is a pointwise arbitrary vector field,
we derive the following Noether identities from B � 0 and
A � 0, respectively:
 

�� 
 e�cL� �e�cD�A� ^
@L

@D�A

�D
@L
@T�

� �e�cT�� ^
@L

@T�
� �e�cR�

�� ^
@L
@R�

� ;

(4.17)

and

 D�� 
 �e�cT
�� ^�� � �e�cR�

�� ^ 
�� � w�

� �e�cT�� ^�� � �e�cR�
�� ^ 
��; (4.18)

where

 w� :� �e�cD�A�
�L

��A � 0: (4.19)

Equation (4.17) yields the explicit form of the canonical
energy-momentum of matter, with the first line representing
the result known in the context of the special-relativistic
classical field theory. The second line in (4.17) accounts for
the possible Pauli terms as well as for Lagrange multiplier
terms in the variations with constraints and it is absent for
the case of minimal coupling. The first line in (4.18) is
given in the strong form, without using the field equations
for matter (4.8).

In complete analogy to Sec. III B and III C it is possible
to derive the ‘‘Riemannian’’ and the ‘‘noncovariant’’ ver-
sions of the Noether identity (4.18). By using instead (2.14)
the covariant Lie derivative (2.15) we then obtain

 D
fg

��� � 

�
�e�cK�

�� � �e�cR
fg

�
� � 8

fg

�K�
�� ^ 
��;

(4.20)

whereas replacement of 8� by the ordinary Lie derivative
(2.12) yields

 d��� � 
��e�c��
�� � �‘e�#

�� ^�� � �‘e���
�� ^ 
��:

(4.21)
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The three forms of the Noether identity (4.18), (4.20),
and (4.21) are equivalent. In [43] the metric-affine counter-
part of (4.20) was used to demonstrate that structureless
test particles always move along Riemannian geodesics.

V. CURRENTS ASSOCIATED WITH A VECTOR
FIELD

In the two previous sections we have analyzed the
Noether identities which follow from the diffeomorphism
symmetry generated by any vector field �. The correspond-
ing covariant currents do not depend on the latter.
However, there exists a class of invariant conserved cur-
rents which are associated with a given (though arbitrary)
vector field. A notable example is the well-known Komar
construction [5,6]. As another example, take a symmetric
energy-momentum tensor Tj

i (which is covariantly con-
served in diffeomorphism-invariant theories) and a Killing
field � � �i@i (that generates an isometry of the space-
time). Then ji :� �jTj

i is a conserved current, and a
conserved charge is defined as the integral

R
S j

i@ic� over
a (n� 1)-hypersurface S. Moreover, it is possible to
construct a conserved current (n� 1)-form for any solu-
tion of a diffeomorphism-invariant model even when � is
not a Killing field [19]. Such a current and the correspond-
ing charge are scalars under general coordinate
transformations.

In this section, we derive globally conserved currents
associated with a vector field by making use of the third
covariant Lie derivative, namely, the Yano derivative
(2.16). Note that it is defined without any connection.

A. Gravitational current

We start from the identity (2.11) for the gravitational
Lagrangian, and replace the ordinary Lie derivative ‘� with
the covariant Yano derivative L�. Then using the proper-
ties (A18) and (A19), we find
 

�L�#�� ^ E� � �L�T�� ^H� � �L�R��� ^H�
� �L�V

� L�#� ^ E� �L���
� ^ C�� � dJ

grav��	 � 0;

(5.1)

where we introduced the scalar (n� 1)-form

 J grav��	 :� �cV �L�#
� ^H� �L���

� ^H�
�:

(5.2)

By making use of the definitions of the Yano derivative
(A12) and (A13), and taking into account the Noether
identity (3.5), we recast this current into the equivalent
form

 J grav��	 � d���H� ���
�H�

�� � �
�E� ���

�C��:

(5.3)

B. Matter current

In complete analogy with the previous subsection, start-
ing now from the identity (4.13) for the material
Lagrangian, and replacing the ordinary Lie derivative ‘�
with the covariant Yano derivative L�, we obtain

 L �#
� ^

@L
@#�

�L�T
� ^

@L
@T�

�L�R�
� ^

@L

@R��
�L��A ^

@L

@�A �L�D�A ^
@L

@D�A �L�L

� L�#� ^�� �L���
� ^ 
�� �L��A ^

�L

��A � dJ
mat��	 � 0: (5.4)

Here the (n� 1)-form of the matter current is defined by
 

J mat��	 :� �cL�L�#
� ^

@L
@T�

�L���
� ^

@L

@R�
�

�L��A ^
@L

@D�A : (5.5)

Again using the definitions of the Yano derivative (A12)
and (A13), together with the Noether identity (4.17), we
find that
 

J mat��	 � �d
�
��

@L
@T�

���
� @L

@R��

�
� ����

���
�
��: (5.6)

C. Total current

Finally, for the coupled system of gravitational and
matter fields described by the total Lagrangian Vtot � V �

L, the diffeomorphism invariance of Vtot gives rise to the
total current (n� 1)-form
 

J ��	 :� J grav��	 � J mat��	

� �c�V � L� �L��A ^
@L

@D�A

�L�#
� ^

�
H� �

@L
@T�

�

�L���
� ^

�
H�

� �
@L

@R��

�
: (5.7)

By combining (5.1) and (5.4), we verify that the exterior
derivative of this current is
 

dJ ��	 � L�#
� ^ �E� � ��� �L���

� ^ �C�� � 

�
��

�L��A ^
�L

��A : (5.8)
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Finally, from (5.3) and (5.6), we find
 

J ��	 � d
�
��c#��

�
H� �

@L
@T�

�
���

�
�
H�

� �
@L

@R��

��
� ��c#���E� � ��� ���

��C�� � 

�
��: (5.9)

As follows from (5.8), for solutions of the coupled system
of gravitational plus matter field equations (4.8), (4.9), and
(4.10), the total current (n� 1)-form (5.7) is conserved:
dJ ��	 � 0 for any �. Hence, it is possible to define a
corresponding conserved charge Q��	 by integrating
J ��	 over a (n� 1)-dimensional spatial hypersurface S.
Moreover, as we see from the Eq. (5.9), on the solutions of
the field equations (4.8), (4.9), and (4.10), this current is
expressed in terms of a superpotential (n� 2)-form. As a
result, the corresponding charge can be computed as an
integral over the spatial boundary @S:

 

Q��	 :�
Z
S
J ��	

�
Z
@S

�
��c#��

�
H� �

@L
@T�

�

���
�
�
H�

� �
@L

@R��

��
: (5.10)

For the usual case of minimally coupled matter @L=@T� �
0 and @L=@R�� � 0, and this expression then simplifies
considerably.

As a historic remark, let us mention that similar con-
structions for the matter current were described in the
literature in the framework of the Einstein-Cartan theory
[7,44,45], and also in the context of metric-affine gravity
[46]. However, the conservation of those currents was
derived assuming a (Killing) symmetry of the gravitational
configuration. We can recover the latter result as follows. If
we assume minimal coupling of matter to gravity and
choose � as a generalized Killing vector which satisfies
L�#� � 0 (cf. Eq. (A21)) and L���

� � 0, then (5.6)
yields the matter current J mat��	 � ���� ���

�
��,
which is conserved in view of (5.4) on the solutions of
the matter field equations. For spinless matter, i.e. 
�� �
0, it is sufficient for � to satisfy the usual Killing equation,
L�#� � 0.

In contrast to that, it is worthwhile to stress that in our
derivations we never made any assumptions concerning the
vector field �. The conservation of the current J ��	 and the
existence of the corresponding charge Q��	 do not depend
on whether � is a usual/generalized Killing vector or not.
Note also that we did not specify either the dimension of
spacetime or the form of the gravitational Lagrangian.

VI. GENERALIZED LIE DERIVATIVES AND
COVARIANT CURRENTS

In the previous section, we have applied the Lie deriva-
tive L� in the sense of Yano to obtain invariant conserved

currents associated with a vector field. This is one of our
main results. However, the existence of arbitrary general-
ized Lie derivatives (see Appendix A) opens additional
possibilities. Let us recall that in Sec. II, in particular,
see Eq. (2.13), we discovered that all generalized Lie
derivatives (i.e., for any (1, 1) field B��) are admissible
for the analysis of the conservation laws related to the
diffeomorphism symmetry. The specific examples for the
corresponding Noether identities were considered in
Sec. III.

So, a natural question arises: Can we find other con-
served currents for the generalized Lie derivatives (for an
arbitrary B��)? The answer is positive. Without repeating
the computations, we just formulate the result.

Given a generalized Lie derivative L� defined by some
B��, the diffeomorphism invariance of the total
Lagrangian V tot of the coupled gravitational and matter
fields associates to a vector field � (that generates a diffeo-
morphism) a current (n� 1)-form
 

JL��	 :� �c�V � L� � L��A ^
@L

@D�A

� L�#
� ^

�
H� �

@L
@T�

�

� L���
� ^

�
H�

� �
@L

@R��

�
: (6.1)

The subscript L reflects the fact that this current is defined
with the help of the generalized Lie derivative L�.
Moreover, this current has two basic properties: (i) it sat-
isfies
 

d�JL��	� � L�#
� ^ �E� � ��� � L���

� ^ �C�� � 

�
��

� L��A ^
�L

��A : (6.2)

(ii) it admits the representation
 

JL��	 � d
�
��c#��

�
H� �

@L
@T�

�
� ��c��

� � B�
��



�
H�

� �
@L

@R��

��
� ��c#���E� � ���

� ��c��� � B����C�� � 

�
��: (6.3)

Consequently, for solutions of the field equations (4.8),
(4.9), and (4.10), the new currents are conserved,
d�JL��	� � 0, and the corresponding charges can be com-
puted as an integral over the spatial boundary:
 

QL��	 :�
Z
S
JL��	 �

Z
@S

�
��c#��

�
H� �

@L
@T�

�

� ��c��� � B���
�
H�

� �
@L

@R��

��
: (6.4)

When B�� � ���
�, we recover (5.7), (5.8), (5.9), and

(5.10) in view of (A15). Below we describe a number of
additional particular cases.
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A. Covariant current for natural covariant Lie
derivative

The covariant Lie derivative 8� � D�c � �cD is defined
by the dynamical connection ��

� of the gravitational
theory (hence the name natural). It corresponds to the
choice B�� � �c���. As a result, the conserved current
J���	 (which is given by (6.1) with L� replaced with 8�)
gives rise to the charge

 Q���	 :�
Z
S
J���	 �

Z
@S

�
��c#��

�
H� �

@L
@T�

��
: (6.5)

This quantity is nontrivial only when the gravitational
Lagrangian V depends on the torsion, and/or for nonmini-
mal coupling of matter. For all other cases this charge is
identically zero. For example, for the usual Einstein-Cartan
theory we have H� � 0, and for the minimal coupling the
derivative @L=@T� � 0 also vanishes, hence the above
charge is trivial.

B. Covariant current for Riemannian covariant Lie
derivative

The Riemannian covariant Lie derivative 8

fg

� � D
fg

�c �

�cD
fg

is defined by the Christoffel connection �
fg

�
� (hence

the notation with the subscript
fg

). It corresponds to the

choice B�� � �c�
fg

�
�. The corresponding current Jfg��	 is

obtained by substituting L� with 8

fg

� in (6.1). It yields the
charge

 

Qfg��	 :�
Z
S
Jfg��	

�
Z
@S

�
��c#��

�
H� �

@L
@T�

�

� �cK�
�
�
H�

� �
@L

@R�
�

��
: (6.6)

Here K�
� is the contortion, see (3.8). As a result, this

charge reduces to (6.5) for all torsion-free solutions, as is
the case, for example, in the standard general relativity
theory.

C. Covariant current for background covariant Lie
derivative

Yet another option arises when we introduce a nondy-
namical background connection ���

� (that is different from

both ��
� and �

fg

�
�) and define a generalized Lie derivative

with the help of B�� � �c ���
�. Then the key combination

is �c��� � B�� � �c���
�, and the corresponding con-

served charge reduces to

 

Q���	 :�
Z
S
J���	

�
Z
@S

�
��c#��

�
H� �

@L
@T�

�

� �c���
�
�
H�

� �
@L

@R�
�

��
: (6.7)

The difference ���
� :� ��

� � ���
� normally should be

chosen so that it provides a finite value for integral over the
spatial boundary. Similar constructions for the computa-
tions of conserved quantities in the gauge theories of
gravity were used in [4,25–28,47,48].

D. Noncovariant current for ordinary Lie derivative

Finally, one can also consider the case when B�� � 0.
Then the generalized Lie derivative reduces to the ordinary
one, L� � ‘�. As a result, we find the following charge
 

Q0��	 :�
Z
S
J0��	

�
Z
@S

�
��c#��

�
H� �

@L
@T�

�

� �c���
�
H�

� �
@L

@R�
�

��
: (6.8)

Because of the noncovariant character of ‘�, this quantity
is not invariant under local Lorentz transformations, i.e.
Q0��	 depends in general on the choice of frame on the
spatial boundary @S. The general expression (6.8) reduces
to the result found by Aros et al. for the specific Lagrangian
V considered in [22], see also [23,49].

VII. EINSTEIN(-CARTAN) GRAVITY

Komar [5] gave a formula for the computation of the
gravitational energy in Einstein’s general relativity theory
which proved to give correct (i.e., physically reasonable)
results for asymptotically flat configurations. Later [6] it
was recognized that this formula also yields the angular
momentum for rotating configurations. Yet, it remained
unclear (for us, at least) how this nice formula fits into a
general Noether scheme. In the few relevant studies, the
explanations were based on an assumption that � is a
Killing vector either of the physical spacetime geometry
or of a background geometry [7–12]. One of the motiva-
tions for the current work was to clarify the status of the
Komar construction.

Let us consider the Einstein-Cartan theory that is de-
scribed by the Hilbert-Einstein Lagrangian plus, in general,
a cosmological term:

 V � �
1

2�
�R�� ^ ��� � 2���: (7.1)

Here � is the gravitational coupling constant, and � is the
cosmological constant (with a dimension of the inverse
length square). Making use of (2.2), (2.3), and (3.5), we
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find explicitly

 H� � 0; E� � �
1

2�
�R�� ^ ���� � 2����; (7.2)

 H�� �
1

2�
���; E�� � 0: (7.3)

We assume minimal coupling of matter, so that @L=@T� �
0 and @L=@R�� � 0. The covariant current (5.7) then
reduces to
 

J ��	 � �c�V � L� �L��A ^
@L

@D�A

�
1

2�
L���� ^ ���: (7.4)

This current is conserved, dJ ��	 � 0, on the solutions of
the field equations (4.8), (4.9), and (4.10), which now read

 

1
2R

�� ^ ���� � ��� � ���; (7.5)

 

1
2T

� ^ ���� � �
��; (7.6)

 

�L

��A
� 0: (7.7)

On the other hand, ‘‘on shell’’ from (5.9) we read off

 J ��	 �
1

2�
df��dk� �c�#� ^ T��	g; (7.8)

where we used (7.2), (7.3), and (A17) (recall that k :�
��#� is the 1-form dual to the vector �). For the solutions
of (7.6) for 
�� � 0, i.e. for spinless matter or in vacuum,
the torsion vanishes, T� � 0, and hence the total charge
(5.10) finally reduces to

 Q ��	 �
1

2�

Z
@S

�dk: (7.9)

This invariant conserved quantity Q��	 is precisely the
(n-dimensional generalization of the) Komar formula.

VIII. RELOCALIZATION OF THE CURRENTS

All our constructions are invariant under coordinate and
local Lorentz transformations. However, besides the local
coordinate and the local Lorentz freedom, there is another
ambiguity in the definition of the conserved quantities.
Namely, the field equations always allow for a relocaliza-
tion of the gravitational field momenta. As a result, the
conserved currents and the values of the total charges can
be changed by means of the relocalization of a translational
and rotational momenta.

More specifically, we consider here the case when a
relocalization is produced by the change of the gravita-
tional field Lagrangian by a total derivative:

 V 0 � V � d	; 	 � 	�#�;���; T�; R���: (8.1)

The term d	 changes only the boundary part of the action,
leaving the field equations unchanged. We will assume a
boundary (n� 1)-form 	 whose general variation can be
written as

 �	 � �#� ^
@	

@#�
� ���

� ^
@	

@��
� � �T

� ^
@	

@T�

� �R�� ^
@	

@R��
: (8.2)

Then, taking the exterior derivative of (8.2) and expressing
the variations of d#�, dT�, d��

�, and dR�� in terms of the
variations of #�, T�, ��

�, and R��, we find

 

@d	

@#�
� �d

@	

@#�
� ��

� ^
@	

@#�
� R�� ^

@	

@T�
; (8.3)

 

@d	

@T�
� d

@	

@T�
� ��

� ^
@	

@T�
�
@	

@#�
; (8.4)

 

@d	

@R�
� � d

@	

@R�
� � ��

� ^
@	

@R�
� � ��

� ^
@	

@R�
� �

@	

@��
�

� #�� ^
@	

@T�	
: (8.5)

We assume that, just like the original Lagrangian V, the
boundary term d	 is invariant under Lorentz transforma-
tions. Then (making use of the Lagrange-Noether machi-
nery outlined above) one can verify that
 

@d	

@��
� � �d

@	

@��
� � ��

� ^
@	

@��
� � ��

� ^
@	

@��
�

� #�� ^
@	

@#�	
� T�� ^

@	

@T�	
� R�

� ^
@	

@R�
�

� R�
� ^

@	

@R��

 0: (8.6)

Note that unlike the n-form d	, the (n� 1)-form 	 itself
does not necessarily need to be a scalar under local Lorentz
transformations. Using (8.3), (8.4), and (8.5) in the general
definitions (2.2) and (2.3), we then find the relocalized
momenta and gravitational currents:

 H0� � H� � d
@	

@T�
� ��

� ^
@	

@T�
�
@	

@#�
; (8.7)

 

H0�� � H�
� � d

@	

@R�
� � ��

� ^
@	

@R�
� � ��

� ^
@	

@R�
�

�
@	

@��
� � #

�� ^
@	

@T�	
; (8.8)

 E0� � E� � d
@	

@#�
� ��

� ^
@	

@#�
� R�

� ^
@	

@T�
; (8.9)
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E0�� � E�� � #�� ^ d
@	

@T�	
� #�� ^ ��	

� ^
@	

@T�

� #�� ^
@	

@#�	
: (8.10)

Accordingly, the relocalized translational and rotational
momenta (8.7) and (8.8) determine the relocalized con-
served currents and charges when they are substituted into
the corresponding formulas (5.7), (5.8), (5.9), and (5.10).

The choice of a boundary term is fairly arbitrary. For
example, a ‘‘universal’’ relocalization (in the sense that it is
available in all spacetime dimensions) is defined with the
help of a background connection ���

�. The latter can be
introduced as the limit of the dynamical connection ��

� at
spatial infinity @S, for instance, or fixed from other argu-
ments. Given the background connection, one can always
(for any n) add to a Lagrangian V the covariant boundary
term �0d	0 with a constant �0 and the (n� 1)-form

 	0 :� ��� ^����; ���� :� ��� � ����: (8.11)

Then the field momenta are relocalized as
 

H0� � H� � �0���� ^����;

H0�� � H�� � ��1�n�0���:
(8.12)

Alternatively, there is a possibility to make the arbitrari-
ness in the choice of the boundary term more narrow by
restricting one’s attention to the topological invariants
which always can be added to the action. This option,
however, depends on the spacetime dimension. For in-
stance, in four dimensions (n � 4) we can consider a 3-
parameter family of boundary forms

 	 :� �1	1 � �2	2 � �3	3; (8.13)

 	1 :� T� ^ #�; (8.14)

 	2 :� ��
� ^ �R�

� � 1
3��

� ^ ��
��; (8.15)

 	3 :� �������� ^ �R�� � 1
3�

�� ^ ��
��: (8.16)

These 3-forms correspond to the Nieh-Yan [50,51], the
Pontryagin, and the Euler topological invariants, respec-
tively. They represent the so-called gravitational (transla-
tional and rotational) Chern-Simons 3-forms, see [52] for
more details. Substituting this into (8.7), (8.8), (8.9), and
(8.10) we then obtain a particular (‘‘topological’’) relocal-
ization:

 H0� � H� � 2�1T�; (8.17)

 H0�� � H�� � �1#� ^ #� � 2�2R�� � 2�3�����R
��;

(8.18)

 E0� � E� � 2�1DT�; (8.19)

 E0�� � E�� � 2�1#�� ^ T�	: (8.20)

We will use this specific relocalization in the subsequent
discussion of the regularization of invariant conserved
quantities.

XI. EXAMPLES

In order to illustrate how our general formalism works,
in this section we specialize to the case of four-dimensional
theories: n � 4, � � 8G=c3. At first, we study the purely
Riemannian (without torsion) solutions of the Einstein-
Cartan theory which have asymptotic AdS behavior.
After that, we consider similar configurations with torsion
that arise as solutions in the quadratic Poincaré gauge
gravity theory.

A. Kerr-AdS solution in Einstein-Cartan theory

When the cosmological constant � is nontrivial, the
Einstein-Cartan field equations (7.5) and (7.6) admit in
vacuum the generalized Kerr solution with AdS asymp-
totics (� < 0). We use a spherical local coordinate system
(t, r, �, ’), and choose the coframe as

 # 0̂ �

����
�

�

s
�cdt� a
sin2�d’	; (9.1)

 # 1̂ �

����
�

�

s
dr; (9.2)

 # 2̂ �

����
�

f

s
d�; (9.3)

 # 3̂ �

����
f
�

s
sin���acdt�
�r2 � a2�d’	: (9.4)

Here the functions and constants are defined by

 � :� �r2 � a2�

�
1�

�
3
r2

�
� 2mr; (9.5)

 � :� r2 � a2cos2�; (9.6)

 f :� 1�
�
3
a2cos2�; (9.7)

 m :�
GM

c2 ; 
 :�
1

1� �
3 a

2
; (9.8)

and 0< t <1, 0< r <1, 0< �<, and 0<’< 2.
For this solution the curvature has two nonvanishing irre-
ducible pieces: R�� � �1�R�� � �6�R�� (see Appendix B
for definitions of the irreducible parts of the curvature).
The curvature scalar is R � �4�, and the Weyl 2-form
(B14) has a very special structure. Namely, it is expressed
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only in terms of a certain scalar 2-form w � 1
2w��#

� ^

#� as follows:
 

W�� � ~w���w� w��w� 1
3
��w ^ �w�#� ^ #�

� 1
3
��w ^ w����: (9.9)

Here ~w�� :� 1
2�

����w��. The 2-form w is given by a
simple formula:

 w � u# 0̂ ^ # 1̂ � v# 2̂ ^ # 3̂; (9.10)

where its two nontrivial components u :� w0̂ 1̂ and v :�
w2̂ 3̂ are functions of r and �. Their explicit form is not of
interest since we will need only the two invariants

 

��w ^ �w� �
3mr�r2 � 3a2cos2��

�3 ; (9.11)

 

��w ^ w� �
3ma cos��3r2 � a2cos2�

�3 : (9.12)

One can straightforwardly find u and v from these two
equations, but as we said, we do not need these functions
explicitly.

For a vector field � � �i@i with constant holonomic
components, �i, in the coordinate system used in (9.1),
(9.2), (9.3), and (9.4), the computation of conserved
charges is fairly straightforward. Substituting (C1) into
(7.9), and using (C2)–(C4), we find in the asymptotically
AdS case (� < 0):

 Q ��	 � �0

�

Mc2

2
�

4
c�
3�

r1�r2
1 � a2�

�
� �3
2Mca: (9.13)

Here r1 is the radius of the spatial boundary sphere @S. It is
worthwhile to note that Q�@r	 � 0 and Q�@�	 � 0.

When � � 0, we recover the usual Komar result with
Q�@t	 � Mc2=2 and Q�@’	 � �Mca. For a nontrivial
negative cosmological constant, the conserved charge
Q�@’	 � �
2Mca is finite, but Q�@t	 diverges as r1 !
1. Hence, a regularization is needed.

B. Regularization via relocalization

In a recent paper [4], we have demonstrated that total
conserved quantities can be regularized by means of a
relocalization of the gravitational field momenta. In
Sec. VIII, we discussed a specific relocalization generated
by a boundary term in the action. Here we will use the same
method to remove the divergence of the conserved charge
(9.13) for the Kerr-AdS configuration.

A straightforward inspection shows that one can solve
the regularization problem with the help of the relocaliza-
tion (8.17), (8.18), (8.19), and (8.20) generated by the
Chern-Simons boundary terms (8.14), (8.15), and (8.16).
More exactly, we can verify that the translational and the
rotational Chern-Simons forms (8.14) and (8.15) do not

affect the total charge, whereas the Euler boundary term
(8.16) does the job. Hence we put �1 � �2 � 0, and
consider the relocalization H�� ! H0�� � H�� �

2�3�����R
�� that is generated by the change of the

Lagrangian V ! V 0 � V � �3d	3 by the boundary term
(8.16). Using (7.3) and the irreducible decomposition of the
curvature (B9), we find

 H0�� �
�

1

2�
�

4�3�
3

�
��� � 2�3����� �R��; (9.14)

with �R�� :� R�� � �
3 #

� ^ #�. The term ��� contributes
to Q0��	 with the usual Komar expression �dk which
makes the conserved charge (9.13) infinite. Hence we
choose �3 � 3=8�� and eliminate the corresponding
term completely. As a result, we end with the regularized
invariant conserved charge

 Q 0��	 �
Z
@S

���H0��

� �
3

4��

Z
@S
������e

�cD��� �R��: (9.15)

On the Kerr-AdS solution, the relocalized momentum
(9.14) is constructed in terms of the Weyl 2-form

 H0�� � �
3

4��
�����W

��: (9.16)

Making use of (A17) and (C1), and of the explicit form of
the Weyl 2-form for the Kerr-AdS spacetime, c.f. Eq. (9.9),
we derive
 

��������W�� � 2
3�
��w ^ �w���2!� ��

� ��w ^ w��2!� ��	: (9.17)

Substituting now (9.11), (9.12), and (C1)–(C4), we finally
calculate the regularized charge:

 Q 0��	 � �0
Mc2 � �3
2Mca: (9.18)

In other words, we found finite values of the covariant total
charge Q for the Kerr-AdS solution, which read

 Q 0�@t	 � 
Mc2; Q0�@’	 � �
2Mca;

Q0�@r	 � 0; Q0�@�	 � 0:
(9.19)

Our results agree with those in [53,54]. It is worthwhile to
note that the relocalized gravitational Lagrangian for �3 �
3=8�� can be written as

 V 0 �
3

8��
����� �R�� ^ �R��: (9.20)

This Lagrangian was studied extensively in the framework
of various approaches to gravity on the basis of the de Sitter
group, see [55–58], for example. The same action was also
used in [22,23] for the derivation of the conserved current
associated with a vector field.
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Our results (9.19) agree with those in [22,23] for this
particular case (note that the timelike Killing vector used in
[22] corresponds to 
@’ in our notation). However, such
an agreement appears to be a mere (although remarkable)
coincidence since in [22] the authors consider the non-
covariant charge (6.8), which depends in general on the
choice of a frame at spatial infinity.

In order to illustrate this difference, let us take the Kerr-
AdS coframe (9.1), (9.2), (9.3), and (9.4) and evaluate the
noninvariant charge Q0�@t	 for a tetrad #0� that is obtained
from the original one by means of the local Lorentz trans-
formation

 # 0̂0 � # 0̂ cosh��xi� � # 1̂ sinh��xi�; (9.21)

 # 0̂1 � # 0̂ sinh��xi� � # 1̂ cosh��xi�; (9.22)

 # 0̂2 � # 2̂; # 0̂3 � # 3̂: (9.23)

Choosing the function as ��xi� � �0rt sin� (�0 is a con-
stant) we find that Eq. (6.8) yields Q00�@t	 � 
Mc2 �
�062
m=��. The value of the charge can thus be arbi-
trary, depending on the constant �0. This charge can even
be made divergent. For � � �0r

2t sin�, for example, we
find Q00�@t	 � 
Mc2 � r1�062
m=�� which diverges
when the spatial boundary is r1 ! 1. It is certainly true
that the parameters of the Lorentz transformation above
look quite exotic, so to say. However, this demonstrates, as
a matter of principle, the fact thatQ0 depends on the choice
of a frame.

In contrast, our invariant formula (5.10) yields the same
finite value for all coordinates and all frames, which is
much more advantageous.

C. Kerr-AdS solution with torsion

In vacuum, the Einstein-Cartan theory coincides with
Einstein’s general relativity theory, and all the solutions are
characterized by a vanishing torsion. In order to test our
approach for the configurations with torsion, we will con-
sider a different model, namely, the quadratic Poincaré
gauge theory with the Lagrangian [59–61]

 V � �
1

2�

�
T� ^ #� ^ ��T� ^ #�� �

3

4�
R�� ^ �R��

�
:

(9.24)

This model was extensively studied [53,59–62] and it was
demonstrated that it is a natural generalization of the
Einstein-Cartan theory. In particular, it was shown that
this model has a correct Einsteinian limit. Note that we
use a slightly different notation for the coupling constants
in (9.24), as compared to [59–61]. Here � � 8G=c3 and
� has dimensions of �length��2.

The translational and the rotational gauge field momenta
(2.2) now read:

 H� �
1

�
#� ^ ��T� ^ #��; (9.25)

 H�� �
3

4��
�R��: (9.26)

Substituting these expressions into the vacuum field equa-
tions E� � 0 and C�� � 0, one can verify that there is a
generalized Kerr-AdS solution that is described as follows.
The coframe is again given by the above formulas (9.1),
(9.2), (9.3), and (9.4), whereas the components of the
torsion 2-form read:
 

T 0̂ �

����
�

�

s �
�v1#

0̂ ^ # 1̂ � 2v4#
2̂ ^ # 3̂

�

����
�

�

s
T ^ �v2# 2̂ � v3# 3̂�

�
; (9.27)

 T 1̂ � T 0̂; (9.28)

 T 2̂ �

����
�

�

s
T ^ �v5#

2̂ � v4#
3̂�; (9.29)

 T 3̂ �

����
�

�

s
T ^ ��v4#

2̂ � v5#
3̂�: (9.30)

Here we have denoted the functions

 v1 �
m�r2 � a2cos2��

�2 ; v4 � �
mra cos�

�2 ;

v5 �
mr2

�2 ;

(9.31)

 v2 � �

����
f
�

s
mra2 sin� cos�

�2 ; v3 � �

����
f
�

s
mr2a sin�

�2 ;

(9.32)

and introduced the 1-form T :� # 0̂ � # 1̂. One can verify
that the axial torsion piece vanishes for this configuration,
while the torsion trace is proportional to the above 1-form,
that is:

 #� ^ T
� � 0; T � e�cT

� � �
m��������
��
p T : (9.33)

The Riemann-Cartan curvature 2-form of this solution
consists of only two irreducible parts (see the definitions in
Appendix B),

 R�� � �4�R�� � �6�R��; (9.34)

which read explicitly as follows

 

�4�R�� �
�mr
3�

�4�R��; �6�R�� �
�
3
#� ^ #�:

(9.35)
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Here the nonvanishing components of the fourth irreduc-
ible part are given by �4�R0̂ 2̂ � ��4�R2̂ 0̂ � �4�R1̂ 2̂ �

��4�R2̂ 1̂ � T ^ # 2̂, and �4�R0̂ 3̂ � ��4�R3̂ 0̂ � �4�R1̂ 3̂ �

��4�R3̂ 1̂ � T ^ # 3̂.
Substituting all this into (9.25) and (9.26), we explicitly

find the translational momentum
 

H0̂ �
1

�

����
�

�

s �
�2v4# 0̂ ^ # 1̂ � 2v5# 2̂ ^ # 3̂

�

����
�

�

s
T ^ �v3# 2̂ � v2# 3̂�

�
; (9.36)

 H1̂ � �H0̂; (9.37)

 H2̂ �
1

�

����
�

�

s
T ^ ��v4#

2̂ � �v1 � v5�#
3̂	; (9.38)

 H3̂ �
1

�

����
�

�

s
T ^ ��v5 � v1�# 2̂ � v4# 3̂	; (9.39)

and the rotational field momentum

 H�� �
1

4�
��� �

mr
4��

��4�R��: (9.40)

We consider again vector fields with constant compo-
nents �i in the coordinate system used above. Then, from
(9.1)–(9.4) and (9.36)–(9.39), for the translational contri-
bution described by the first term in (5.10) we obtain:

 

Z
@S
��c#��H� � �0�
Mc2� � �3

�
�

2

3

Mac

�
: (9.41)

On the other hand, taking into account that the axial torsion
vanishes (9.33), the Eq. (A17) again yields ��� �
1
2 e�ce�c�dk�. Using then (9.40), after some algebra we
find the second (rotational contribution) term in the charge
(5.10):

 

Z
@S

���H�� �
1

4�

Z
@S

������ �
m
4�


Z
@S

r
�

�����4�R�� (9.42)

 �

�
�0

�
1

4

Mc2 �

2
�c
3�

r1�r
2
1 � a

2�

�

� �3

�
�

1

2

2Mac

��
�

�
�3

�
�

1

6

2Mac

��
: (9.43)

In (9.43) we have explicitly specified by the square brack-
ets the contributions of each integral in (9.42). Combining
(9.41) with (9.43), we obtain the invariant conserved
charges

 Q �@t	 �
5

4

Mc2 �

2
�c
3�

r1�r
2
1 � a

2�;

Q�@’	 � �
4

3

2Mac;

(9.44)

whereas again Q�@r	 �Q�@�	 � 0. As in the Riemannian
case discussed in Sec. IX A, we thus find a finite value for
the angular momentum Q�@’	, but a divergent energy
Q�@t	.

The source of the divergence is easily detected: From
(9.42) and (9.43) we can see that it is again the usual Komar
term ������ �

��dk� that is responsible for all the infinite
contributions to Q�@t	. Therefore, we can try to regularize
the conserved charges (9.44) by relocalizing the field mo-
menta in the same way as it was done for the Riemannian
case in (9.14). Namely, we add an Euler boundary term, see
(8.16), to the gravitational action (9.24). In this case the
translational momentum does not change, H0� � H�, see
(8.17), but the rotational momentum does change, accord-
ing to (8.18). Making use of (9.34), (9.35), and (9.40), we
then find the relocalized Lorentz momentum:

 H0�� �
�

1

4�
�

4�3�
3

�
��� �

mr
�

�
1

4�
��4�R��

�
2�3�

3
�����

�4�R��
�
: (9.45)

Clearly, the divergent contributions are canceled provided
we fix the coefficient of the boundary term as�3 �

3
16�� . In

addition, we recall the double duality property of the fourth
irreducible piece of the curvature, namely, �4�R�� 


� 1
2�����

�4�R��, see Eq. (164) of [33], for example. The
resulting relocalized quantity then reads

 H0�� �
mr

2��
��4�R��: (9.46)

Using the explicit expression (9.35) for �4�R��, together
with (A17) and (9.33), we then find

 

Z
@S

���H0�� � �3

�
�

1

3

2Mac

�
: (9.47)

Combining (9.41) and (9.47), we finally obtain the regu-
larized covariant conserved charge:

 Q 0��	 � �0�
Mc2� � �3��
2Mac�: (9.48)

It is satisfactory to see that the new current yields the
‘‘standard’’ values for the energy and the angular momen-
tum, Q0�@t	 � 
Mc2, Q0�@’	 � �
2Mac, as well as the
trivial values Q0�@r	 � 0 and Q0�@�	 � 0.

It seems worthwhile to mention that although in both
examples (without and with torsion) the resulting values of
the regularized charge are the same, there is an important
difference in the way how these values are actually com-
posed. As compared to the Riemannian case discussed in
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Sec. IX A, where the rotational term ���H�� alone gave
rise both to the total energy and to the total angular
momentum, in the solution with torsion the whole energy
comes only from the translational contribution ��H�,
whereas the total angular momentum arises from the com-
bined contributions of the translational and rotational
terms.

X. DISCUSSION AND CONCLUSION

In this work, we have analyzed the problem of defining
conserved currents in diffeomorphism- and local Lorentz-
invariant theories. Einstein’s general relativity theory,
Einstein-Cartan theory, and general Poincaré gauge theo-
ries of gravity belong to this class of models. We have
presented a systematic derivation of a general expression
for conserved currents that are invariant under both coor-
dinate and local Lorentz transformations. Such currents
J ��	 are associated with a given, but completely arbitrary,
vector field � on the spacetime manifold. The conservation
law, dJ ��	 � 0, holds ‘‘on-shell,’’ i.e. on every solution of
the coupled system of the gravitational and matter field
equations. Our results are valid in any spacetime dimension
for the field-theoretic models with arbitrary Lagrangians.
Since the latter are always defined up to a total derivative,
we discussed the relocalization of the gravitational mo-
menta, induced by boundary terms in the action, in order to
find how such a relocalization affects the conserved cur-
rents and charges.

As we stressed, the total invariant current J ��	 is con-
served for any vector field � when the field equations are
satisfied. In contrast, the separate gravitational J grav��	
and matter J mat��	 currents are not conserved in general,
not even on-shell. However, if the vector field � generates a
symmetry of the field configuration, i.e. if the generalized
Killing equations are satisfied for the coframe and connec-
tion, L�#� � 0 and L���

� � 0, then (5.1) and (5.4) yield
two independent conservation laws, dJ grav��	 � 0 and
dJ mat��	 � 0. Moreover, in the case of spinless matter
(
�� � 0) or in vacuum, the separate conservation laws
arise for the case when the vector field � is a usual isometry
(L�gij � 0). In other words, separate invariant conserva-
tion laws exist for the matter and/or gravitational currents
under stronger (Killing symmetry) conditions on the field
configurations, as compared to the conservation of the total
(gravitational plus matter) current that only requires the
field equations to be satisfied.

As an immediate consequence of the general results, we
have demonstrated that the Komar construction arises as a
particular invariant current for the Hilbert-Einstein
Lagrangian of the gravitational field. In this sense, the
whole formalism can be viewed as a generalization of the
Komar currents to arbitrary gravitational models with more
complicated Lagrangians. As we verify, the usual Komar
charges diverge for spacetimes which are not asymptoti-
cally flat (in particular, for the asymptotically anti-de Sitter

spacetimes). We have shown that the general scheme of
‘‘regularization via relocalization’’ can be used in this case
to obtain finite total conserved charges. In addition, we
considered asymptotically anti-de Sitter solutions of the
quadratic Poincaré gauge theory in order to test how our
general formalism works for models with nontrivial torsion
degrees of freedom. We found divergent total charges,
which can again be regularized with the help of a relocal-
ization induced by a suitable boundary term added to the
action. Rather curiously, we found the same total final
finite charges for the Riemannian and for the quadratic
Poincaré model. This result appears to be quite satisfactory
and rather nontrivial, since in the quadratic Poincaré model
the total regularized charges arise from different sectors of
the dynamical field degrees of freedom (translational ver-
sus rotational). Moreover, we have verified that Q�@r	 �
Q�@�	 � 0 in both models.

It seems worthwhile to mention some specific mathe-
matical results obtained in this study. Namely, we have
discovered that the local Lorentz invariance of the theory
allows for a certain freedom in the description of the
consequences of the diffeomorphism invariance. This free-
dom is equivalent to a definition of a ‘‘generalized Lie
derivative’’ that acts on the geometrical and matter fields.
In other words, there is no unique or natural definition of
the Lie derivative for the Lorentz-covariant fields (co-
frame, torsion, and Lorentz-covariant matter fields). For
example, it is always possible to define the Lie derivative
of Lorentz-covariant fields as the usual Lie derivative ‘�.
However, the result will not be a Lorentz-covariant field
and the conserved currents derived from this choice will
not be invariant under local Lorentz transformations. We
have found a variety of consistent covariant Lie deriva-
tives, all leading to the definition of invariant conserved
currents. Technically, the latter is a consequence of the
commuting property of the exterior and generalized Lie
derivative.

There is a number of interesting directions in which we
can further develop the current formalism. In particular, the
general approach can be naturally extended to include
gravity interacting with gauge fields, thus allowing to
obtain conserved quantities invariant also under gauge
transformations in addition to the coordinate and local
Lorentz invariance. Furthermore, it is possible to general-
ize the current framework to metric-affine gravity, so that
to include gravitational models with local invariance under
the general linear group. These developments will be dis-
cussed elsewhere.
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APPENDIX A: GENERALIZED LIE DERIVATIVES

In this paper, generalized Lie derivatives are heavily
used. Here we collect the corresponding mathematical
definitions and describe properties of the generalized Lie
derivatives.

We call an operator L� in the algebra of tensor fields
over spacetime a generalized Lie derivative if it is a deri-
vation of the tensor algebra (as defined in [63], e.g.) which
satisfies the following properties (for any Lorentz-valued
p-form !A, q-form ’A, and constant �):

(a) L��!A � �L�!
A (linearity),

(b) L��!A ^ ’B� � �L�!A� ^ ’B �!A ^ L�’B

(Leibniz rule),
(c) L�� � ‘�� � �cd�� d��c�� (usual Lie deriva-

tive for any scalar-valued p-form �).
In accordance with the general mathematical theory (see
Proposition 3.3 of [63]), every derivation is constructed
from the ordinary Lie derivative ‘� and a (1, 1) tensorial
field. In this work, we explicitly define the generalized Lie
derivative by the formula

 L�!A :� ‘�!A � B���	���
A
B ^!

B (A1)

when it acts on any (Lorentz-)covariant p-form!A. The (1,
1) field B�� depends linearly on � in order to provide the
above property (a). If, under the local Lorentz transforma-
tion #� ! # 0� � ��

�#
�, this field transforms as

 B0� � ���1�	�B	���
� � ��

�1�����cd��
��; (A2)

then the generalized Lie derivative (A1) of a covariant
object is again a covariant object with the same trans-
formation properties. In addition, we would like to know
how L� acts on noncovariant objects, such as d!A, for
example. In order to find this, it suffices to define the Lie
derivative of the connection L���

�. Then we can compute
L��d!

A� by writing d!A � D!A � ��
��	���

A
B ^!

B,
and by using the Leibniz rule and the definition (A1).

We define the generalized Lie derivative of the connec-
tion by

 L���
� :� ‘���

� � �dB�� � ��
�B�� � ��

�B�
��:

(A3)

If we recall the expression of the curvature 2-form in terms
of the connection 1-form, we can recast the above defini-
tion into an equivalent form:

 L���
� � D��c��� � B��� � �cR��: (A4)

Without going into details, let us explain this important
point. The ordinary Lie derivative commutes with the
exterior differential, �‘�; d	 � 0. Using this fact together
with the Leibniz rule, we can easily compute the Lie
derivative of the curvature 2-form: ‘�R�� �
‘��d��

� � ��
� ^ ��

�� � d�‘���
�� � �‘���

�� ^ ��
��

��
� ^ �‘���

�� � D�‘���
��. Here we formally write the

right-hand side as a covariant derivative, however in reality
the resulting expression is not covariant. The generalized
Lie derivative (A3) removes this deficiency. Indeed, the
operation (A1) is well defined on the covariant curvature 2-
form, and the result is the covariant 2-form L�R��. Now,
by applying the covariant differential D to (A3), or, equiv-
alently, to (A4), we straightforwardly verify that
D�L���

�� � L�R��. In other words, in the replacement
of the noncovariant ‘� with a covariant L�, the definition of
the generalized Lie derivative of the connection (A3) pro-
vides the correct replacement of the formal noncovariant
relation ‘�R�� � D�‘���

�� with an appropriate covariant
formula L�R�� � D�L���

��.
With these definitions, one can prove that the general-

ized Lie derivative commutes with the exterior derivative,
i.e. �L�; d	 � 0. For an arbitrary Lorentz-valued form !A,
we have
 

L��d!A� � L��D!A � ��
��	���

A
B ^!

B�

� d‘�!A � �‘���
� � L���

���	���
A
B ^!

B

� B���	���
A
Bd!

B

� B�
���

���	���
A
C�	

�
��
C
B

� �	���
A
C�	

�
��
C
B	 ^!

C: (A5)

Using now (A3) and the commutation relation of the
Lorentz generators,

 �	��; 	�		
A
B �

1
2�g�		�� � g��	�	 � g��	�	

� g�		��	AB; (A6)

we ultimately find

 L��d!
A� � d‘�!

A � dB�
��	���

A
B ^!

B

� B���	���
A
Bd!

B

� d‘�!
A � d�B�

��	���
A
B!

B� � d�L�!
A�:

(A7)

Similarly, we can verify that L��d��
�� � d�L���

��. The
vanishing of the commutator �L�; d	 on all other geometric
quantities follows then directly from these formulas and
the Leibniz rule.

In conclusion, let us give the following useful identities
for the basic gravitational field variables:

 L�#
� � D�� � �cT� � �B�

� � �c��
�� ^ #�; (A8)

 L�T
� � D�L�#

�� � �L���
�� ^ #�; (A9)

 L�R�
� � D�L���

��; (A10)

 �L�;D	!
A � �L���

���	���
A
B ^!

B: (A.11)
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1. Yano’s derivative

The covariant Lie derivative in the sense of Yano is
defined by (2.16) and (2.17). Accordingly, this turns out
to be a particular realization of the generalized Lie deriva-
tive that corresponds to the choice B�� � ���� �

�e��c‘�#�	.
This choice is special because in a certain sense it is

‘‘minimal.’’ Let us explain this property. The usual Lie
derivative ‘� (in which case B�

� � 0) of covariant geo-
metrical and matter fields is not covariant under local
Lorentz transformations. Specifically, let us consider the
Lie derivative of the coframe. This is a 1-form and we can
decompose it as follows: ‘�#� � �S�

� � A�
��#�, where

S�
� is symmetric, S���	 � 0, and A�

� is antisymmetric,

A���� � 0. Explicitly we find S�� � e��c‘�#�� 


hi�h
j
�‘�gij=2 and A�� � e��c‘�#�	. We can verify that

S�
� is a tensor under local Lorentz transformations, but

A�
� is not. Therefore, the second piece is the source of the

noncovariance of the usual Lie derivative ‘�#
� of the

coframe. There exists a unique B�
� which introduces a

covariant Lie derivative L�#� by just removing the second
noncovariant term above, namely B�� � �A�� �
�e��c‘�#�	 �: ����. This definition is minimal in the
sense that it does not require the choice of any arbitrary
constant. For instance, if t�

� is a given tensor field, then the
nonminimal choice B0� � ���

� � �t�
� also leads to a

covariant Lie derivative, but introduces an unknown scalar
�. In [64–66] the choice B�� � ���� is referred to as
‘‘Kosmann lift’’ and it was derived with the help of fairly
ad hoc assumptions.

For this minimal choice we have, for vector-valued
forms, connection, and for matter fields, respectively:

 L �!� � ‘�!� ���
�!�; (A12)

 L ���
� � D��

� � �cR�
�; (A13)

 L ��A � ‘��A ���
��	���

A
B�B: (A14)

Here, in accordance with the general relation (A4), we have

 ��
� :� �c��� ���

�: (A15)

For a given vector field �, we can define a corresponding 1-
form by k :� ��c#��#

� � ��#
�. Then a straightforward

computation shows that

 ��� 
 e��cD��	 � �ce��cT�	 (A16)

 
 1
2e�ce�c�dk� �c�#

� ^ T��	: (A17)

It is worthwhile to calculate explicitly the Yano deriva-
tive of the torsion, curvature, and of the coframe:

 L �T
� � D�L�#

�� � �L���
�� ^ #�; (A18)

 L �R�
� � D�L���

��; (A19)

 L �#
� � D�� � �cT� ���

�#� (A20)

 � #�D
fg
�����: (A21)

These formulas are quite useful for many practical compu-
tations, but with a word of caution: The two last equations
are actually somewhat misleading since one might have a
wrong impression that a (either non-Riemannian or
Riemannian) connection is involved. However, the Yano
derivative L� is (like the ordinary Lie derivative ‘�) de-
fined independently of any connection. This fact becomes
more clear if we recall that the holonomic form of the
second factor in (A21) reads

 D
fg

����� �
1
2h
i
�h

j
���

k@kgij � gik@j�
k � gkj@i�

k�: (A22)

As a bonus, from this observation we learn that the Yano
derivative of the coframe vanishes if and only if � is a
Killing vector field.

It is worthwhile to note that in the absence of torsion the
Yano derivative of the usual spinor field reduces to the Lie
derivative of Kosmann [67].

2. Covariant Lie derivative 8�

The covariant Lie derivative (2.14) corresponds to the
choice B�� � �c���. Accordingly, the basic relations for
this case read:

 8�#� � D�� � �cT�; (A23)

 8�!
� � �cD!� �D��c!��; (A24)

 8��A � �cD�A �D��c�A�; (A25)

 8���
� � �cR�

�: (A26)

APPENDIX B: IRREDUCIBLE DECOMPOSITIONS

In a Riemann-Cartan spacetime, the torsion and the
curvature can be decomposed into three and six irreducible
parts, respectively.

Namely, the torsion 2-form is decomposed as T� �
�1�T� � �2�T� � �3�T�, with

 

�2�T� � 1
3#

� ^ �e�cT
��; (B1)

 

�3�T� � �1
3
��#� ^ ��T� ^ #��� �

1
3e
�c�T� ^ #��; (B2)

 

�1�T� � T� � �2�T� � �3�T�: (B3)

The curvature 2-form is decomposed as R�� �P6
I�1

�I�R��, with
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�2�R�� � ���#�� ^��	�; (B4)

 

�3�R�� � � 1
12
��X#� ^ #��; (B5)

 

�4�R�� � �#�� ^	�	; (B6)

 

�5�R�� � �1
2#
�� ^ e�	c�#� ^ R��; (B7)

 

�6�R�� � � 1
12R#

� ^ #�; (B8)

 

�1�R�� � R�� �
X6

I�2

�I�R��: (B9)

Here

 R� :� e�cR
��; R :� e�cR

�;

X� :� ��R�� ^ #��; X :� e�cX�;
(B10)

and

 �� :� X� �
1
4#�X�

1
2e�c�#

� ^ X��; (B11)

 	� :� R� �
1
4#�R�

1
2e�c�#

� ^ R��: (B12)

The components of the 2-form R�� �
1
2R���

�#� ^ #�

are identified with the curvature tensor R���
�.

Accordingly, the Ricci tensor is defined by the components
of the 1-form R� � Ric��#

�, where explicitly we have
Ric�� � R���

�. This tensor is not symmetric, in general.
The curvature scalar is, as usual, R � g��Ric��. It deter-
mines the 6th irreducible part (B8) of the curvature. From
(B12) we learn that the 4-th part of the curvature is given
by the symmetric traceless Ricci tensor,

 	� � �Ric���� �
1
4Rg���#

�: (B13)

The first irreducible part (B9) introduces the generalized
Weyl tensor C���� which is defined by the components of
the Weyl 2-form

 W�
� :� �1�R�

� � 1
2C���

�#� ^ #�: (B14)

Accordingly, the 1st, 4th, and 6th curvature parts reproduce

the well-known irreducible decomposition of the
Riemannian curvature tensor into the Weyl, traceless
Ricci, and curvature scalar parts. The 2nd, 3rd, and 5th
curvature parts are purely non-Riemannian since they all
arise from the nontrivial right-hand side of the first Bianchi
identity R�� ^ #� � DT�, see (B10) and (B11).

APPENDIX C: VECTOR FIELD IN KERR-ADS
SPACETIME

Let us take an arbitrary vector field � � �i@i, the com-
ponents of which are four constant parameters �0, �1, �2,
�3. Then for the Kerr-AdS spacetime with the coframe
given by (9.1), (9.2), (9.3), and (9.4), we find for the
differential of the corresponding 1-form k:

 dk � !� �; with ! � 2A# 0̂ ^ # 1̂ � 2B# 2̂ ^ # 3̂:

(C1)

We have here explicitly the coefficients
 

A � �0c
�
�r
3
�
m�r2 � a2cos2��

�2

�

� �3a
sin2�
�
r
�

�
1�

�r2

3

�
�
m�r2 � a2cos2��

�2

�
;

(C2)

 

B� �0cacos�
�
�
3
�

2mr

�2

�

��3
cos�
�
r2�a2

�

�
1�

�a2cos2�
3

�
�

2mra2sin2�

�2

�
:

(C3)

The 2-form � in (C1) reads

 � �
2
�������
f�

p
�

�
�3
 sin��a cos�# 0̂ ^ # 2̂ � r# 3̂ ^ # 1̂�

�

�
�1 a

2 sin� cos�
�

� �2 r
f

�
# 1̂ ^ # 2̂

�
:

(C4)
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